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This paper is concerned with the theoretical treatment of transient thermoelastic problem involving an
angle-ply laminated cylindrical panel consisting of an oblique pile of layers having orthotropic material
properties due to nonuniform heat supply in the circumferential direction. We obtain the exact solution for
the two-dimensional temperature change in a transient state, and thermal stresses of a simple supported
cylindrical panel under the state of generalized plane deformation. As an example, numerical calculations are
carried out for a 2-layered angle-ply laminated cylindrical panel, which is heated from inner surface. Some
numerical results for the temperature change, the displacement and the stresses in a transient state are shown
in figures. Furthermore, the influence of the radius ratio on the temperature change, the displacement and the

stress distributions are investigated.
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1. Introduction

Anisotropic laminated composites have been used in various
industrial field as structure materials. When such anisotropic lami-
nated composites are used under high temperature environments,
it is known that the material characteristic of the lamina and
stacking sequence have a great influence on thermomechanical
behaviors such thermal stress and thermal deformation. And
one of cause of damage in these laminated composites includes
delamination. In order to evaluate this phenomenon, the thermal
stress analysis taking stress
components is necessary. In addition, a transient thermal stress

into account the transverse

analysis as well as a steady thermal stress analysis becomes
important, because maximum thermal stress distribution occurs in
a transient state which lasts from the beginning of the heating to
the steady state. Therefore, we recently analyzed exactly the three-
dimensional transient thermal stress problem of cross-ply lami-
nated rectangular plate due to partial heating [1] and the transient
thermal stress problem of angle-ply laminated strip due to
nonuniform heat supply in the width direction [2] taking into
account all transverse stress components. However, these studies
discuss the problem in rectangular coordinates. On the other hand,
an anisotroric cylindrical panel is a typical structure element to
produce curved structures such as aircrafts, spacecrafts, pressure
vessels and so on. Therefore the thermoelastic problems of
anisotropic cylindrical panel with curvature are important as well
as those of plate models in the design board. Though there are
several exact analysis for the isothermal problems of anisotropic
laminated cylindrical panel [3-7], there are only a few exact
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analyses concerned with the thermoelastic problems of anisotropic
laminated cylindrical panel taking into account transverse stress
components. For example, Huang and Tauchert treated exactly a
cross-ply cylindrical panel [8] and a doubly-curved cross-ply
laminate [9] with simply supported edges as a three-dimensional
thermoelastic problem. Zenkour et al. [10] analyzed thermoelastic
problem of composite laminated cylindrical panel using a refined
first-order theory under several boundary conditions. These
papers, however, treated only the thermal stress problems under
the steady state temperature distribution that is linear with respect
to the thickness direction. To the authors knowledge, the exact
analysis for a transient thermal stress problem of anisotropic
laminated panel under two-dimensional temperature distribution
has not been reported.

In the present article, we consider an angle-ply laminated
cylindrical panel with simply supported edges due to a nonuniform
heat supply in the circumferential direction. We analyze exactly
the transient thermal stress and thermal deformation of the
laminated cylindrical panel as a generalized plane deformation
problem taking into account all transverse stress components. The
exact thermoelastic solution obtained in this article, will become
effective to verify the accuracy of various laminated shell theories
and approximation methods.

2. Analysis

We consider an infinitely long, angle-ply laminated cylindrical
panel composed of N layers as shown in Figure 1, the angular
length of the side in the circumferential direction of which is
denoted by 6. The panel's inner and outer radii are designated a
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and b, respectively. Throughout this article, the index i(=1, 2, ***,
N) is associated with the ith layer of a laminated cylindrical panel
from the inner side. It is assumed that each layer maintains the
orthotropic material properties and the fiber direction in the ith
layer is alternated with ply angle @; to the z axis.

