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II. REPORT

Analysis for Molecular Structures in Heavy-ion Resonances
by using Particle-particle-y Correlations

Abstract

Particle-particle-gamma data from 28Si+28Si molecular resonances was analised.
By using R-matrix scattering amplitudes from high-spin molecular model, we can
theoretically calculate gamma-ray intensities from the fragments 28Si which are
emitted from the resonance decays. The experimental data suggest "m = 0"
which means the spins vectors of 28Si are on the reaction plane. We studied what
molecular normal modes exibits such a special nuclear structure.

Following mechanism has been expected to obtain the spins parallel to the plane;
1. the stable configuration of 28Si 4 28Sj is expected to be an equator-equator
touching configuration, 2. such a stable configuration has a tri-axial deformation,
3. due to extremely high spin rotation(J=38), the total deformed object rotates
around the axis of highest moments of inertia, which give rise to K-mixing so
called wobbling mode. Then the symmetry axes of two 28Si are perpendicular to
the plane, and the spin vectors are on the plane because they are orthogonal to
the axes. Such a rotational mode is possible for the molecular ground state and
the butterfly and anti-butterfly modes. We have also another mode twisting to
obtain non-alignments by simpler mechanism, in which two 28Si spin around the
molecular axis in the opposite spin-vector directions. The vectors are parallel to
the molecular axis which rotates on the reaction plane.

Comparing theoretical results with the data, we conclude that the molecular
ground state with wobbling rotation is a candidate for the resonance structure.
The other two are not good candidates by the following reason. In the butterfly
mode and the twisting one the spin vectors are parallel to the fraginent direction
and the beam one, respectively. Even with the spins parallel to the reaction plane,
we obtained no "m = 0” from too much concentrated vectors to own directions,

because 7m = 0”7 require "symmetry around z-axis”.
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§1. Introduction

Intermediate resonances observed in heavy-ion scattering have offered intrigu-
ing subjects in nuclear physics. High-spin resonances well above the Coulomb
barrier in 2*Mg + 2*Mg and 28Si+ 28Si systems exhibit very narrow decay widths,
with prominent peaks correlated among the elastic and inelastic channels, which

suggest rather long lived compound nuclear systems|[1].

Betts et al. firstly observed a series of resonance-like enhancements at 6., =
90° in elastic scattering of ?8Si + 28Si[2], and then they gave spin asignments of
J = 34 ~ 42 by the Legendre-fits for the elastic angular distributions[3]. They
further closely studied angle-averaged excitation functions for the elastic and in-
elastic scatterings, and found broad(I'.,, ~ 2.5keV) structures corresponding to
the enhancements[4]. The each broad structures is fragmented into several much
narrower peaks with widths I'.,, ~ 150keV and spacing of a few hundred keV as
shown in Fig. 1. Zurmuhle et al. studied the Mg + 2Mg system and found
similar but more prominent resonance peaks[5]. Such narrow peaks are corre-
latingly seen in the single and mutual channel of the both systems, strengths of
which are enhanced more than elastic one. The decay widths in the elastic and
inelastic channels up to high spin members of Mg or 28Si ground band exhaust
about 30% of the total widths, whereas those into a-transfer channels are much
smaller[6,7]. These enhancements of symmetric-mass decays strongly suggest di-
nuclear molecular configurations for the resonance states. It is also noted that
the elastic channel widths are rather small, for example, a few keV, which is
quite different from high spin resonances in lighter systems such as '2C + 12C,
160 + 1608].

From viewpoints of nuclear structure studies, one immediately thinks of sec-
ondary minima in fission of heavy nuclei, or of superdeformations which have
been intensively studied in medium mass nuclei. Actually Bengtsson et al. made
Nilsson-Strutinsky calculations for Ni isotopes and obtained energy minimum at
large deformation, which appears to correspond to a di-nuclear configuration[9].
On the other hand, considering an angular-momentumn dominance in such high
spin states, Broglia et al. studied the stability of di-miclear systems by the macro-
scopic model, without taking into account the shell correction[10]. They employed
the liquid-drop model with the proximity potential between ions, including their

surface oscillations. They obtained stable configurations with the deformed frag-
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ments in high spins less than 56h, for the Mg + 26Mg system. Maass and
Scheid calculated shell correction energies of the di-nucleus system by the use of
two-center-shell model[11]. By adding the correction energies to the liquid-drop
energy, they obtained stable configurations for the Mg + Mg system with .
being 38. They also studied an oblate-oblate deformed system, chosing *2C + 12C
one, but they did not apply the two-center-shell model. In this case, they used
a method rather similar to our molecular model. The present authors proposed
a di-nuclear molecular model, by which equilibrium geometrical configurations at
high spins and normal modes of motion can be described. Under strong influence
of high spin centrifugal force, two constituent deformed nuclei favor elongated
configurations with a touch at a tip; a pole-to-pole touching configuration and an
equator-equator one were found to be the equiribria for 2¢Mg-+24Mg and 28Si+28Si
systems, respectively. They obtained normal modes around the equiribria, which
are expected to be responsible to the observed resonances[12 - 14].

Recently a new facet of the 28Si+28Si resonances has been explored. 28Si+28Si
scattering experiment has been done on the resonance at E. ,,. = 55.8MeV at IReS
Strasbourg[15]. Figure 2 shows those elastic and inelastic angular distributions,
where the solid lines in the lower three panels show L = 38 Legendre fits. The
oscillating pattern in the elastic and inelastic channels 2%, (2%,27) are found to
be in good agreement with L = 38, which suggests L = J = 38 dominance in the
resonance, namely, misalignments of the fragment spins. ~y-rays have been also
measured with 47 detectors in coincidence with two 28Si fragments detected at
Bem = 90°.[7,15] Those y-rays are emitted from the fragments of the excited 28Si
nuclei etc. when the resonant compound decays. The angular correlation data
show characteristic ”m = 0” pattern for normal to the reaction plane, which sug-
gests fragment spins I; and Iz are on the scattering plane and is consistent with
the misalignments observed in the fragment angular distributions. Now, char-
acteristic features of the experiments are summarized as following three points,
which is to be explained theoretically; 1. narrow resonance structures correlating
among the elastic and inelastic channels, 2. angular distributions in the elastic
and inelastic channels, 3. angular correlations between emerging fragments 28Si
and gamma-ray emitted from the fragments. The second characteristic indicates
a dominance of the partial wave L = J. And the third one indicates "m=0" spin
orientations of the fragments in the normal to the reaction plane. Thus, the lat-
ter two quantities suggest a disalignment between the orbital angular momentum

-7 -
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and the fragment spins. Those features are much different from 2C 4 '2C and
24Mg + ?*Mg systems which exhibit spin alignments[16,17]. Thus, the data are
expected to provide a good test for the model.

The purpose of the present paper is to clarify the structure of high-spin
283Gj 4+ 28Si resonances. As already mentioned, we obtained normal modes around
the equiribrium of the touching configuration of two 28Si, which are expected to
be responsible to the observed resonances. With the new angular correlation data,
we are now able to select "what mode is really a candidate for the resonance”.
For this purpose, we have studied reaction mechanism for resonances and have
developed an analysis method for ”particle-particle-y angular correlations”. By
using R-matrix theory, we obtain partial decay widths and collision matrices for
the resonances, which give the informations about resonance decays[18]. Con-
sidering v-ray emissions from the decay fragments, i.e., y-rays from excited 28Si
nuclei, we obtain angular correlations, which enable us to compare the molecular
model with the experiments[19)].

We have also developed our molecular model to include K-mixing. In the pre-
vious molecular model calculations, as an approximation, we have assumed good
K-quantum number(projection of the total angular momentum on the molecular
z'-axis). Of course there are couplings between them by Coriolis terms, and so we
know the existence of K-mixings anyhow. Due to a tri-axial shape of the equi-
librium configuration, we have low-lying series of K-good levels, which reminds
us that the effects may be important. However there are a lot of Coriolis terms,
and the calculations for the coupling matrix are not easy. Therefore, to evaluate
the coupling effects, we take semiclassical approach, i.e., we consider the whole
rotational system with the tri-axial shape of the stable configurations to be an
asymmetric rotator which give rise to K-mixings at high spins. It is not a way of
quantal calculation for a system with many degrees of freedom, but it gives more
intuitive understanding for the rotational motions of the whole system. Conse-
quently the rotational motions of the tri-axial deformed system are found to be
indispensably important for understanding "m = 0” dominance of the ?8Si spin
state, which brings novel aspects of ”"wobbling motion” in the resonances, or in
the reaction mechanism.

To review the formulation of the molecular model[13], section 2 is devoted.
We discuss the coordinate system and the model hamiltonian in the rotating

molecular frame. In order to solve couplings among molecular configurations, we
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adopt a geometrical method instead of the coupled channel one. Simply speaking,
with high spins interactions between oblate-deformed nuclei favor the alignment
of their deformation axes, but the axes are mostly perpendicular to the reaction
plane, i.e., the equator-equator configuration for oblate-oblate systems. To inves-
tigate dynamics of an interacting di-nuclear system around the configuration, we
use the Euler angles of the deformed nuclei as dynamical variables rather than
integrate them to obtain coupled-channel equations. In other words, they are in-
ternal collective variables of the rotating system. In order to formulate the model,
we introduce a rotating molecular frame, z’-axis of which is parallel to the rel-
ative vector of two interacting nuclei. All the degrees of freedom of the system
are transformed into the rotational motion of the total system and the internal
motions referred to the rotating frame. And the dynamics of the latter degrees of

freedom are treated as normal modes around the equilibrium.

