WEKO3
アイテム
半無限弾性体における衝撃エネルギ分布
http://hdl.handle.net/10295/1046
http://hdl.handle.net/10295/1046ca8011f0-7e88-437a-9baa-b098f6452e0f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2008-08-19 | |||||||||||||
タイトル | ||||||||||||||
タイトル | 半無限弾性体における衝撃エネルギ分布 | |||||||||||||
その他のタイトル | ||||||||||||||
その他のタイトル | Energy distributions Produced by a Mechanical Impact in an Elastic Half-space. | |||||||||||||
言語 | ||||||||||||||
言語 | jpn | |||||||||||||
主題 | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | 半無限弾性体 | |||||||||||||
主題 | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | Elastic Half-space | |||||||||||||
主題 | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | 衝撃エネルギ | |||||||||||||
主題 | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | Mechanical Impact | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||
資源タイプ | departmental bulletin paper | |||||||||||||
作成者 |
三浦, 公久
× 三浦, 公久
× 大好, 直
× MIURA, Kimihisa
× OHYOSHI, Tadashi
|
|||||||||||||
内容記述 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | The present work deales with an theoretical analysis on the transient problem of normal line loadings varying with time as Heaviside step function on an elastic half-space. The formal solutions are obtained by using Fourier-Laplace double integral transforms. Their inverse transforms are effectively evaluated by the Cagniard's method. This method is interpreted here by making use of mappings of integral contours on the Riemann surface to yield the exact solutions. Numerical calculations of three stress components and a strain energy density are carried out withiI} a disturbed region. Their results are arranged for 3-D graphic representations. The concluding remarks deduced from the graphics are summarized as follows: [1] The contribution to the surface response of the energy of the Rayleigh wave becomes predominant as the response time passes. because of the weak attenuation. [2] The energy components due to dilatational waves and shear waves become prominent in the restricted locations. Amplitudes of shear waves are especially large within the 'shear window'the region of which extends in the direction about 50' underneath the impact surface. [3] There is little contribution of the von Schmidt wave. |
|||||||||||||
出版タイプ | ||||||||||||||
出版タイプ | VoR | |||||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||||
書誌情報 |
秋田大学鉱山学部研究報告 巻 6, p. 111-118, 発行日 1985-10-22 |
|||||||||||||
ISSN | ||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||
収録物識別子 | 03898040 | |||||||||||||
NCID | ||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||
収録物識別子 | AN00010307 | |||||||||||||
出版者 | ||||||||||||||
出版者 | 秋田大学鉱山学部 |