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1 Introduction

There are many ways to characterize Besov spaces. Among them in the
discrete version are regular wavelet expansion, Littlewood-Paley decom-
position, polynomial approximation, spline approximation, mean oscilla-
tion, and difference operator (See [Meyer], [Triebel] and [Wojtaszczyk]).

We apply these characterizations to study these pointwise versions. In
particular we consider a characterization in a framework of multiresolu-
tion approximation and give conditions of finitely many functions which
generate Besov spaces in a view of multiresolution approximation scheme.
This result is a generalization of characterizations of Besov spaces given
by regular wavelet functions and by spline functions (See [Sickel] and
[Wojtaszczyk]). Moreover we investigate to give descriptions of scaling
exponents for Besov regularity and pointwise regularity.

We give scaling exponents for Besov regularity of some spline series
and estimates of a pointwise Hölder exponent of self-similar series. We
apply this result to compute pointwise Hölder exponents of several oscil-
latory functions (ref. [Jaffard 1]).

The plan of sections in our paper is as follows:
In the second section we give characterizations of Besov spaces and

those pointwise versions.
In the third section we consider a multiresolution analysis {Vl} gener-

ated by finitely many functions and give properties of Besov space norms
defined by approximation errors associated with {Vl}.

In the fourth section we give some conditions of finitely many func-
tions which characterize a Besov space by multiresolution approximation.
This result gives a generalization of characterizations of Besov spaces
given by regular wavelet functions and by spline functions, and we also
give characterizations of the pointwise Hölder space by multiresolution
approximation.

In the fifth section we give descriptions of scaling exponents of Besov
regularity and poitwise regularity by characterizations of Besov spaces.
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Moreover, we give scaling exponents for Besov regularity of some spline
series.

In sixth section we give estimates of a pointwise Hölder exponent for
a self-similar series and apply to compute a pointwise Hölder exponent of
several oscillatory functions(e. g. Takagi functions, Weierstrass function
and Lèvy’s functions ).

We use C to denote a positive constant different in each occasion.
But it will depend on the parameter appearing in each problem. The
same notations C are not necessarily the same on any two occurrences.

2 Besov spaces and pointwise regularity

Let Q0 be a unit cube with sides parallel to the axes of coordinates,
centered at the origin in R

n. We define for a function f on R
n,

osck
pf(x, l) = inf

P∈�k
(

1

|Ql(x)|
∫

Ql(x)

|f(y)− P (y)|pdy)1/p (1)

where Ql(x) = 2−lQ0 +x and |Ql(x)| is the volume element of Ql(x), and
P

k is the linear space of all polynomials of degree no greater than k on
R

n.

Definition.
Given s > 0, k a nonnegative integer with k+1 > s and 1 ≤ p, q ≤ ∞.
A function f is said to belong to the Besov space Bs

pq(R
n) if

||f ||Bs
pq(�

n) = ||f ||p + (

∞∑
l=0

(2ls||osck
pf(·, l)||p)q)1/q <∞. (2)

with the usual modification for q = ∞. We note that the above definition
is independent of the choice of nonnegative integers k with k+1 > s and
osck

p in the definition can be replaced by osck
1. We can see W p

k+1(R
n) ⊂

Bs
pq(R

n) if s < k + 1. For a domain D of R
n, we define by restriction

Bs
pq(D) = Bs

pq(R
n)|D.

Let �uf denote the difference operator �uf(x) = f(x+ u) − f(x).

Theorem A ([Triebel]). Given s > 0 , a nonnegative integer k with
k + 1 > s and 1 ≤ p, q ≤ ∞.
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Then we have equivalent ones of the Besov space norm given in (2),if
one of them exists, with the usual modification for q = ∞,

||f ||Bs
pq(�

n) ∼ ||f ||p + (

∞∑
l=0

(2ls sup
|u|<2−l

||�k+1
u f ||p)q)1/q.

For x ∈ R
n, a bounded function f ∈ T s

pq(x) means that

(

∞∑
l=0

(2lsosck
pf(x, l))q)1/q <∞

with the usual modification for q = ∞.
We have the embedding theorem : T β

pξ(x) ⊂ T α
pη(x) for β > α > 0,

1 ≤ ξ, η ≤ ∞ and 1 ≤ p ≤ ∞, and T α
pη(x) ⊂ T α

pξ(x), T
α
ξq(x) ⊂ T α

ηq(x) for
α > 0, 1 ≤ η ≤ ξ ≤ ∞ and 1 ≤ p, q ≤ ∞.

We write T s
∞∞(x) = Cs(x).

Theorem 1 ([Saka 1]). Given s > 0 , a nonnegative integer k with
k + 1 > s and 1 ≤ p, q ≤ ∞.

Then for x ∈ R
n following statements of a bounded function f are

equivalent, with the usual modification for q = ∞,

(i) f ∈ T s
pq(x),

(ii) (
∑∞

l=0(2
ls sup|u|<2−l(

1

|Ql(x)|
∫

Ql(x)

|�k+1
u f(y)|pdy)1/p)q)1/q <∞.