2.1 Heat conduction problem

We assume that the laminated cylindrical panel is initially at
zero temperature and is suddenly heated from the inner and
outer surfaces by surrounding media with relative heat transfer
coefficients 4, and k.. We denote the temperatures of the surround-
ing media by the functions 7., (6) and T,/ (8) and assume its
end surfaces (6 =0, O,) are held zero temperature. Then the
temperature distribution shows a two-dimensional distribution in
— @ plane, and the transient heat conduction equation for the
ith layer and the initial and thermal boundary conditions in
dimensionless form are taken in the following forms :

OT, _ (0T, | 1 0T\  Ra 0T,
ki M . =1~
oz K"(@pz +p 0,0) 0 00 i=1~N 1)
t=0; Ti=0;i=1~N 2)
7. 9L o uT
p=a; %0 HT\=—H.T.f.(6) €)]
0=R; T.=Tn yi=1~(N—1) ©)
0O=R;; in’ﬁ:ir,ﬁﬂ OT... Hi= 1~(N_ 1) (5)
oo Ao
po=1; %+HbTN= HbTbﬁ(Q) (6)
7o)
6=0,0,; T=0 ;i=1~N )
where
V4
\ Y7
\‘\\\\
1.1.(6)
2] -
r i=i h,
i=
[=1
T=O =
b Lf.©®) & r=0
r,
a
00
Figure 1 Analytical model and coordinate system
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Kri=Kri, Koi=Kwi sin’ ¢i +Kn cos’ ¢i, Iriziﬂ' (8)
In expressions (1)-(8), we have introduced the following

dimensionless values :

R Ti, Tas T, — s Dy
(T", T:la Tb)=(ﬁT0b)’ (ﬁ, Ri, a):LbCZ)a
(IE~ Ko B Er-) _ (Iin', Keiy KiLiy /CTi)
viy Koiy Kiiy Kri 7&) s
Y ).ri,).i Kot
L, /1Ti)=( L T), 7= z: , (H., Hy) = (ha, h))b )

where T is the temperature change of the ith layer ; k. and K& are
thermal diffusivities in the » and 6 directions, respectively ; A, is
thermal conductivity in the » direction ; # is time ; and T, Ko, and
Ao are typical values of temperature, thermal diffusivity and
thermal conductivity, respectively. In Eq. (8), the subscripts L and
T denote the fiber and transverse directions, respectively.
Moreover, ri(=1,2,**, N—1) are the coordinates of interface of
the laminated cylindrical panel.

Introducing the finite sine transformation with respect to the
variable 6 and Laplace transformation with respect to the variable
7, the solution of equation (1) can be obtained so as to satisfy the
conditions (2)-(7). This solution is shown as follows :

T= Y, Tu(o, T)sin i ; i=1~N (10)
k=1
where
_ 201 o
T«(0, 7) =g;;(A.- o"+B o™
0

= ujAv(ﬂj) {AiJ"/l(ﬁi 14 ,0)+B, Y7,(Bi My ,0)}]
an

where J,( ) and Y,( ) are the Bessel function of the first and
second kind of order 7, respectively; A and F are the deter-
minants of 2N X 2N matrix [au] and [en], respectively ;the
coefficients 4; and B; are defined as the determinant of the matrix
similar to the coefficient matrix [ax], in which the (2i— 1)th
column or 2ith column is replaced by the constant vector {c:},
respectively ; similarly, the coefficients 4, and B, are defined as
the determinant of the matrix similar to the coefficient matrix
[ex], in which the (2i— 1)th column or 2ith column is replaced by
the constant vector {ci}, respectively. Furthermore, the nonzero
elements ay and ¢ of the coefficient matrix [a.] and the constant
vector {c:} are given as follows :

an= Bl Jun (Brea) + (H,,—%) J(Buud),

an=ButYyr (Bud) + (H,—%) Y,(Biua),

v, on1= (Hy+ 7)) Jo. (Butt) — Butd Jr+1(Bntt),
o, o= (Hy T 7x) Yo, (Butt) — Butt Yro+1 (Butt),
azi2i-1= Jm(Bi,U-Ri), Q2= Yh(Bi;uRi),

