ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 40 国際資源学研究科・国際資源学部
  2. 40A 学術誌論文
  3. 40A1 雑誌掲載論文

Automated Identification of Mineral Types and Grain Size Using Hyperspectral Imaging and Deep Learning for Mineral Processing

http://hdl.handle.net/10295/00006236
http://hdl.handle.net/10295/00006236
3de459bd-a6d7-4ec7-90c7-5c6396b55d79
名前 / ファイル ライセンス アクション
kokuA_2022_11.pdf kokuA_2022_11.pdf (9.8 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-02-23
タイトル
タイトル Automated Identification of Mineral Types and Grain Size Using Hyperspectral Imaging and Deep Learning for Mineral Processing
言語 en
言語
言語 eng
主題
主題Scheme Other
主題 mineral processing
主題
主題Scheme Other
主題 mineral identification
主題
主題Scheme Other
主題 CNN
主題
主題Scheme Other
主題 machine learning
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
作成者 Okada, Natsuo

× Okada, Natsuo

en Okada, Natsuo

Search repository
Maekawa, Yohei

× Maekawa, Yohei

en Maekawa, Yohei

Search repository
Owada, Narihiro

× Owada, Narihiro

en Owada, Narihiro

Search repository
Haga, Kazutoshi

× Haga, Kazutoshi

en Haga, Kazutoshi

Search repository
Shibayama, Atsushi

× Shibayama, Atsushi

en Shibayama, Atsushi

Search repository
Kawamura, Youhei

× Kawamura, Youhei

en Kawamura, Youhei

Search repository
内容記述
内容記述タイプ Abstract
内容記述 In mining operations, an ore is separated into its constituents through mineral processing methods, such as flotation. Identifying the type of minerals contained in the ore in advance aids greatly in performing faster and more efficient mineral processing. The human eye can recognize visual information in three wavelength regions: red, green, and blue. With hyperspectral imaging, high resolution spectral data that contains information from the visible light wavelength region to the near infrared region can be obtained. Using deep learning, the features of the hyperspectral data can be extracted and learned, and the spectral pattern that is unique to each mineral can be identified and analyzed. In this paper, we propose an automatic mineral identification system that can identify mineral types before the mineral processing stage by combining hyperspectral imaging and deep learning. By using this technique, it is possible to quickly identify the types of minerals contained in rocks using a non-destructive method. As a result of experimentation, the identification accuracy of the minerals that underwent deep learning on the red, green, and blue (RGB) image of the mineral was approximately 30%, while the result of the hyperspectral data analysis using deep learning identified the mineral species with a high accuracy of over 90%.
言語 en
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
書誌情報 en : MINERALS

巻 10, 号 9, 発行日 2020
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 2075-163X
出版者
出版者 MDPI
言語 en
関連情報
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/min10090809
権利情報
権利情報 © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:39:59.117773
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3