We will define the Littlewood-Paley decomposition. Let ϕ be a func-
tion in the Schwartz class S(Rn) with the following properties: supp
ϕ̂ ⊂ {ξ ∈ R

n : |ξ| ≤ 1} and ϕ̂(ξ) = 1 on {ξ ∈ R
n : |ξ| ≤ 2−1}.

Let ψ(x) = 2nϕ(2x) − ϕ(x). Let ϕl(x) = 2lnϕ(2lx), Slf = f ∗ ϕl,
ψl(x) = 2lnψ(2lx) and fl = f ∗ ψl for l = 0, 1, 2, . . . . Then for f ∈ S ′

we have Littlewood-Paley decomposition:

f = ϕ ∗ f +
∞∑
l=0

ψl ∗ f ≡ S0f +
∞∑
l=0

fl. (3)

Theorem B ([Triebel]). Let 1 ≤ p, q ≤ ∞ and s > 0.
Then we have equivalence of norms if one of them exists, for Littlewood-

Paley decomposition given in (3), with the usual modification q = ∞:
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(i) ||f ||Bs
pq(�

n),

∼ (ii) ||f ||p + (
∑∞

l=0(2
ls||f − Slf ||p)q)1/q,

∼ (iii) ||S0f ||p + (
∑∞

l=0(2
ls||fl||p)q)1/q.

The following statement is a pointwise version of Theorem B and can
be proved by Theorem 1 using the same way as in [Andersson].

Theorem 2 ([Saka 1]). Let s > 0 and f a bounded function on R
n.

(a) For x ∈ R
n, following statements are equivalent:

(i) f ∈ Cs(x) ,
(ii) |f(y) − Slf(y)| ≤ C(2−l + |x− y|)s for all l = 0, 1, 2, · · · .

(b) If f ∈ Cs(x), then it holds

(iii) |fl(y)| ≤ C(2−l + |x− y|)s for all l = 0, 1, 2, · · · .

Conversely, if it holds for s > s′ > 0,

(iii)′ |fl(y)| ≤ C2−ls(1 + 2l|x− y|)s′ for all l = 0, 1, 2, · · · ,

then f ∈ Cs(x).

3 Multiresolution approximation

For 1 ≤ p ≤ ∞, let Lp = Lp(Rn) be the linear space of all functions φ
for which

|φ|p = (

∫
T

(
∑
ν∈�n

|φ(x− ν)|)pdx)1/p <∞. (4)

with the usual modification for p = ∞ and the unit cube T = [0, 1]n.
Clearly, Lp ⊂ Lp(Rn) and L∞ ⊂ Lp ⊂ Lq ⊂ L1 = L1(Rn) for 1 ≤ q ≤
p ≤ ∞. If φ ∈ Lp(Rn) (1 ≤ p ≤ ∞) is compactly supported, then φ ∈ Lp.
Furthermore, we observe that if there are constants C > 0 and δ > 0
such that |φ(x)| ≤ C(1 + |x|)−n−δ for all x ∈ R

n then φ ∈ L∞.
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A finite subset Φ = {φ1, . . . , φN} of L∞ is said to have Lp-stable
shifts (1 ≤ p ≤ ∞), if there are constants C1 > 0 and C2 > 0 such that
for any sequences cj ∈ lp(Zn) (j = 1, . . . , N),

C1

N∑
j=1

||cj||lp ≤ ||
N∑

j=1

∑
ν∈�n

cj(ν)φj(x− ν)||p ≤ C2

N∑
j=1

||cj||lp.

Theorem C ([Jia-Micchelli]). For a finite subset Φ = {φ1, . . . , φN} of
L∞, we have following equivalent conditions:

(i) Φ has L2-stable shifts,
(ii) Φ has Lp-stable shifts for 1 ≤ p ≤ ∞,
(iii) there is a set of functions Φ̃ = {φ̃1, . . . , φ̃N} in L∞, dual to Φ in

the sense that

∫
φj(x− μ)¯̃φk(x− ν)dx = δμνδjk, j, k = 1, . . . , N, μ, ν ∈ Z

n,

where δ is the Kronecker’s symbol.

Let Π = {T + ν}ν∈�n with the unit cube T = [0, 1]n. For an integer
l and a finite subset Φ = {φ1, . . . , φN} of L∞ with L2-stable shifts, we
define operators Plf given by

Plf(x) =

N∑
j=1

∑
ν∈�n

2nl〈f, φ̃j(2
l · −ν)〉φj(2

lx− ν) (5)

where 〈f, φ̃j(2
l · −ν)〉 =

∫
f(y)¯̃φj(2

ly − ν) dy and Φ̃ = {φ̃1, . . . , φ̃N} is
dual to Φ in Theorem C.