Qi 0i01=—Jr+1 (Bi‘)—lﬂRi), Wai2it2="" Yo+ (Biﬂ ﬂRi),

Qzi+1, 2117 Xﬂ{;i Jr (Bt R — Bitt Sy (Bi,U-Ri)},

i
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azi+1,2i— An{% Yyl(ﬁiﬂRi)—ﬁ,ﬂY,‘H (ﬂ,ﬂR,)} ’

a2i+1,2i+1= 7 Ir, i+1 {% J-,,,, (ﬁiHﬂR,) “‘B,-H/,LJ»,,HH (B,--HﬂR,-)}a

Arit1, 202~ 1” it1 {%Y‘IH.(BH»I,[LRI) - ,Biﬂ,UYv.ﬂﬂ (Bi+1 ﬂRi) }

;i=1~(N—1) (12)
C1=Hai};(q), CZNszTb}I;(q) (13)

On the other hand, the element e. of the coefficient matrix [ew] is
omitted here for the sake of brevity. In Eq. (13), ¢ represents the
parameter of finite sine transformation with respect to the variable
@ and a symbol (") represents the image function. In Egs. (10)

and (11), A(u), gi, B and 7, are
Ko
Nl D)

dA km _ 1
and u; represent the jth positive roots of the following tran-
scendental equation

A(ﬂ/)=gﬂ~u:”, @="g > B T
Aw=0 (15)

2.2 Thermal stress analysis

We now analyse the transient thermal stress of an angle-ply
laminated cylindrical panel with simply supported edges as a
generalized plane deformation problem. In each layer of the
laminated cylindrical panel, the fiber direction, the in-plane
transverse direction and the radial direction are denoted by L, T
and R, respectively. Each layer has orthotropic material properties
between the fiber-reinforced direction and its orthogonal direction.
Applying the coordinate transformation rule to stress-strain
relations for the ith layer, stress-strain relations for the global
coordinate system (r, @, z) are:

0] [0 O O 0 0 Oi][ex—a.l,
O opi QI*ZI' Qz*zi Q;s; 0 0 Q;&i EH@i_aBiT
O _ Ql*m Qz*ai Q;Jx 0 0 Qs*&' Erri_ariT
Gaf |0 0 0 Qi Q& O Voo (16)

T 0 0 0 Qs Ox O ¥ e
Oo| |Qfi O O 0 0 QOssi

i

779zi - aﬂziT
where

Ql*li = m?Qm + Zm?niz(Qm + Q&s;‘) + n:szi s

QI*Zi = M?lei + mizniz(Qlli + QZZi - 2Q66i) + n?Qm s

Ql*y = mx'ZQIZi+niZQ23i,

Ql*Gi = mini{miz(élli_ QIZi_ Q66i) + niz(QIZi_ Q22i+ QGGi)},
Qz*zi = m?sz,» + 2m,-2n.-2(szi + Q66i) + H?Qni ,

Qz*si = nisz‘"m,'zsti,

Q;Gi =nm; ni{miz(QIZi— szi+ sti) + n.-z(Qm— QlZi_ Qem)},
Q;Gi =mi ni(lei_ Qzai),

Qd:i = (ml'lQMi+nx'2Q55i)/2,

Q:s,' =m; ni(QSSi_ QM;')/Z,

QS*Si = (niZQMi+miZQSSi)/2,

Q:Gi = mizniz(Qu;‘"' QZZ:‘_ZQlZi— Qesi) + (”LA‘I' n?)Q66i/2,

Qs*y = Q22i (17)
a, = ml'zali+nizaﬂ, Qo= nz'zaLi+miszi, a.= afn,
Qe = 2min(8u,— On), m= cosP;, n=sing; (18)

In expressions (16)-(18), the following dimensionless values are
introduced :
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_ Opi _ Ees Ye) . _ (A, Qo)
i s & iy () R — a iy ) T T
Ou, GE T (kl ’)’H) aTh ( I aa) P
(O, O
(Qwi, Oui) T B (19)

where gu; are the stress components, &, are the strain tensor, 7w
are the engineering shear strain components, dx and s are
the coefficients of linear thermal expansion, Qw: are the elastic
stiffness constants, Qg are the transformed elastic stiffness
constants, and @ and  are the typical values of the coefficient of
linear thermal expansion and Young's modulus of elasticity,
respectively.