In section 3, structures of the 28Si + 28Si system are investigated. We firstly
inspect the multi-dimensional energy surfaces and look for the equilibrium con-
figurations of the system. In subsection 3.1., harmonic approximation is adopted
to solve normal modes. An energy spectrum with good K-quantum number will
be given. Subsection 3.2. is devoted for the analysis of the rotational motions( K-
mixings) at extremely high spins. After K-mixing, the K-states are recombined
into new states. Energy level sequences obtained by the diagonalizations of asym-
metric rotators are given. In section 4, R-matrix theory and a method of angular
correlations are briefly summarized. In section 5, results are presented and a
comparison with experiments will be done. Summary is given in section 6.

§2. Reminder for Di-nuclear Structure of 28Si +28Si System

First, we briefly explain our molecular model for heavy-ion resonances. Defi-
nitions or derivations of the expressions are given in details, in Ref. 13(hereafter
referred as Ref. I). We consider interacting two deformed nuclei such as 28Si+288i,
and then the degrees of freedom are their relative motions and the orientations
of the deformation axes of two nuclei. The latter degrees of freedom or config-
urations are usually treated as ”channels” in the weak coupling picture, but we
do not start from the motions of pure rotational states. We expect stable ge-
ometrical configurations with some confinements for those orientations. Really
as mentioned later, each typical stable configuration appeared by rather strong

-9 -
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attractive nucleus-nucleus interaction between tips of two deformed nuclei, for
prolate and oblate deformations, respectively. Then those orientations are im-
portant physical quantities which determine the geometrical configurations and
furthermore should be regarded to be vibrational degrees of freedom around the
equilibrium. ‘

In"order to describe the rotational motion of the whole system with a stable
configuration, we define molecular axes, the z’-axes of which is taken to be parallel
to the relative vector R = (R, 65, 6,), between the constituent nuclei. The orien-
tations of the deformed constituent nuclei are given by the intrinsic axes of the
nuclei and are described by the Euler angles (a;, f3;), referring to the molecular
axes. Assuming a constant deformation and axial symmetry of the constituent

nuclei, for simplicity, we have seven degrees of freedom

(Q'I) - (91a92;637R7a7ﬂ17ﬂ2)7 (21)

as illustrated in Fig. 3, where the Euler angles a; and a3 are combined into new
variables 03 = (a1 + a2)/2 and a = (a; — ag)/2.

First we look the kinetic energy operator in terms of the above coordinates.
The classical kinetic energy of the system can be given in terms of the energies
associated with the relative motion (radial motion and rotational motion of two-
ion centers) and the rotational motions of two constituent nuclei.

T = %/,LRZ + %tG’IH(R)G’ + -;—t(ﬂlIl(Dl + %%’5212&52, (2.2)
where R denotes the relative vector between two nuclei, i being the reduced mass
myma /(my+ mz) of two constituent nuclei with masses m; and ms, and the c.m.
energy of the total system is omitted. The second term of the r.h.s of Eq. (2.2)
is the rotational energy of two constituent nuclei given by the angular velocity of
the molecular frame &' and the moment of inertia tensor I,(R). The diagonal
components I;; and Ip; of the inertia tensor are pR?, the others being zero,
which 1s associated with masses m; and mq at the relative distance R. Then the
expression of the rotational energy is equal to usual one, %/LRZ(Qg + 9% sin? 6,).
The vectors &y and &9 denote the angular velocities of the rotational motions
of the constituent nuclei, *@; being the transpose of @;. The inertia tensors of
two nuclei I; and Iy are defined in the coordinate frames of their principal axes,
i.e., they are diagonal, whose diagonal elements are determined by the excitation

energies of the members of the ground rotational bands of the constituent nuclei.
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At this stage the angular velocities of the constituent nuclei &;’s in Eq. (2.2)
are still those referred to the laboratory frame, so we have to express them in the
molecular coordinate system, i.e., in terms of the angular velocity of the molecular
frame &’ and those &’ referred to the molecular frame. Then we express the total
kinetic energy as a sum of three parts, the total rotational energy 7, associated
with &', the internal kinetic energy Tin¢ and the Coriolis coupling term Tg, as

follows;
T = Trot + Tint + T07 (23)
Tos = @' I 2
rot = ‘2‘ wIsw, ( 4)
T __1 R2 1t-»//I =11 lt—»//I =11 9.5
int = 5# + 3 wy Lwy + 5 Wq LWy, (2.5)
Te ="'& {*R'(a1f1m1) 1! + *R (02 Bov2) Loy }, (2.6)

where R/(a;fiv;) denotes the transformation matrix which connects the axes of
the molecular frame and the principal axes of each constituent nucleus, The total
rotational energy T;o¢ is the rotational energy of the interacting constituent nuclei
as a whole system, which rotates with the angular velocity &'. The inertia tensor

is given by
I, = I,(R)+ 'R (a1fim1) 1R (a1 pim1) + PR (aafaye) LR (azfeye),  (2.7)

where the first term of the r.h.s. denotes the moments of inertia of simple two-ion
centers, and the second and third terms are contributions from the constituent
nuclei individually, though their “rotations” are already taken into account in
Eq. (2.5). The internal kinetic energy Ti,¢ is those associated with the orienta-
tion degrees of freedom of the constituent nuclei in addition to the radial motion
between them. The last two terms of the r.h.s. of Eq. (2.5) have a form of rota-
tional energy, but their motions are not necessarily rotational. This is why the
quotations are put on the word rotations above. Actually the nucleus-nucleus
interaction favors cohesion of two constituent nuclei. Motions in the orientations
are, therefore, not necessary to be rotational but would be rather confined, such
as a sticking of the constituent nuclei. In the sticking limit the angular velocitics

~11 -
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@; are zero, while they are constant in free rotations. We, of course, anticipate
intermediate stages between the sticking limit and the rotation, i.e., fluctuations
around the sticking configuration. For vibrational motions, for example, we con-
sider fluctuations of the values of &' around zero, average values of them being
to be zero.

After expressing those angular velocities with time derivatives of the corre-
sponding Euler angles, we obtain a classical kinetic energy expression % > 9ii9id;-
And then we quantize it by using general formula for the curve-linear coordinate
system. As the classical kinetic energy consists of the three parts, i.e. the total ro-
tation, the internal motions and their couplings, the quantum mechanical kinetic
energy T will be also divided into three terms as T = Tiot + Timy + To. Natu-
rally the term Tr.ot is associated with the rotational variables (61,62, 03), Tine with
the internal variables (R, o, 1, 82) and T with both. According to the deriva-
tion, Trot is expressed by the partial differential operators of the Euler angles of
the molecular frame 6;. We combined those differential operators into angular

momentum operators J;! referred to the molecular axes, as usual, i.e.,

Trot = —2— Z ,U,«UJ;J; (28)

The coefficients y;; are given as follows, in terms of the internal variables (R, o, £1,52) .}

1
H11 = M22 = W;
p12 =0,
! cos afcot B1 + cot B2)
= os afc
13 QNRQ a(Cot 01 T COt O2 ),
1 2.9
= e sin a(cot 1 — cot (), (29)
_ 1{(i+ 1 1 + 1 4 1 1 1
Has =4 I pR?sin?B, I pR? sin?p, 2uR?

+ cos 2a cot 33 cot Ba,

1
2uR?
where I; and I are the diagonal elements of the inertia tensors I1 and I, respec-
tively.

The internal kinetic energy operator is associated with the variables (R, a, 31,52) .}
as already mentioned. As usual, we introduce a volume element dV = dRdadB,dS5-}

-12 -
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instead of the original dV = DdRdadBidB; with D = 1*/2R2I, sin 11, sin s,
which means that the wave functions are defined with the additional factor VD.

Accordingly we obtain

Tint = Oint + Vadd: (210)
b ——hz[lﬁ-ﬁ—(i—l- 1 )82 +(1 N 1 )82 +20052a 0?
e pwoR? ‘I,  uR20B} ‘I, uR?’9P3 " uR® 0p10ps
+1{(1+1)1 +(l+1)1 2}82
4 1L pR* sin?B, L pR?'sin?By,  pR? ) Oa?
0 cos2a
" %a 2 SRz cot 31 cot,Bg
1 0 0 d d
~3 Rz(cotﬂg 36 +cotﬁ18ﬂ2>(51112a8—+—825111201) ],
(2.11)
Rl 1 1 1 1 1 1
Vagd = —— |(— + —5 +1)+(—=+—7)(——+1
dd 8 I:(Il uRz)(sin2 B1 ) (Iz * ,U»Rz)(Sin2 B2 )
2 cos 2a cot 31 cot ﬁz} ) (2.12)
uR?

where V,qq is the term so-called additional potential due to the new volume ele-
ment.

