ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 40 国際資源学研究科・国際資源学部
  2. 40A 学術誌論文
  3. 40A1 雑誌掲載論文

Research on vibration-based early diagnostic system for excavator motor bearing using 1-D CNN

http://hdl.handle.net/10295/00006161
http://hdl.handle.net/10295/00006161
1cc04256-c094-40fb-8158-c87b79dd7363
名前 / ファイル ライセンス アクション
kokuA_2022_7.pdf kokuA_2022_7.pdf (4.0 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-02-18
タイトル
タイトル Research on vibration-based early diagnostic system for excavator motor bearing using 1-D CNN
言語 en
言語
言語 eng
主題
主題Scheme Other
主題 bearing diagnosis
主題
主題Scheme Other
主題 electric motor
主題
主題Scheme Other
主題 vibration analysis
主題
主題Scheme Other
主題 signal processing
主題
主題Scheme Other
主題 1-D CNN
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
作成者 Yandagsuren, Dorjsuren

× Yandagsuren, Dorjsuren

en Yandagsuren, Dorjsuren

Search repository
Kurauchi, Tatsuki

× Kurauchi, Tatsuki

en Kurauchi, Tatsuki

Search repository
Toriya, Hisatoshi

× Toriya, Hisatoshi

en Toriya, Hisatoshi

Search repository
Ikeda, Hajime

× Ikeda, Hajime

en Ikeda, Hajime

Search repository
Adachi, Tsuyoshi

× Adachi, Tsuyoshi

en Adachi, Tsuyoshi

Search repository
Kawamura, Youhei

× Kawamura, Youhei

en Kawamura, Youhei

Search repository
内容記述
内容記述タイプ Abstract
内容記述 In mining, super-large machines such as rope excavators are used to perform the main mining operations. A rope excavator is equipped with motors that drive mechanisms. Motors are easily damaged as a result of harsh mining conditions. Bearings are important parts in a motor; bearing failure accounts for approximately half of all motor failures. Failure reduces work efficiency and increases maintenance costs. In practice, reactive, preventive, and predictive maintenance are used to minimize failures. Predictive maintenance can prevent failures and is more effective than other maintenance. For effective predictive maintenance, a good diagnosis is required to accurately determine motor-bearing health. In this study, vibration-based diagnosis and a one-dimensional convolutional neural network (1-D CNN) were used to evaluate bearing deterioration levels. The system allows for early diagnosis of bearing failures. Normal and failure-bearing vibrations were measured. Spectral and wavelet analyses were performed to determine the normal and failure vibration features. The measured signals were used to generate new data to represent bearing deterioration in increments of 10%. A reliable diagnosis system was proposed. The proposed system could determine bearing health deterioration at eleven levels with considerable accuracy. Moreover, a new data mixing method was applied.
言語 en
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
書誌情報 en : Journal of Sustainable Mining

巻 22, 号 1, p. 65-80, 発行日 2023
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 25434950
出版者
出版者 Głowny Instytut Gornictwa (Central Mining Institute)
関連情報
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.46873/2300-3960.1377
権利情報
権利情報 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:41:24.916669
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3