Next, we assume the displacement components for the global
coordinate system in the following forms :

U= 1:(0,0), us=ta(0,0), #:=(p, 0) (20)
where #., us and u; are the dimensionless quantities of dis-
placements in the », & and z directions, respectively, and the
dimensionless values introduced in Eq. (20) are given by the
following relations :

(vis Usi, )

aTib @

iy o, Ua) =

Taking into account Eq. (20) and substituting the displacement-

strain relations and Eq. (16) into the equilibrium equations, the
displacement equations of equilibrium are written as

Q;Si @is o+ o' u, I ,ng(Qz*zi Ui — Q;i Uri» 65)

+ (Qz*:s, + QL.-)p"‘ Ugiyp0— (Qz*z: + Q:u),oiz Usiy o

+ (Q;Gi—"_ Q:s:‘),o_] Ueiy o0 Qz*si,072 Usiso

=BT+ (B~ Ba)o™'T. 2)
(Q«;i + Q;;,-),O_l Uiyt (Q;ti + Qz*zi),o»2 Usise

+ Qﬂt’;i(,(f1 Uiy o 10-2 o T Ueis pp) + Qz’;i,072 Uoi, 00

+ Q:s.- (17:1, pp+2p_l Uz, p) + Qz*sf,O—Z Uz, 99=,071,-és.~7_”i, [ (23)
(Q;ﬁx + Qfs.‘)ﬁi1 Uiyt Qz*suoiz Uirot Q:s.' Hoir oot Qz*sno_z Usis 60

+ Qi@ o0 07 e o)+ Qi " thi,00=0"'BaTiys (24

where

Bzi = Ql*liazi + Ql*liaBi + Ql’gian‘ + Ql*s,'aszi s
,Bsi = Ql*liazi + Q;Ziasi + Qz*s.'an' + taéiaszi s

én‘ = Ql*sidzi + Q;}iasi + Qz*sian' + Qa*sié_lezi s
,Bazi= Ql*siazi + Q;Giagi + Q;ﬁan' + Qﬁ*Gic_t&i (25)

In Egs. (22)-(24), a comma denotes partial differentiation with
respect to the variable that follows. The boundary conditions of
inner and outer surfaces and the conditions of continuity on the
interfaces can be represented as follows :

p=a; 0.=0, aral:(), 6,,1=0,
o=1 5 O.v=0, Cron= 0, Gen= 0,
,O=Ri; Erri=6rr,i+l, 6r0i=679,i+1, 6ﬂi=6ﬂ3i+l,
Uri= Uy y i1, Ugi™ Us, i+1, U= Uz, i+1 (26)

The most general edge condition that the both edges are supported
is a simply supported condition. We now consider the case of a
simply supported panel given by the following relations :

0=0, 6o; O0w=0, To.=0, #=0 (X))
We assume the solutions of Eqgs. (22)-(24) in order to satisfy Eq.
(27) in the following form.

u;= Z {Um‘k(p)+ Urpu(p)}sm q:0,
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fior= f] {Uaa(0) T Unu(0)}c0s 4:6,

. i {Uas(0) - Uns(0)}c05 4,6 (28)

In expressions (28), the first term on the right side gives the
homogeneous solution and the second term of right side gives the
particular solution. We now consider the homogeneous solution
and introduce the following equations.

0= exp(s) (29)
(Ucik, UBcik, U;m) = (U gcik, U, gcik, U ?cik)exp(lis) (30)

Substituting the first term on the right side of Eq. (28) into the
homogeneous expression of Egs. (22)-(24), and later changing a
variable with the use of Eq. (29), the condition that non-trivial
solutions of (U%u, U%ba, USa) exist leads to the following

equation.
Pi3+dip.~+ﬁ=0 (31)
where
B e {M :
A('> > 3(A(i))2
fi=m [ 2( B(i))z +949BOCO+ 27 D(i)( A(.-))z:|
' 27(4°

A= Q%[Qs*si Qz‘i - (Q:SL')Z], o 3

BY= q{Q;Si[Q_szi Qz*h - (\ngi)21+ q_sz;ai[Qj*ai Qs*ﬁi - (QS*GI')Z]
+(Q+ 05— 290505 O — (05
- 2qu 94*5.- (Q;Si Qz*éi - Qz*sL Q;Gi)L _ _

o= [qi‘_ Q;Sij_ 2611:2 (QI:2 —_1 )Q«:;;](QZ*ZL Qsts:‘ - 92*3.‘ Q—{;i) ~
- q_i' QB*Ji[QZ*Zi Qs*ﬁf (92*61')2] ‘i‘_qi’ (Q;}i+ ZQL,)(Q;;. Q;Gi_
~0a(@ - VI05Qi— Q5]
+gi0ul(D5) + (0k)' — 050l — 04 Qi)

DO= gi(gé — 1)’ 0l Q2 Qoo (Qss)'] (32

We now introduce the following expression.

Qi Qi)

&

4 + 27 33)
From Eq. (31), there might be three distinct real roots, three real
roots with at least two of them being equal or a real root in
conjunction with one pair of conjugate complex roots depending
H,being negative, zero or positive, respectively. For instance,
U (0), Usex(0) and U.a(p) can be expressed as follows when
H<0:

Un(0) = 2 UZi(0), Usa(0) = ZUM(D)
Uaa(0) = 3, Uka(0) (34)

where

Urjcik ()O) = FS}) feiid + Sm B
Usin (0) = Lw(mp)F, Do +LW(_ mn)S; (?p .
Uz (P)=Rw (mJi)F'SJ O™+ Ry (— WIJ.)LST}? o

() (i)

o it pot 250 (35)

Dis +— 349

Ul (0) = Fcos(ms In )+ SYsin(m In o),

Ui (0) = {Re[Lus(jma)]cos(ms In 0)
- Im[LhJ (jm,/;)] Sin(mji Inpo ) }F'r(.?

Int. J. Soc. Mater. Eng. Resour.

+ {Im[ L jmx)]cos(ms In o)
+Re[ L jms)]sin(my In 0)}SY,
UZ#(0) = {Re[Rus(jm.)]cos(ms In p)
—Im[Ri (jms)]sin(my In 0)} F9
+ {Im[Rus(jma)]cos(m.: In 0)
+Re[Ris (jms)]sin(my In 0)}SP,
B(t’) B(i)

30 Pt g<0 (36)

mi= [ —\put—F 340

In Egs. (35) and (36),

Lis(x) = 7——{= O 0 (x* +x)) + [0 Qigi

w( )
+ Q_4*5i (Q_z*zu + quQi:u) - q::z(ga*s:' +_QA:51')(~QL;’ + Qz*zf)]xz
+ [Q:Si(Qz*Zi_l— qsz}:,) + gﬁQZsi (Q:i + 921)
- qkz(Qz*b + Q;li)(QS*Gi + Q:Si)]x + QZ*Gi Q;ﬁ q,f(l - C]kz)} B
- Q;sx (qféz*zu + Q‘:ﬁ)

Ry (x) {Q33. A.-x“ + [qk2 (QZ’;i + Q;u )2

L ( )
- Q::u (_Qz*zu_"' l]erQ;:ﬁ)]iCz + Qz*m Qj:i ( 1__ ka)i} >
IlciJ(x) = qi{(Qja Q;u - QZ*SI‘_Q;;')_JC3 + (7Qz*2.' QA*SL_ QZ_*JI Q:Si _
- Q—ZTSi Q:;ilxz + [qi2 Q2*6i (Qz*m + Q;Q + 94*5,' (Qz*z. + Q;u)
— (Ot Q)@ O + Qi) et O Qin(1— )} (37)

In Eq. (36), j, Re[ ] and Im{ ] are imaginary unit j =/~ 1, real
part and imaginary part, respectively. Furthermore, in Egs. (35)
and (36), F9 and S are unknown constants. The case of H=0 or
H;> 0 is omitted here for the sake of brevity.