The Coriolis coupling operator Te consists of coupling operators between the
variables (61, 62,63) and (R, a, b1, B2), i.e

R Rl s, 0 d . .-
TC:W zsma(—-é—ﬂ—l—kaﬁ )Jl—l—cosa(aﬁ1 9%, —) iJ5
- 5
+-;—sta( cotﬂzaﬁ +C0tﬁ13ﬁ2) '
i 0 &y 0
~ Z<C0t B1 — cot fa) g 008 aJ) + J; cos am— (2.13)

— %(cot/ﬁl + cotﬂz)<0% sin oy + Jg sina— ﬂ

Pl 1 11 1
R eV O Y A M VO 2\
+ 4 (11 * /J,Rz)sin2 B1 (12 * uRz)sin2 BJ( Z@a) 3
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where the derivative operators of §;’s are again rewritten with the angular mo-
mentum operators J..

For details of some relations and explicit expressions, see Appendices of Ref. I),
for example, for the angular velocities in the molecular frame, the classical kinetic
energy in terms of time derivatives of the Euler angles, their quantization and
symmetries of the system.

In order to make the problem to be tractable, we start with good K-quantum
number, which is expected to be appropriate for the system of small axial asym-
metry. It would be discussed later in details whether the hypothesis is correct or
not. For the Mg + 2Mg system(prolate-prolate one), for example, it would be
rather simple to intuitively understand it, because stable configurations at high
spins are dominantly elongated pole-pole ones which keep axial symmetry. The
288i + 285i system(oblate-oblate one), however, favors equator-equator configura-
tions, the symmetry of which is more complicated. So we should return back to
this problem, but anyhow at first we put K to be good. Actually the K-mixing
terms in Tyt with the coefficients p13 and poz are relatively small, because they
have the factor 1/uR? which is much smaller than 1/I; in the contact region. We,

therefore, regroup the kinetic energy operator as follows,

T=1"+1T¢, ' (2.14)
T =T + Tine, (2.15)

where Té includes the Coriolis coupling Tc and the K -mixing terms in Trot. Ac-
cordingly the new rotational operator Tr’ot has good K-quantum number. Here-
after firstly we restrict our discussion to the rotation and vibration operator 1",
together with the interaction potential given later. Then the axial asymmetry of
the system in the ground and excited states would be explored. And next, the
effects of K-mixing due to the operator Té, i.e., the Coriolis coupling terms etc.
will be discussed.

As our kinetic energy operator T keeps good K-quantum number, eigenstates

of the system are of a rotation-vibration type,
Uy ~ Dire(8:)xx (R, a, By, Ba). (2.16)

Now the problem to be solved is internal motions, i.c., motions associated with the

internal variables (R, a, 31, 82) which couple with each other through the kinetic
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energy operator T" and the interaction potential. For the later use in section 3,
we define centrifugal potential given by Tr’ot with specified J and K,

R 1 3 5, 1 )
Trot(J, K) =— ———{J(J +1)— §K + §COSQOJC0t51 cot By (K* — 1)}

2 | uR?
1 1 K?-1 K2 -1 1) J

Z+ +
+(I uR2)(4sinzﬂl 4sin® B, 2

(2.17)
where I denotes the moment of inertia of the constituent nucley, i.e., I = I; = I,
since we are interested in the symmetric system. In the expression of Ty (J, K),
we use the eigenvalue K instead of j§ Note that the additional potential V,4qq of
Eq. (2.12) in Tins is moved into Trot(J, K) for convenience, and similar terms in
T and Vaaq are amalgamated.

For the interaction potential we want to have such one which depends on
geometrical configurations of interacting nuclei, i.e., potential as a function of
the Euler angles of the nuclei in addition to the radial distance between them.
Proximity potentialappears to be one of the most suitable potentials[20], but it is
fairly laborious to calculate it for various configurations, i.e., one has to find out
the shortest distance between two curved surfaces of arbitrarily oriented deformed
nuclei and to calculate curvatures etc. at the point. Instead, we employ the folding
method. Since, in the double folding model, nuclear densities corresponding to
geometrical molecular configurations are directly folded with effective nucleon-
nucleon interactions, the model easily provides an interaction potential for the
present purpose, i.e., as a function of the collective variables. We use the following
nucleon-nucleon interaction, called density dependent M3Y(DDM3Y)[21],

o(B, p,7) = 1(E, p)g(E, 1), (2.18)
where f(FE, p) gives nucleon-density dependence by
f(E, p) = C(E)[1 + a(E)e~P®)r), (2.19)

p denoting density of nuclear matter in which the interacting nucleons are embed-
ded, and g(E,r) describes original nucleon-nucleon interaction,

-2.57

2.57

—4r

9(B,7) = 799994—~ — 21342
-

+ J(E)é(r). (2.20)
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The first term of g(F,r) is M3Y potential without OPEP and the second term
represents single-nucleon exchange suggested by Satchler and Love[22]. E is the
bombarding energy per nucleon, which we choose as suitable for the resonance
energies( E = 3.75MeV corresponding to Erqp. = 105 MeV for 28Si + 285 ). At
a short distance of the folding potential, i.e., with highly overlapping densities,
DDM3Y gives slightly weak attractive potential. At the normal density, for ex-
ample, the density-dependent factor f(E, p) reduces about 75% of the interaction
strength compared with the original g(E,r), while it enhances about 20% at the
half density, i.e., at the contact region.

The folding-model potential, however, is considered to be accurate only in
the tail region of the nucleus-nucleus interaction. In the region of nuclear-density
overlap going beyond the normal density, its accuracy is doubtful. Hence, in addi-
tion to folding the nucleon-nucleon interaction, we introduce a phenomenological
repulsive potential which would originate from the effects of the Pauli princi-
ple among nucleons belonging to the interacting nuclei respectively or from the
compression effects due to overlapping density. We estimate the strength of the
repulsive potential due to compression of nuclear density, from the equation of
state of nuclear matter, i.e., from binding energy as a function of nuclear density.
One may think that the picture of the density overlap is doubtful in low energy,
but the folding model does not take into account density redistribution, so it is
consistent to account higher densities in overlapping region. Anyhow, what we are
interested in is dynamics of two interacting nuclei in high spins which are domi-
nated by strong centrifugal forces. Therefore the long-range part of interactions
is crucially important, not the short-range part, which is treated more or less in
a phenomenological way.

The folding potential is defined as usual,

U(R) =/d7”1 / dry p1(r1)pa(ra)v(ria),

rip =R+ 71y — 1y,

(2.21)

where R is the relative vector between the interacting nuclel and r; are referred
to the centers of the nuclei respectively. The long-range atiractive part of the
interaction potential in the molecular frame V,y, is obtained from U(R) by taking
the vector R to be parallel to the z’-axis and by fixing orientatious of the density
distributions of the constituent nuclei to the molccular frame. By using Fourier
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transformation,

e =5 Zrlz n(B) [ AHEER) [ A, ()07 ) (k) (2.22)

v(k) :/dreikrv(r) = 47r/drr2j0(kr)v(r), (2.23)
k) = [ ar'e T o). (2.24)

The density distribution p;(7') in the molecular frame is related to that in the
body-fixed frame, i.e., to that in the principal axes of the constituent nucleus; by
Euler rotations, p; (') = R(asB:vi)pZ (') = pZ(r"), where pZ(r) is the density
distribution in the principal axes and therefore

Zm )Yio(# (2.25)

with the assumed axial symmetry of the constituent nucleus. So the Fourier
transform p; (k) is given with the Euler angles included as parameters,

5ilk) = 5" i (k) S Do (ain) Vims (), (2.26)
l m'
pi(k) :47r/drr2jl(kT)pl(r). (2.27)

Inserting Eq. (2.26) with 1 = 1 and 2 into Eq. (2.22), we obtain the final form of
the interaction potential as a function of the internal variables (R, «, 1, 82) as in

the following,

Vater (R, 0, B1, B2) = D (2m) ™% = =117 (1100 | 10)
1

X Fpp(R)Gppn(a, B, Ba2), (2.28)
Fo(R) = | dbk2kR)T 06 70 (6)7u (). (2.29)

Grimla, f1,f2) = Z( 1)™(2 = 8mo)('V"'m — m | 10)

m>0
X COS(Q’nQ)dmO(/jl) 77:0(52) (230)
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It should be mentioned here that -; does not appear in the final expression due to
the D-function with one magnetic quantum number being zero which originates
from the axially symmetric density distribution in Eq. (2.25), and that a; and
o are combined into 2a = a1 — as due to the fact that the vector R is parallel
to z’-axis, i.e., the magnetic quantum number associated with R is zero. The
Coulomb interaction is also folded, together with nuclear interaction v(E, p,r) of
Eq. (2.18).

