Item type |
学術雑誌論文 / Journal Article(1) |
公開日 |
2021-11-11 |
タイトル |
|
|
タイトル |
The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
作成者 |
Shimizu, Kana
Sunagawa, Yoichi
Funamoto, Masafumi
Wakabayashi, Hiroki
Genpei, Mai
Miyazaki, Yusuke
Katanasaka , Yasufumi
Sari, Nurmila
Shimizu, Satoshi
Katayama, Ayumi
Shibata, Hiroyuki
Iwabuchi, Yoshiharu
Kakeya, Hideaki
Wada, Hiromichi
Hasegawa, Koji
Morimoto, Tatsuya
|
内容記述 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice. |
|
言語 |
en |
出版タイプ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
書誌情報 |
en : Scientific Reports
巻 10,
号 7172,
発行日 2020
|
収録物識別子 |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2045-2322 |
出版者 |
|
|
出版者 |
Springer Nature |
|
言語 |
en |
関連情報 |
|
|
関連タイプ |
isIdenticalTo |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
https://doi.org/10.1038/s41598-020-64207-w |
権利情報 |
|
|
言語 |
en |
|
権利情報 |
© The Author(s) 2020 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |