{"created":"2023-07-25T10:22:22.199727+00:00","id":1717,"links":{},"metadata":{"_buckets":{"deposit":"21449aaf-5c8e-440d-8fbf-4d9ecce4760b"},"_deposit":{"created_by":3,"id":"1717","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"1717"},"status":"published"},"_oai":{"id":"oai:air.repo.nii.ac.jp:00001717","sets":["597:598:637:889"]},"author_link":["6273"],"item_10002_biblio_info_36":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2011-03-01","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"17","bibliographicPageStart":"13","bibliographicVolumeNumber":"66","bibliographic_titles":[{"bibliographic_title":"秋田大学教育文化学部研究紀要. 自然科学"}]}]},"item_10002_description_29":{"attribute_name":"内容記述(抄録)","attribute_value_mlt":[{"subitem_description":"We consider the quintic equation of the form z^5-az + 1 = 0 (a ∈ - C).When |a| becomes large,we show that its roots ωκ(1<_ k <_5)approach to {0,±a^1/4,±ia^1/4}(i=√<-1>,a^1/4=a 4-th root of a).As an application,we show that when |a| → ∞ galois resolvents Σ^5_i=1 εκωκ(the εκ are distinct 5-th roots of 1)will make five circles centered at the origin on the complex plane.Similar consideration can be applied to higher equations of type z^m - az+1=0,though the distribution of galois resolvents is too complicated to describe.","subitem_description_type":"Other"}]},"item_10002_publisher_30":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"秋田大学教育文化学部"}]},"item_10002_source_id_27":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13485296","subitem_source_identifier_type":"ISSN"}]},"item_10002_source_id_35":{"attribute_name":"NCID","attribute_value_mlt":[{"subitem_source_identifier":"AA11458582","subitem_source_identifier_type":"NCID"}]},"item_10002_version_type_37":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ito, Hideji"}],"nameIdentifiers":[{"nameIdentifier":"6273","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-02-16"}],"displaytype":"detail","filename":"kbs66(13).pdf","filesize":[{"value":"1.1 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kbs66(13).pdf","url":"https://air.repo.nii.ac.jp/record/1717/files/kbs66(13).pdf"},"version_id":"5ec72786-e4df-4e23-8dc9-231f1ae0b50f"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"quintic equation","subitem_subject_scheme":"Other"},{"subitem_subject":"Bring-Jerrard normal form","subitem_subject_scheme":"Other"},{"subitem_subject":"approximation","subitem_subject_scheme":"Other"},{"subitem_subject":"galois resolvent","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"On Quintic Equations","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"On Quintic Equations"}]},"item_type_id":"10002","owner":"3","path":["889"],"pubdate":{"attribute_name":"公開日","attribute_value":"2011-09-15"},"publish_date":"2011-09-15","publish_status":"0","recid":"1717","relation_version_is_last":true,"title":["On Quintic Equations"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2023-07-25T11:34:02.003973+00:00"}