We assume a density profile of pZ(r") to be the Fermi distribution with
pZ (") = po/[1 + exp{(r" — Rn(r"))/an}], Rn(r") denoting the radius of the de-
formed nucleus. As for the deformation of the constituent 28Si nuclei, the existence
of hexadecapole deformation {84 = 0.20 £ 0.03) is suggested from coupled-channel
analyses for elastic and inelastic neutron scattering]{23]. Therefore we take the
radius of each nucleus as Ry(r") = rOAil/B[l + BqY20(?") + BuYao(#")] including
two parameters 8q and Sy for deformation, the values of which are determined
to be —0.46 and 0.22, respectively, according to the suggested value for ratio
Bq/Pu and their magnitudes adjusted with B(E2) value of the ground-rotational
band of 28Si[24]. The value of rq is taken to be 1.03fm from the textbook of
Bohr-Mottelson[25], and an to be 0.48fm to reproduce RMS radius of the ground
state.

Next, we proceed to the effect of density overlap in the inner region, where the
folding potential is not expected to be adequate. An overlapping of the densities
brings about a higher nuclear density than normal one, which gives rise to a
binding energy loss of the interacting system additionally to the attractive folding
potential. We take into account the effect as a repulsive potential to be added to
the folding one given in Eq. (2.21). A volume with the higher density depends
on configurations of the constituent nuclei, especially on their relative distance.
Actually, overlappings of two nuclei produce nuclear densities from zero to twice
of the normal density. An accurate calculation of the effect, therefore, is fairly
laborious. We propose a simple approximate way. If we assume the density profile
to be of sharp cut-off or with a very small diffuseness, an overlapping volume has
always twice of the normal density. So the short-range repulsive potential is
expected to be proportional to the overlapping volume,

Viep(It, @, Br, f2) = Vp /5(7‘12)P/1(Tl)PIQ(Tz)drld"“z, (2.31)
where the primes on the densitics indicate Fermi distribution with a sinall dif-
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fuseness. The strength Vp is chosen in the following, referring the Equation of
State(EOS) of nuclear matter. This looks like a folding potential of the zero-
range interaction, but has the primed densities instead of the normal density
distributions. Of course we can utilize a merit of the form of Eq. (2.31) in actual
calculations.

As a reference we can simulate the proximity potential for some simple con-
figurations, with an interaction potential Vi in the above formula, i.e.,

Vint = Vaetr + ‘/repa (232)

by adjusting the diffuseness ap in p’ and the strength Vp freely. Those simulations
were successfully done as a test of Vi, i.e., we reproduced the radial dependence of
the proximity potential for R > 4fm for the pole-pole configurations of the 24Mg +
24Mg system, by adjusting the repulsive potential(see Ref.I). It was, however,
found that the proximity potential is effectively much weaker than those potentials
which have quasi-bound states, and not favorable concerning molecular resonance
calculations.

As the other way to determine the strength Vp, we use EOS of the nuclear
matter, i.e., a binding energy loss per nucleon Ae for twice of the normal den-
sity which is calculated under the condition of complete overlap at R = 0 limit.
Without Coulomb energy the value of Ae can be taken to be 7 ~ 11MeV[26]
from the values of the nuclear compression modulus Ko, = 180 ~ 240MeV|[27],
which is suggested by the experiments on giant monopole resonances. Hence the
values ap = 0.25fm and Vp = 330MeVim?® are obtained to reproduce Ae = 9MeV
in 28Si + 28Si system. Radial forms of the folding potential are shown in Fig. 4,
where the interaction potential (indication J=0-Y2+4Y4) and the effective poten-
tial for J = 38 (solid line) are displayed for the stable geometrical configurations

(parallel equator-equator ones, see the next section).

3. Di-nuclear structures of 28Si +28Si

3.1. Harmonic approximation and normal modes with specified K

In order to know dynamical aspects of multi-dimensional internal motion, we
calculate an effective potential with specified spin J and K, defined as follows:

VJI((R; a, Bla ﬁZ) - V;nt(R7 «, ﬂl; 62) + ﬂ{ot(J7 I{) (31)
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In Fig. 5, an R — (8, = () energy surface, ie., Vyx(R,7/2, 5, 3) is displayed
for J = 38 and K = 0. We find a local minimum point at 81 = f = 7/2 and
R = 7.6fm, namely, at the equator-equator(E-E) configuration, with a rather deep
potential well around the equilibrium. In Fig. 6(a), a-dependence of Vg in the
E-E configuration at the equilibrium distance is shown. (Note that our definition
of the domain of the variables are 0 < o < 7 and 0 < 1,5, < 7.) We find the
a-dependence is extremely weak. Another point is that we have two local minima
at @« = 0 and 7/2. Those two configurations are, however, exactly the same,
namely, parallel E-E configuration (z”’-axes of the constituent nuclei are parallel).
Therefore it is necessary to impose symmetrization on the wave functions. In
Fig. 6(b), B-dependences of Vyx with 8; = B2 are compared between at @ = 0
and at o = w/2, where solid line is for & = m/2 (the cross section of Fig. 5 at
R = R, = 7.6fm) and dashed line for @ = 0. (Note that configurations with
f1 = P2 # ©/2 at @ = 0 are not the same as those with the same f;-values
at a = 7/2, but are the same as those with 81 = 7 — 82 at @ = 7n/2.) The
B-well at a = 7/2 is seen to be rather shallow, compared with that at @ = 0.
Hence, in addition to the weak a-dependence of Vg in the E-E configuration,
we have significantly a-dependent restoring force for S-motions around the E-E
configuration.

In order to solve normal modes for four variables (R, a, 81, 82), we expand
VK into a quadratic form for R, 8; and. fs, at the equilibrium E-E configuration,
while for o we keep its dependence exactly in a form of cos(2ma) series, such as
those given in the interaction potential of Eq. (2.30). Then the effective potential
is expressed as

T kr 9
5‘2“) + T(R_Re)
+ %k},l(a)Aﬂf + %kgz(a)Aﬂg
+ kg*(a) ABLAB, + (higher order),

Vik(R, o, b1, B2) =Vik(Re, o

where AS; denotes f5; — /2. k,;j(a) denotes the second derivative 8*V;x /86;08;,
kg (@) being equal to kz*(a). Although k(a) is a coefficient of ABAB; in
the expansion, it is a function of a, i.e., we take into account a-dependence of
the coefficient, in addition to the a-dependence of Vyg(Re,a, 5, 5). As k3l (a)

consists of cos(2ma) series with m = even including zero, the major part is a
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constant ko from m = 0. We write k§'(a) = kZ*(a) = ko + ka(a), kz(a) being a
sum of contributions from terms with m = even > 0.

We introduce new coordinates in order to eliminate cross products of 81 and
B2 both in T, and in the quadratic expansion of Vjyg. The new variables are

butterfly and anti-butterfly as follows:

By =(AP1+ AB)/V2 = (B + B2 — m)/V2,
B =(AB — AB2) V2= (B — Ba2)/ V2.

Furthermore the inertia masses of three variables o, 4 and f_ are approximated
by the values given at E-E configuration. Combining the kinetic energy operator
and expanded effective potential, the total hamiltonian is given as follows:

(3.3)

H = Hy + T, + (higher order), (3.4)
HO = HR+Hangl(,B+>IB—-7a)a (35)
h* 8% kn

_ v i . 2
Hr=-55m+ 5 (B-R), (3.6)

Hangl(ﬁ-i-mﬁ—:a) = H+(ﬂ+,01) + H—(ﬂ—a CY)

1?2 52 T
—— 4V ,—, — .
a + JK(Reaa, 9’ 2)a (3 7)

1 1icos2a> 9% ki(a)

—_ — | = 2

where + or — sign of + in Eq. (3.8) corresponds to 8, and S degrees of freedom,
respectively, with ky (@) = ko + k2(a) + k§* () and k_(a) = ko + k2(a) — kg (a).

Now we solve the Schrodinger equation with the hamiltonian Hy for the in-
ternal four degrees of freedom, which is separated into two parts. One is a hamil-
tonian Hp for radial motion and nothing but that of a simple one dimensional
harmonic oscillator. Another is H,ng for the angle variables o, 84 and A_, which
is also almost separable.into H, of B4, H_ of f_ and remaining hamiltonian for
a. Hy and H_ again represent harmonic oscillators, although the masses and the
restoring forces depend on . Hence we analytically obtain wave functions for Hy

and their energy quanta hw4 with the frequencies

1 1dcos2a
W = '\/;i (O)<7 + T) . (39)
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Taking into account those vibrational energies from S-degrees of freedom, we
introduce a reduced potential for a-motion, and obtain a Schrodinger equation
for a-motion as follows:

- —T + VJK(RE’ a, gf ) + Eg_‘_,n_ (Q) d)(a) = Eaxxgl¢(a); (310)

o] 3

where E£+,n_ (a) denotes vibrational energy (n4 + 1/2)hwy + (n- + 1/2)hw_
from H, + H_, added as a part of the reduced potential. Note that, in or-
der to obtain analytic form of hwy in cos(2ma) series, we expand square root
in Eq. (3.9) supposing wo = /ko(1/I +1/uR?2) to be the leading term. We
do not know simple analytic solutions of Eq. (3.10). As the reduced potential
Vik(Re o, 5, %) + E,ﬂ,%n_(a) is described by a sum of cos(2ma), we consider

a solution ¢(«a) described by cosine and sine functions of a, i.e., Fourier series.
Then Eq. (3.10) is reduced to a secular equation, which is easily solved. Thus the

eigenenergy of the system is given as follows, specified by the quantum numbers

(n,ng,n_, K, (v,m4)),

12
El(n,ny,n_,K,(v,74)) =Eo(Re) + - [

JU+1) =K -1 K*-2
2 puk? 21

+ (n + %) hwp (3.11)

+ (ny +n_ F 1)hwo + ES (ma),

where v denotes a dominant frequency of a-motion with 7, for a parity concern-
ing a reflection in the equilibrium of @ = 7/2. The first and second terms in r.h.s.
of Eq. (3.11) are constant energies from the interaction potential and the centrifu-
gal energy included in Vjx at the equilibrium, respectively. (n4 + n. + 1)hw
and E%(m,) are vibrational energies for S-motions without a-dependence and the
energy for a-motion, respectively.