In order to obtain the particular solution, we use the series
expansions of the Bessel functions. Since the order 7; of the
Bessel function in Eq. (11) is not integer in general except =0,
Eq. (11) can be written as the following expression.

Tu(p,7)= io [a,i(r)pz"*“rbni(r)pz"”’] (38)

Expressions for the functions a.(7) and b,(7) in Eq. (38) are
omitted here for the sake of brevity. U,x(0), Ugu(0) and Ui
(o) of the particular solution are obtained as the function systems
like Eq. (38).

Then, the stress components can be evaluated by substituting
Eq. (28) into the displacement-strain relations, and later into the
stress-strain relations. The unknown constants in Egs. (35) and
(36) are determined so as to satisfy the boundary condition (26).

3. Numerical results

To illustrate the foregoing analysis, we consider the angle-ply
laminated cylindrical panel composed of alumina fiber reinforced
aluminum composite, with the following properties [11]:

K=41.1X107° m’/s, Kr=29.5X107° m’/s,

a:=76X10"° /K, ar=14.0X107° /K,

A= 105 WimK, =175 WimK, E.= 150 GPa, E-= 110 GPa,

Gir=35 GPa, Gr= 41 GPa, viy=0.33, vr=0.33, vn=0.242

(39

where G and v are the shear modulus of elasticity and Poisson's
ratio, respectively. We assume that each layer of laminated
cylindrical panel consists of the same orthotropic material, and
consider a 2-layered anti-symmetric angle-ply laminated
cylindrical panel with the fiber orientation (¢, — @) and the same
thickness. The thermal and mechanical behaviors when the
laminated cylindrical panel is heated from an inner surface are
different to those when the laminated cylindrical panel is heated
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from an outer surface. Here we assume that the laminated cylindri-
cal panel is heated from the inner surface by surrounding media,
the temperature of which is denoted by the symmetric function
with respect to the center of panel (6= 0,/2). The numerical pa-
rameters of heat conduction and shape are presented as follows :
H=H=50,T.=1,T,=0, 8,=90°, 2=0.5~0.8, ¢=60°,
F(O)=(1—6%0)H6.—0), 0=0—6,2, 6.=15°  (40)
where H( ) is Heaviside's function. The typical values of material
properties such as Ko, Ao, @0 and E., used to normalize the

Transient Thermoelastic Problem of Angle-Ply Laminated
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numerical data, are based on those of fiber direction.

The numerical results for radius ratio @ =0.7 are shown in
Figures 2-7. Figure 2 shows the results of temperature change. The
distribution in a transient state (7= 0.01) is shown in Figure 2(a)

and the distribution in a steady state (7=°°) shown in Figure 2(b).

As shown in Figure 2, the temperature rise can clearly be seen in

the heated region. Figure 3 shows the variation of the thermal

displacement #, on the heated surface. As shown in Figure 3, the
absolute value of thermal displacement # rises as the time

0. 9

0. 8-

0 Al T T v T —
7=0.01 1=" \\
N\ Ry
-0.1¢t+ \o /Y .
\\ .-. ';' Y/ 1
(RS i /, )
L \\ \‘\\ .’ l// |
-0. L \ Y “ ’v' / _
0.2 N\ 4 ,
b NN e’ / 1
L \ \ I/,/ ]
AN 7
~-0.3 | v\ :/ / A
\ T ]
/
‘\ P 0=0.7
01 0.4 - 1
veEr N /- 7=0.01] |
-— 7=0.02
r -~ — 17=0.05
L T=00
1
-0.5 0 L .
0 30 60 90
el° 1

(o

0.7

30

0. 9-

0. 8-

T =00

0.1 0.1

Figure 3 Variation of thermal displacement % on the heated surface

(o=a,a=0.7)
0.05 : :
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oL D 2 i
L P /', \l“\\. ~ . }
d "' ".\
l,-' ‘.\ ~
H \\_ v A4
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¥ '\‘ §
0,05/} |
6=0,/2
e 7=0.01
H -— 1=0.02
3 ~— =~ T1=0.05
3 T=0
-0.1 e e
0.7 0.8 0.9 1
o

