ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 40 国際資源学研究科・国際資源学部
  2. 40A 学術誌論文
  3. 40A1 雑誌掲載論文

Use of a DNN-Based Image Translator with Edge Enhancement Technique to Estimate Correspondence between SAR and Optical Images

http://hdl.handle.net/10295/00006245
http://hdl.handle.net/10295/00006245
f69d1711-59e6-48a2-b616-289fde66c390
名前 / ファイル ライセンス アクション
kokuA_2022_20.pdf kokuA_2022_20.pdf (9.8 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-02-23
タイトル
タイトル Use of a DNN-Based Image Translator with Edge Enhancement Technique to Estimate Correspondence between SAR and Optical Images
言語 en
言語
言語 eng
主題
主題Scheme Other
主題 image registration
主題
主題Scheme Other
主題 keypoint matching
主題
主題Scheme Other
主題 synthetic aperture radar
主題
主題Scheme Other
主題 deep neural network
主題
主題Scheme Other
主題 generative adversarial networks
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
作成者 Toriya, Hisatoshi

× Toriya, Hisatoshi

en Toriya, Hisatoshi

Search repository
Dewan, Ashraf

× Dewan, Ashraf

en Dewan, Ashraf

Search repository
Ikeda, Hajime

× Ikeda, Hajime

en Ikeda, Hajime

Search repository
Owada, Narihiro

× Owada, Narihiro

en Owada, Narihiro

Search repository
Saadat, Mahdi

× Saadat, Mahdi

en Saadat, Mahdi

Search repository
Inagaki, Fumiaki

× Inagaki, Fumiaki

en Inagaki, Fumiaki

Search repository
Kawamura, Youhei

× Kawamura, Youhei

en Kawamura, Youhei

Search repository
Kitahara, Itaru

× Kitahara, Itaru

en Kitahara, Itaru

Search repository
内容記述
内容記述タイプ Abstract
内容記述 In this paper, the local correspondence between synthetic aperture radar (SAR) images and optical images is proposed using an image feature-based keypoint-matching algorithm. To achieve accurate matching, common image features were obtained at the corresponding locations. Since the appearance of SAR and optical images is different, it was difficult to find similar features to account for geometric corrections. In this work, an image translator, which was built with a DNN (deep neural network) and trained by conditional generative adversarial networks (cGANs) with edge enhancement, was employed to find the corresponding locations between SAR and optical images. When using conventional cGANs, many blurs appear in the translated images and they degrade keypoint-matching accuracy. Therefore, a novel method applying an edge enhancement filter in the cGANs structure was proposed to find the corresponding points between SAR and optical images to accurately register images from different sensors. The results suggested that the proposed method could accurately estimate the corresponding points between SAR and optical images.
言語 en
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
書誌情報 en : APPLIED SCIENCES-BASEL

巻 12, 号 9, 発行日 2022
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 2076-3417
出版者
出版者 MDPI
言語 en
関連情報
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/app12094159
権利情報
権利情報 © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:39:53.063072
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3