There is a selection rule v = even for K = even and v = odd for K = odd
(K +v = even), for a-motion. If ny is equal to n_, then K v = 4m, m being an
integer. Because of the parity and boson symmetries, ny can be taken to be larger
than or equal to n_. For S-vibrational modes, we have a rule (—1)™++7- = (—=1)¥
due to symmetry of each constituent nucleus under space inversion. ny is also
related to the parity of a-motion as m, = (=1)"+. As a special case for K = 0,

both n, and n_ are even, i.c., m, is positive, due to parity synunetry.
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In Fig. 7, molecular normal modes of 28Si + 28Si with spin 38 is displayed,
where a pair of quanta (ny,n_) is given below the levels. Also given at the upper
right-hand-side of the levels is a dominant quantum number v for a-motion, which
means a-motion is approximately described by cosva (or sinva ). Apparently
K-excitation and twisting rotational modes appear to be lower than 8-vibrational
modes. The excitation energy for K = 2 is very small, smaller than 1MeV, and
even those for K = 4 or v = 4 are smaller than 3MeV. In Fig. 8(a), a few
examples of wave functions for a-motion are shown, where v = 0, and S-modes
are in zero-point oscillation or 2quanta excitation of butterfly. We see that, with
zero quanta for S-modes, the amplitude is wriggling around the value of a unit,
the equilibria @ = 0 and n/2 being slightly favored. (With exact v = 0 we
have a constant behavior. Weak v = 4 mixing exists.) With 2quanta for the
butterfly mode, however, we find surprisingly strong concentration around the
equilibrium of @ = 7/2. In Fig. 8(b), we inspect the reduced a-potential for
quanta (2,0). Compared with the potential for (0,0), we find that the minimum
at @ = 0 disappears, and the potential well at a = 7/2 is extended to wider
region, which sustains the localization of the amplitude. One may wonder why
the difference between a = 0 and 7/2 exists. The reason is as follows: at a = 0,
due to the definition of fi, f-motion with (n4,n_) = (2,0) does not imply
butterfly excitation but anti-butterfly one with 2quanta. Such a characteristic of
B+ coordinates gives larger excitation energy for (2,0) at a = 0 than at o = 7/2.
In Fig. 8(c), energy quanta hws is shown versus «, where we are able to confirm
the point. Returning back to di-nuclear configuration, for a configuration with
B1 = B2 < m/2, for example, we obtain a butterfly one at @ = /2, such as
displayed in Fig.7, while at & = 0 we obtain an anti-butterfly one with the same
values of B;. Hence the localization around a = 7/2, seen in Fig. 8(a), indicates
nothing but a realization of a physical butterfly excitation. Thus we are able
to classify the levels in Fig. 7 into two groups, i.e., twisting mode and butterfly
mode (or anti-butterfly), for which (¢) or (b) mark is assigned at the bottom of

the figure, respectively.
3.2 Rotational motion at extremely high spins

One of the characteristic feature of the spectrum is series of low-cnergy K-
rotational excitation due to axial asymmetry around molecular z-axis, which is
in contrast with Mg + Mg case.[12,13] One can understand the reason im-
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mediately from Fig. 9, where the upper configuration(?*Mg + 2*Mg ) has axial
symmetry as a whole, but the lower one for 28Si + 28Si has axial asymmetry.
Approximately a triaxial system rotates around the axis with the maximum mo-
ments of inertia. By the definition of the axes in the lower panel of Fig. 9, we have
I, > I, >> I,. Thus two pancakes-like objects(?8Si) touching side-by-side may
rotate around z-axis which is normal to the reaction plane. In the following we
investigate again rotational motions by means of asymmetric-rotator hamiltonian,

which is written as follows;

. N
=L 4 = 4 £ 12
T = 57 o7,V or, (8.12)
J? 1 . 1 .
= — [ - J2+ T2+ T2, 13
21, 2A< v T y) +21K 2 (3.13)
where Iy, A and Ix are related to I, I, and I, by
L_1(1,3 19
Ly 2\I, L)’ '
L_ 1, .1 1 (3.15)
AL Ly I, L’ '
1 1 1
_—= = = — .16
IK Iz [a.v (3 )

By using up and down operators of the angular momentum in the body-fixed

frame, we obtain

Trot = J? + J? ——1—<j2+j2> (3.17)
YL, 2Ix  4AN\TT T ) '
where j:’t = J + ij; denote up-down operators which give rise to couplings
between defferent K’s. The coupling strength is given by the coefficient —}S., which
is proportional to the difference between i and % In an intuitive understanding,
the rotation around z-axis is lower in energy than the rotation around y-axis due to
I, > I,. When the energy difference between the rotations around the molecular
z- and y-axes is larger than K-excitation energies, the K-mixing would be rather
large, In other words, an energetically favored motion, i.e., rotation around z-axis
would be realized by the K-mixing. And then the spin orientations of two 28Si
nuclei are on the plane in consistent with "m=0", because the nuclei rotate around

the axes perpendicular to their symmetry ones.
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In order to obtain an accurate description of this triaxial rotator, as it is well
known for polyatomic molecules, we diagonalize the Hamiltonian with an asym-
metric inertia tensor, which gives rise to a mixing of K-projections of the total
spin J[28]. The resultant motion should be called as ”wobbling mode”[29]. The
energy spectrum is displayed in Fig. 10(b) compared with the spectrum without
K-mixings in Fig. 10(a). Now the states of low lying K-series are not the eigen-
states as themselves, but are recomposed into new states. It is much interesting
that we again obtain several states including K = 0 components as a result of
K-mixing, which we may observe in the scattering. Those states are closely lo-
cated in energy and so in good agreement with several fine peaks observed in the
experiment. It should be noted here that the treatment of the asymmetric hamil-
tonian is somehow phenomenological and we assumed the same parameter for the
coupling strength A for the molecular ground-band states and for the butterfly
states.

As an analytical prescription, in the high spin limit (K/J ~ 0), the diagonal-
ization in the K -space is found to be equivalent to solving a differential equation of
the harmonic oscillator with parameters given by the moments of inertia. Thereby,
the solution is a gaussian, or a gaussian multiplied by an Hermite polynomial,

K 1/K\?
fﬂ(K) :Hn(—b—)exp{—§<?> :|, (318)
where the width b is given by
b= (2721 /A4 (3.19)

In order to calculate angular correlations we use those analytic forms in Eq. (3.18),
which is simple and easy way to understand extent of K-mixing. Of course we can
utilize numerical values obtained in the diagonalization procedure, but the values
are almost the same as those given by the analytic form. Due to the lowest state
fo(K) of Eq. (3.18), we have the wave function for the wobbling ground state as

UM~ " exp(— K /26%) Dy (6:) xx (R, @, Bu, B2), (3.20)
K

where in general, xx can be any molecular excitation mode, such as the ground-
state configuration (parallel equator-equator one), butterfly mode and twisting

3

(v = 4) mode, for which we examine the angular correlations.
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§4. Decay Properties and Angular Correlations

4.1 R-matriz formalism

The asymptotic scattering wave function in the "channel” ¢’ is written in the

form with collision matrix Uz as
¢c’ ~ (Gc - ti)éc’c - Uc’c(Gc’ + ti’): (4~1)

where ¢ is considered to include also the channel spin I’ and the orbital angular
momentum !’. F, and G, denote regular and irregular Coulomb wave functions
for ¢, i.e. for the channel ¢ and [, respectively. By using R-matrix formula, we

obtain ( )
6_10°UC U /,&J*
Uge = Ocre — 1 —Ad A (42)
ol 2 N 1)

where ug ) and u(+) denote usual incoming and outgoing waves, respectively, such
as ‘
ul™) = % (G. — F.),

[

ult) = 7 (G, + F,), (4.3)

with o, being the Coulomb phase shift. In the second term of Eq. (2), Wy is a
resonance pole, i.e., VV/{ = E,\ — —I‘A and N’ corresponds to a factor f01 the

normalization of the resonance state, which is close to unit. uj_’s are given by

7 V2kca. . (4.4)

U = ——
Ac €7UCU(+) Taer

with the reduced widths 7y from the amplitudes of the resonance states in the

channel ¢, which is obtained by

n2 1/2 52 1/2 )

J ! t J M, JM

= c\lc) = z v ds, 4.5
’7)\0 (2/1,6(1,0) acy (a ) <2Mcac) ac/ cll A S ( O)

where Z/* denote channel wave functions, and S being the surface with channel

radil a,. Definition of our collision matrix U, is almost the same as those of

Lain-Thomas[18] , but is different in a phase factor from them,
Uuo(Lain — Thomas) = /(7 =0e0) [, ¢ (oc=0cr0), (4.6)
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For the inelastic scattering, U, is given only by the second term. We apply
one level approximation, i.e., we consider the energy region close to a resonance
level A and replace the sum of the second term for {A\JM} by one term with the

resonance state, and then we have

uf
Uje = — '__LAQ____ (4.7)
NY(E-W{)

We obtain cross sections for a reaction ¢’ # ¢,

|UA' |u |2
c=9713 U2 2 = 95— < ; (4.8)
7 2 We =005 3 e B I
where
2J +1

(4.9)

9= 2L, )2l + 1)

is the statistical factor. Now we define partial widths in the channel ¢’ of the level
A by
}\c’ - |U’)\c 12 - 2P'l’|7)\c [ (410)

where P, denote so-called penetration factor given by

k.a.