0.7

Figure 2 Temperature change (@=0.7)
(a) distribution in a transient state (7= 0.01)

(b) distribution in a steady state (=)
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a=0.7)

Figure 4 Variation of thermal stress T in the radial direction (6=6,/2,

Vol.10, No.1, (Mar. 2002)



Akita University

46 Yoshihiro OOTAO et. al.

proceeds and has a maximum value in the steady state. Figure 4
shows the variation of the normal stress 0s in the radial direction
at the midpoint of the panel. From Figure 4, discontinuities of
stress occur on the interface (o= 0.85). In order to valuate the
phenomenon of delamination, it is necessary to focus attention on
the transverse stress components. Figure 5 shows the variation of
the normal stress O.. The variation on the interface is shown in
Figure 5(a) and the variation in the radial direction at the midpoint
of the panel is shown in Figure 5(b). As shown in Figure 5, it can
be seen that the stress variation becomes significant with the

0.006 . . T . . T

0.004 |

0.002 |

-0.002}

~0.004 .
0

0.006 ————————F————

------

ag
rr
v
' )
R
Hede
nann
geoee
[=1=1-]
IR —
)
L}
Y

0.004

0.002

0,002« . oL
0

Figure 5 Thermal stress 0. (@=0.7)
(a) variation on the interface (0= 0.85)
(b) variation in the radial direction (8=6,/2)
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progress of time and maximum tensile stress occurs at the
midpoint of the panel and near 0=0.88 in side of panel in a
transient state. Figure 6 shows the variation of the shearing stress
0. The distribution in a steady state is shown in Figure 6(a) and
the variation on the interface is shown in Figure 6(b). Since the
shearing stress 0. is anti-symmetric with respect to 6= 45° under
the condition of Eq. (40), Figure 6(a) shows the range 0—45°.
From Figure 6(a), it can be seen that the shearing stress 0.. shows
the maximum value on the interface. As shown in Figure 6(b), the
value of shearing stress 0. rises as the time proceeds and has a
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Figure 6 Thermal stress 7.(@=0.7)
(a) distribution in a steady state (7=0°)
(b) variation on the interface (o= 0.85)
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maximum value in a steady state. Figure 7 shows the results of the
shearing stress 0.5. The distribution in a transient state (7=0.01)
is shown in Figure 7(a) and the variation in the radial direction at
the edge (6=30") of heated region is shown in Figure 7(b). Since
the shearing stress G is anti-symmetric with respect to 6= 45° as
same as the shearing stress 0., Figure 7(a) shows the range 0—
45°. As shown in Figure 7(a), it can be seen that the maximum
stress occurs near §=30° in side of panel. From Figure 7(b), it
can be seen that the shearing stress 7,0 shows the maximum value
near p=0.75 in a transient state.

In order to examine the influence of the radius ratio a, the
variations of temperature change, thermal displacement % and
thermal stress 0. in a steady state are shown in Figures. 8(a), 8(b)
and 8(c), respectively. Figures. 8(a) and 8(b) show the variations
in the radial direction at the midpoint of the panel, and Figure 8(c)
shows the variation in the radial direction on the cross section 6=
30°. Tt can be seen from Figure 8, that the absolute values of
T, u.and . increase when the radius ratio a increases.

4. Conclusions

In the present article, we obtained the exact solution for the
transient temperature and transient thermal stresses of an
angleply laminated cylindrical panel with simply supported edges
due to a nonuniform heat supply in the circumferential direction.
Numerical calculations were carried out for a 2-layered
antisymmetric angle-ply laminated cylindrical panel composed
of alumina fiber reinforced aluminum composite, which is heated
from the inner surface. Though numerical calculation were carried
out for a 2-layered anti-symmetric angle-ply laminated cylindrical
panel which shows a characteristic of fiber orientation angle
clearly, numerical calculation for hybrid laminated cylindrical
panel with an arbitrary number of layer and arbitrary fiber
orientation angles can be carried out. Moreover, transverse
shearing stresses and normal stress in the radial direction, which
are considered to induce delamination on the interface of each
layer, are evaluated precisely in a transient state.
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