G F2a (4'11)

Pcl

and total widths of the level A is obtained by the sum of the partial widths,
r{=>"TY. (4.12)

Hence, with [Nj| ~ 1, we obtain the Breit-Wigner one-level formula,

’l’ cl
~ 9175 . (4.13)
72 B

In particular, for "on resonance”, i.e., for £ = E), we obtain

e—id)'cm (_2mvcillll\/§P_d7011)e_i¢d (4 14)
3 | |

Ueri cni(Ex) =
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where the notations are written to be more practical than in Eq.’s (4.1)~(4.4)
as 1, but the indications for J and A for the resonance state are omitted. ¢
denote hard sphere scattering phase shifts, which are defined by
Fy(kcac)

Ge(keac)

To calculate 'y/\‘]c by Eq. (4.5), for \I/iM , we adopt the model wave functions ob-
tained by the bound-state approximation, and we take ¢ in Eq. (4.15) to be the
elastic channel, [l = J and ¢’ to be single or mutual excitations, to obtain physical

tan ¢ = (4.15)

quantities. As for the numerical calculations, we have taken the channel radii
a. to be 9.5fm in the preliminary calculations.[15] The value is at well outside
compared to the internal region. In the present paper we have corrected the tails
of the radial wave functions in the concerning channels, by attaching G.’s at
the smooth connecting points, because the radial behavior is gaussian-dumping
type due to the bound-state approximation and harmonic approximations. The
distances of the connecting points are in the range of R = 8.3 ~ 8.8fm. So we use
a slightly larger value for a. than those points, that is a, = 9.0fm

4.2 Angular correlation

The scattering amplitudes with specified magnetic substates for the mutual
2% excitation are given by

2
Xomym, (K, K) = —71 Z (22myma|I'my + ma)(I'l'my + mo m/|J M)

e (4.16)
x 7 OO UT LYy (B) Y (B),
where k and k' denote the initial and final relative momenta between two 2853
nuclei, respectively. Here we have assumed a single J resonance, and the in-
cident(elastic) channel assignments for the collision matrices are omitted. For
the single excitation, of course, we have a similar expression as the above one, by
putting, for example, I = 0 and mo = 0 into the CG coefficient (22myma|I’ m; +
my) of the mutual channel spin coupling. The transition amplitudes for the -
ray emissions from the polarized nuclei are discussed by several authors (see for
example Ref. [19]). For two photon emissions from the mutual excitation, the am-
plitudes are proportional to the scattering amplitudes and the photon emissions

as

ATIT 3 Xy (K K) (00 Hy, [Ty ) (0] Ho, | Toma), (4.17)

mims
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where (00| H,|I1m;) denote the transition matrices for y-ray emissions, which give
transition rate, i.e., by well-known perturbation theory, 27 /% - (00| Hy|Iymy) pdQ
for the emission direction df2, with p being level densities. In the case of the
present angular correlations, photons are rapidly emitted with the half life of
700fs, which means almost all the first 2% states of 28Si’s finish their transitions
into the ground states just after the decays of the resonance compounds. So
the problem which we will discuss is not the magnitude of the transition rates
but angular distributions of the «y-ray intensities over 4m-detectors, which were
measured by EUROGAM phasell. The y-ray intensity distributions are given by

(00| H, (Im)|Im) ~ DL (¢+,0,,0)(IIm — m|00)(0||T(I)}|T)
—1){-m , 4.18
~ (6, 19
V2I +1
where o denote right/left-hand circular polarizations of the emitted y-rays, i.e.,
o = £1. After sum over them for the square of the absolute values of Eq. (4.18),

we obtain «-ray angular correlations,

W1, (01, 915602, ¢2) = Z | AT 7212

0102

= Z Xm1m2 (k/7k)X;1’lm’2 (k/ak)

o1 agmlmgm’lm’2
x (00|Hg, [I1m1)(00|Hy, [Iym])*
X (OOIHdz |12m2)(00]H02 ]I2m12)*’

(4.19)

where 6; and ¢; denote angles of photon directions. In the experiment, only one of
two emitted photons is detected in most cases, even with EUROGAM. Therefore
we take an average over the angles of one photon (2, ¢2), and so we practically
integrate the last line of Eq. (19), which turns out to be proportional to Omaml,-
Hence the intensity distributions are given by

Wins(B1.62) ~ 3 Koy (K 0K, (€110
mim' ,ma (420)

(00|Hy, [Iymy)(00|Hy, | 1ymd)*

Furthermore note also that the intensities of the detectors are averaged over the
azimuthal angle ¢, in the final experimental results, which simplifies the compar-
ison to the data. By taking the average, we obtain only diagonal contributions
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Py, and thus the normalized angular correlations are expressed as

W(by) = PuWm(8y), (4.21)

where P,,’s are the probabilities in the correlated m magnetic substates of one of

two fragments, i.e., are given by

Prn~ > [Xmm, (k’,vk)lz. (4.22)

W (6) denote the E2 v-ray angular distributions,

Wn(05) = = 3 (V/B7Amd,,(6,))% (4.23)

2,
the intensity patterns of which are well-known (see for example Ref. [30]). The
patterns are displayed in Fig. 11 for convenience for readers.

In order to calculate the angular correlations, we specify the initial beam
direction k and the final fragments direction k' in the scattering amplitudes of
Eq. (4.16). The final direction k' was taken to be 6., in the experiment. The
IReS 47 ~-data were processed (integrated on the angle ¢) for the given three
quantization axes (shown in Fig. 12); in system (a), the z-axis is taken to be
in the beam direction, in (b) normal to the scattering plane and in (¢) in the
fragment direction.

Another important point for the analysis is a width of the particle detectors.
Position-sensitive detectors are set aligned along the reaction plane to measure the
angular distributions, vertical acceptance of which is +4°. For fragment-fragment-
v coincidence, the event was selected in which the both 28Si’s were detected in
the range of 8., = 90° £ 7°. So we have to take the detector-width into account.
One may think that the width is enough small to neglect the effect. His idea is
correct for usual low partial waves, but this is not the case. In extremely high
spin resonances such as partial L ~ 38, the oscillations of the partial waves are
very rapid as are seen Fig. 2, where the angle differences between the maximum to
zero amplitude are seen only about 2°. Hence we need to take an average over the
detector area. Such an effect is indispensably important for the correlation in the
single excitation channel, as will be discussed in the following section. Because

due to the Bohr condition we have no m = £1 component at exact 6., = 90°,

- 30 -



Akita University

but actually we have rather large m = +1 component as seen in (a)-axes in the
experimental data[7] (see Fig. 17). Since the orbital angular momentum vector is
almost perpendicular to the reaction plane, the waves propagate rapidly oscillating
along the reaction plane, and rather slowly varies along the vertical direction.
Therefore we need to integrate on only one dimension, i.e., only along the reaction
plane (interval 6., = £7°). To be sure, we compared the results between those
with one-dimensional integration and with two-dimensional one. Actually the
differences are very small as less than 1% of the total amounts.

§5. Results and Discussion

First we inspect the angular correlation data for the mutual excitation chan-
nel[15]. Figure 12 displays <y-ray intensities from the first excited state to the
ground state, in the mutual inelastic channel (2] ,27) decays. The 47 y-data are
shown for the given three quantization axes; in the panel (a) the z-axis is taken to
be in the beam direction, in (b) normal to the scattering plane and in (c) in the
fragment direction. Theoretical intensities of y-rays emitted by the 28Si fragments
in the decay of the molecular ground state (J = 38) are also given in Fig. 12, indi-
cated by dotted lines, which are seen to be in quite good agreement with the data
in all the three quantization axes (a), (b) and (c). The above theoretical results
are obtained preliminary for the final k’ direction of ., = 90°, i.e., without the
average over the detector width. As is shown in the following, the nature of the
spin alignments in the mutual channel receives essentially no change by averag-
ing over the detector width. In Fig. 12 K-mixing was done with the parameter
b = 1.26 in Eq. (3.20), the magnitude of which is consistent with asymmetry
of the 28Si + 28Si molecular ground-state configurations, while we adopt a value
b = 1.41 in the following. This is because characteristic features of the data such
as "m=0" in (b) become indistinct by the average, and therefore to fit the data
we have shifted the magnitude of K-mixing strengths to be slightly larger.

We examine theoretical results for typical molecular states. Before that, it is
better to look the results of b = 2.0 shown in Fig. 13, for the molecular ground
state again (the same configuration as in Fig. 12, except for the value b), where all
the internal motions are zero-point ones. One can see the results are almost the
same as the preliminary ones of 6., = 90°. By a detail look, one may find even
a better fit in the (c)-system. Next, for the other modes, the first is the results
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for K = 0 molecular ground state (no K-mixing) shown in Fig. 14, in which we
can know the effect of K-mixing. In the middle panel (b), "m=2" is seen to be
dominant but "m=0" component is also contained, and so we feel not so bad. The
calculated "m=0" probability is, however, rather small as P(m = 0) = 0.15, while
the data suggests the value 0.46. In the other panels the fits are seen to be not
good, although the whole tendency of the three panels is roughly in accordance
with the experimental data. Secondly figure 15 displays angular correlations for
the butterfly mode, and finally figure 16 displays those for the twisting mode
(v ~ 4). All those theoretical results are apparently much different from the
data. The characteristic features of the results are existence of dominant ”m=2"
substates, i.e., in (c) of the butterfly mode in Fig. 15 and in (a) of the twisting
mode in Fig. 16, respectively. This means that the spin vectors are on the reaction
plane; spin vectors are parallel to the fragment direction in the butterfly mode
and to the beam direction in the twisting mode, respectively. However those
angular correlations are seen to be inconsistent with the data, for example, as we
see "m=1” patterns in (a) and (b) of the butterfly mode. By the comparisons, it
is clear that the molecular ground state with K-mixing at high spins is very good
candidate for the resonance, and the other modes fail to be. One may expect that
results for the butterfly mode are favorable for the "m=0" characteristic, because
spin orientations are perpendicular to the normal axis. However, more precisely,
"m=0" means "symmetric around the normal axis”, which is satisfied by neither
of excited states such as butterfly nor twisting with well-defined direction of the

spin on the reaction plane.

One may think that the above results are not intuitive or confusing, because
for example, for the twisting mode the ?8Si nuclei rotate around the molecular
Z'-axis by the definition, and then the spin vectors are parallel to the molecular
z'-axis axis, which would be towards the fragment direction after the resonance
decay. However the theoretical results suggest that the spin vectors of the twisting
mode are dominantly parallel to the beam direction, and so one might feel the spin
directions are strange or even incorrect. The situation is similar for the butterfly
mode, where the spin vectors would be on the reaction plane by K-mixing but
are perpendicular to the molecular z’-axis. Such an intuition is correct in usual
nuclear reaction, where the di-nuclear fragments come into the detectors along
the relative vector after the resonance decays. In high spin resonances, however,

the expectation would be denied due to extremely high speed rotational motion,
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the direction of which is perpendicular to the relative vector as everyone sees
in raindrop motions splashed from an rapidly rotating umbrella. For a test on
motions of the 28Si nuclei after decay, we calculated classical orbits and obtained
the angle from the relative direction to be about 70° for J = 38. As a confirmation
we calculated angular correlations with J = 8, where the results turn out to be
opposite spin directions compared with J = 38, i.e., "m=2" dominance appears

in (c) for the twisting mode.

Lets move to the single excitation channel (21,07 ), the experimental angular
correlations of which are displayed in Fig. 17[7]. Surprisingly those of the single
channel are seen to be almost the same as those for the mutual channel. As already
mentioned in section 4, to reproduce those angular correlation data we have to take
average over the detector width. Figure 18 dispays theoretical results obtained
with the same K-mixing strength b = 1.41 and one-dimensional integration as
done in the mutual channel. The all the three panels show excellent agreements
with the data. The value of m = &1 magnetic substate probability in (a)-axes
calculated by the integration is 0.31, which is never obtained from the final 28Si
direction of 8., = 90°. By the molecular ground state we can reproduce dominant
"m=0" substate in (b) as well as in the mutual channel.

§6. Summary

The energetically favored configuration of an oblate-oblate dinuclear system
such as 28Si + 28Si is the parallel equator-equator one, as examined in section 3,
with the shape of the whole system like two pancakes touching each other side-
to-side. At a given angular momentum J, this configuration rotates in a triaxial
way approximately about the axis corresponding to the largest moment of inertia
in the state with the lowest energy. Therefore the whole system rotates about the
normal to the plane defined by the two pancake-like nuclei. We have developed
the molecular model to include such rotations by K-mixing, which is described
in subsection 3.2. The spins of the 28Si fragments are thus in this plane since
no rotation can occur about 28Si symmetry axes. This result is in agreement
with the lack of strong alignment observed in the angular distribution data. Thus
such a rotation or reaction mechanism is expected to occur in the very high spin

resonances.

We have examined several molecular modes to know which of them agrees with
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the characteristic angular correlation data "m=0". None of the normal modes are
not in agreement with "m=0", because the excited states such as butterfly and
twisting have specified spin directions on the reaction plane, respectively, i'.e.,
"m=2" in their own directions. Only K-mixed molecular ground state has been
selected as a good candidate.

The structure of the K-mixed molecular ground state should be called as
”wobbling mode”, which is due to the tri-axial deformation of the 22Si + 28Si
stable configuration. K-rotational modes such as tilting or wobbling have been
discussed for deep inelastic scattering processes[31], but up to now the appearance
of the mode in a resonance phenomena has not been known. As an experimental
technique, the angular correlations is a powerful tool for the study of nuclear
structures of heavy-ion resonances, and further progress is strongly desired.
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Fig. 1. Experimental excitation functions for 28Si + %Si reactions.
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Fig. 3. Di-nuclear configuration and the coordinates in the rotating molecular
frame for a oblate-oblate systeni. Molecular z'-axis and seven degrees of
freedom of the system are displayed.
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Fig. 4. The radial forms of the effective potentials in the equator-equator con-

figuration of 28Si + 28Si, V) = Vin (R, 7/2,7/2,7/2) +T',,(J, K) with spin
J =0 and J = 38 with ' = 0 are shown. Labels Y2 and Y24Y4 indi-
cate the type of the deformation, where the latter inculdes hexadecapole

moment.
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Fig. 5. An R-B(B; = Ba, a = 7/2) energy surface for Si + 28Si system, effective
potential energy 1,y with J = 38 and K = 0 is displayed, A local enegy
minimum exists at R = 7.6fin. Contours are in MeV.
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Fig. 6. (a) a-dependence of the effective potential V,x with J = 38 and K = 0,
for the E-E configuration at R = R, = 7.6fm. (b) V) versus 8= =
at & = 0 and at o = 7/2, which are displayed by dashed and solid lines,
respectively.
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Fig. 7. Molecular normal modes for 28Si + ?8Si system for J = 38. The quantum
states are specified by (n,ny,n_, K, (v,7,)), where n = 0 except for one
level(n = 1,v = 0) displayed with dashed line. The quanta (ny,n_) of
B-motions are given below the levels, and K at the bottom. v for a-motion
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assigned in the lower part of the figure, which indicate twisting rotational
and butterfly modes, respectively.
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Fig. 8. (a) Wave functions for a-motion with v = 0, with zero-point oscillation
(0, 0) and butterfly excitation (2,0) for S-degrees, respectively, are displayed
for J = 38 and K = 0. (b) The reduced a-potential 1V (Re, , %, %) +

1202
E£+m_ (a). (c) a-dependence of S-energy quanta fiws.
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Fig. 9. Equilibrium configurations of di-nuclear systems. Upper panel is for
24Mg + 2"Mg and lower panel for 28Si + 28Si.
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Fig. 17. 7-rays intensities obtained from particle-particle-y coincident measure-
ments for the single excitation channel. Solid curves show y?-fits. For the
quantization axes in three panels, see text.
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Abstract. Recent particle-particle—y coincident measurements on a 28Si+2Sj
resonance have suggested “vanishing spin alignments”. New analyses of the spin
alignments with a molecular model are presented. It is clarified that due to a
triaxial deformation of the total system a wobbling mode (K-mixing) appears
to give rise to spin disalignment.
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1. Introduction

Angular correlation measurements recently made with 47 gamma detectors has
given rise to much progress in study of molecular resonances [1]. Now, characteristic
features of the experiments are summarized in the following three points which have
to be explained theoretically: 1) narrow resonance structures correlating among the
elastic and inelastic channels, 2) angular distributions in the elastic and inelastic
channels, 3) angular correlations between emerging fragments 28Si and gamma rays
emitted from the fragments. The second characteristic indicates a dominance of the
partial wave L = J. Figure 1 shows the angular distributions for the elastic and
inelastic channels 2%, (2%, 27%), respectively, on the resonance at Ecy = 55.8 MeV.
The oscillating patterns are found to be in good agreement with L = 38, which
suggests L = J = 38 dominance in the resonance, namely, misalignments of the
fragment spins. And the third one indicates “m = 0” spin orientations of the
fragments in the normal to the reaction plane. Thus, the latter two quantities
suggest a disalignment between the orbital angular momentum and the fragment
spins. In the present paper we take up the third characteristic, namely, “m = 07
newly explored by the angular correlations, and examine which molecular mode is
a good candidate for the resonance state.

ISBN 963 206 299 X
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Fig. 1. Experimental angular distributions for the elastic and inelastic scattering
for 28Si 4 28Sj at Ecn = 55.8 MeV. Solid curves show L = 38 Legendre fits for
comparison.

Gamma rays from the first excited state of 28Si to the ground state have been
measured in coincidence with two 28Si nuclei detected at fcy = 90°. Figure 2
displays y-ray intensities of the mutual inelastic channel (2},27) decays for three
quantization axes from 47 data, where in the panel (a) the z axis is taken to be in
the beam direction, in (b) normal to the scattering plane and in (¢} in the fragment
direction. The angular correlation in (b) shows characteristic “m = 0" pattern,
which suggests that the fragment spins I; and I are on the scattering plane, and
is consistent with the misalignments observed in 28Si angular distributions. Those
features are much different from 2C + '2C and *!Mg + ?*Mg systems which exhibit
spin alignments {2]. Thus, the data are expected to provide a good test for the
model.
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Fig. 2. ~-ray intensities obtained from particle-particle—y coincident measure-
ments. Solid curves show x2-fits. Dotted lines show the theoretical prediction
obtained by the molecular model with wobbling mode (X -mixings). For the
quantization axes in the three panels, see text.

2. Molecular Model

2.1. Di-nuclear structure of 225i + 2251 system

With extremely high spins such as 30 ~ 40 h, stable di-nuclear configurations tend
to be “elongated systems by the strong centrifugal force”. In the prolate-prolate
systems (**Mg + *'Mg), a stable configuration is the pole-to-pole one, while in
the oblate-oblate systems (?8Si + %Si), it is an equator-to-equator one displayed in
Fig. 3a. By the molecular model, the authors have attempted to solve normal modes
around the equilibrium [3]. Seven degrees of freedom (g;) = (6;, 62,63, R, a, 51, 52)
illustrated in Fig. 3b are considered with the assumption of a constant deformation
and axial symmetry of the constituent nuclei, for simplicity. Consistently with the
coordinate system, we introduce a rotation—vibration-type wave function as basis,

Uy ~ Di (B xxc (R, a, 1. Ba) (1)
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Fig. 3. (a) Equilibrium configurations of di-nuclear systems. Upper panel is for
2Mg 4+ 2*Mg and lower panel for 2Si+ 2%Si. (b) Coordinate system of 23Sj+ 28,

where xx describes internal motions. Dynamics of the internal motions have been
solved around the equilibrium and various normal modes such as butterfly vibrations
have been obtained [3,4]. An example of the spectrum with spin J = 38 is shown

in Fig. 4a.
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Fig. 4. Enecigy spectra for J = 38 levels of **Si + **Si. Without K-mixing (a)
and with K-mixing (b).
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Characteristic features of the spectrum are series of low-energy K-rotational
excitations due to axial asymmetry around the molecular z axis, which is in contrast
with 24Mg + Mg case [3,5]. One can understand the reason immediately from
Fig. 3a, where the upper configuration has axial symmetry as a whole, but the
lower one has axial asymmetry. Approximately a triaxial system rotates around
the axis with the maximum moments of inertia. By the definition of the axes in
the lower panel of Fig. 3a, we have I, > I, > I,. Thus two pancake-like objects
(?8Si) touching side-by-side rotate around the z axis which is normal to the reaction
plane. And then the spin orientations of the two 28Si nuclei are on the plane in
consistency with “m = 0”7, because the nuclei rotate around the axes perpendicular
to their symmetry axes.

In order to obtain an accurate description of this triaxial rotator, as it is well
known for polyatomic molecules, we diagonalize the Hamiltonian with an asymmet-
ric inertia tensor, which gives rise to a mixing of K-projections of the total spin
J [6]. The resultant motion should be called “wobbling mode” [7]. In the high
spin limit (K/J ~ 0), the diagonalization in the K-space is found to be equivalent
to solving a differential equation of the harmonic oscillator with parameters given
by the moments of inertia. Thereby, the solution is a Gaussian, or a Gaussian
multiplied by an Hermite polynomial,

o () (5]

with the width of b = (2J2I/A)!/*, where Ig' = I;' —I7' and A~ = I71 - I3}
with I} = %(I;l + Iy‘l). The resultant energy spectrum is displayed in Fig. 4b
compared with the spectrum without K-mixings in Fig. 4a. To calculate angular

correlations we introduce a wobbling mode by the lowest state fo(K) of Eq. (2),
UM~ " exp(=K?/20%) Dy (0:)x ¢ (R, @, By, Bz) (3)
K

where in general, xx can be any molecular excitation mode. As for the value of
b, we take 1.3, which is consistent with the di-nuclear configuration of 28Si + 288j
system.

2.2. Spin alignments by angular correlations

We define scattering waves and the collision matrix Uy such as

o~ (Ge—iFe) = Y Uee(Ger +iFer). (4)

o
By using the R-matrix formula with one level approximation, we obtain Uy, =
e~ (=2V2Puiverr V2P v e ™' /T o1al for the inelastic scattering, where the re-
duced widths v are calculated from the model wave functions. The scattering am-
plitudes with specified magnetic substates for the mutual 21 excitation are given
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by
2
Konyma (K, k) = i S s ar (22mama|S' ML) (LS m/ MG TM)
x i/ UL, o Vi (B) YL (K), (5)

where k and k’ denote the initial and final relative momenta between the two 28Si
nuclei, respectively.

The transition amplitudes for the y-ray emissions from the polarized nuclei are
discussed by several authors (see for example Ref. [8]). For two-photon emissions
from the mutual excitation, the amplitudes are given as

BT = 2 Xomama (K, K)(00|Ho, [11ma)(00| Ho | Iom) (6)
mimsa
where the transition matrix elements (00|H,|Im) ~ (=1)I=mdl (8,)e" ™%

describe y-ray emissions. o; and oy denote right/left-hand circular polarizations
of the emitted v rays, i.e. ¢ = +1, and after summing over them the square of the
absolute values of Eq. (6), we obtain the y-ray intensities. In the experiment, only
one of the two emitted photons is detected in most cases, even with EUROGAM,
and so we take an average over the angles of one photon. Note also that the inten-
sities of the detectors are averaged over the azimuthal angle ¢ in Fig. 2. Thus the
angular correlations are expressed as

W(0y) = PuWin(6,), (7)

where P,, denote the probabilities in the correlated m magnetic substates of one
of the two fragments and are given by P, = Zmz | X mm, (K, k)2, And W,,(6)
denote the E2 y-ray angular distributions 1/2- 3% __ . (1/5/47d2,,(6,))? (see for
example Ref. [9]).

3. Results and Discussion

We inspect results for two typical molecular states. One is the molecular ground
state where all the internal motions are zero-point ones, and another is the butterfly
excited state. Theoretical intensities of v rays emitted by the 2®Si fragments in the
decay of the molecular ground state (J = 38) are given in Fig. 2, indicated by
dotted lines, which are seen to be in quite good agreement with the data in all the
three axes (a), (b) and (c¢). Those for the decay of the butterfly excited state are
displayed in Fig. 5. A dominant “m = 2” substate in the fragment direction is seen
in {c), and so the results are much different from the former. One may expect that
results for the butterfly mode are favorable for the “m = 0” characteristic, because
spin orientations are perpendicular to the normal axis. However, more precisely,
“m = 0” means “symmetric around the normal axis”, which is satisfied by neither
of excited states such as butterfly nor twisting (not shown here) with a well-defined
direction of the spin on the reaction plane.

— 59 —
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Fig. 5. y-ray intensities for the angular correlations with three quantization axes,
for the butterfly excited state. (a) the z axis in the beam direction, (b) normal
to the scattering plane and (c) in the fragment direction.

4. Concluding Remarks

‘We have examined several molecular modes among which one of them agrees with
the characteristic angular correlation data “m = 0”. None of the normal modes
are in agreement with “m = 0”, because the excited states, such as butterfly and
twisting, have specified spin directions, respectively, i.e. “m = 2” in their own
directions. Only the K-mixed ground state has been selected as a good candidate.

The structure of the K-mixed ground state should be called “wobbling mode”,
which is due to the triaxial deformation of the 28Si 4+ 28Si stable configuration.
K-rotational modes, such as tilting or wobbling, have been discussed for deep in-
elastic scattering processes [10], but up to now the appearance of the mode in a
resonance phenomenon has not been known. As an experimental technique, the an-
gular correlation measurement is a powerful tool for the study of nuclear structures
of heavy-ion resonances, and further progress is strongly desired.
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