Let V p
0 = {∑N

j=1

∑
ν∈�n aj(ν)φj(x − ν) : aj ∈ lp(Zn)} and let V p

l =

{f(2lx) : f ∈ V p
0 }. Then for 1 ≤ p ≤ ∞, the operator Pl is a bounded

projection operator of Lp(Rn) onto V p
l (1 ≤ p ≤ ∞) in the sense that

Plf = f for any f ∈ V p
l .

We say Φ = {φ1, . . . , φN} of L∞ is refinable if there exist sequences
cjk ∈ l1(Zn) (1 ≤ j, k ≤ N) such that

φj(x) =

N∑
k=1

∑
ν∈�n

cjk(ν)φk(2x− ν), x ∈ R
n, j = 1, . . . , N.
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A following theorem implies that {V p
l } is a multiresolution analysis

in Lp(Rn) for 1 ≤ p <∞.

Theorem D ( [Jia-Micchelli] and [Zhao]). If a finite subset Φ of L∞ is
refinable and has L2-stable shifts, then the sequence of sets {V p

l } (1 ≤
p ≤ ∞) satisfies following properties:

(i) f ∈ V p
0 ⇔ f(x− ν) ∈ V p

0 for all ν ∈ Z
n ,

(ii) f ∈ V p
l ⇔ f(2x) ∈ V p

l+1,
(iii) · · · ⊂ V p

l ⊂ V p
l+1 ⊂ · · · ,

(iv) ∩l∈�V
p
l = {0} (1 ≤ p <∞),

(v) ∪∞
l=0V

p
l is dense in Lp(Rn) (1 ≤ p <∞).

Assume that Φ of L∞ satisfies conditions of Theorem D.
Given a function f in Lp(Rn) (1 ≤ p ≤ ∞), σp

l (f) denotes the error
of Lp-approximation from V p

l in Lp(Rn):

σp
l (f) = inf{||f − S||p : S ∈ V p

l }. (6)

Clearly we have the following equivalence:

σp
l (f) ∼ ||f − Plf ||p, f ∈ Lp(Rn) (1 ≤ p ≤ ∞).

Given s > 0 and 1 ≤ p, q ≤ ∞. A function f is said to belong to
Bs

pq(Φ) if

||f ||Bs
pq(Φ) = ||f ||p + (

∞∑
l=0

(2lsσp
l (f))q)1/q <∞ (7)

with the usual modification when q = ∞. Let

Rlf = Pl+1f − Plf, l = 0, 1, . . . . (8)

We put

P0f(x) =
∑N

j=1

∑
ν∈�n aj0(ν)φj(x− ν),

Rlf(x) =
N∑

j=1

∑
ν∈�n

aj(l+1)(ν)φj(2
l+1x− ν). (9)
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Since Φ has stable shifts, we have

||P0f ||p ∼
∑N

j=1 ||aj0||lp,

||Rlf ||p ∼ 2−(l+1)n/p
N∑

j=1

||aj(l+1)||lp, l = 0, 1, . . . . (10)

Then for f ∈ Bs
pq(Φ) we have

f(x) = P0f(x) +

∞∑
l=0

Rlf(x) ≡
N∑

j=1

∞∑
l=0

∑
ν∈�n

ajl(ν)φj(2
lx− ν).

Moreover from [Wojtaszczyk, Theorem 5.10] there exists an associ-
ated set of wavelets {ψε

j}ε=1,... ,2n−1
j=1,... ,N in L∞, that is, {ψε

j(x−ν)}ε=1,... ,2n−1
j=1,... ,N,ν∈�n

is an orthonormal basis in W0 = V 2
1 � V 2

0 in L2(Rn) , whose wavelet ex-
pansion of a function f ∈ L2(Rn) is given by

f(x) =
∑N

j=1

∑
ν∈�n bj(ν)φj(x− ν)

+

N∑
j=1

2n−1∑
ε=1

∞∑
l=0

∑
ν∈�n

bεjl(ν)2
ln/2ψε

j(2
lx− ν) (11)

where

bj(ν) = 〈f(y), φ̃j(y − ν)〉, bεjl(ν) = 〈f(y), 2ln/2ψε
j(2

ly − ν)〉. (12)

Then we have

P0f(x) =
∑N

j=1

∑
ν∈�n bj(ν)φj(x− ν),

Rlf(x) =
∑N

j=1

∑2n−1
ε=1

∑
ν∈�n bεjl(ν)2

ln/2ψε
j(2

lx− ν), l = 0, 1, . . . .

and

||Rlf ||p ∼ 2ln(1/2−1/p)
N∑

j=1

2n−1∑
ε=1

||bεjl||lp (1 ≤ p ≤ ∞).

A following result can be proved from easy routine using Hardy’s in-
equalty.
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Theorem 3 ([Saka 1]). Assume that a finite subset Φ = {φ1, . . . , φN}
of L∞ is refinable and has L2-stable shifts. Given α > 0, there are
equivalences of the norm ||f ||Bα

pq(Φ) given in (7), if one of them exists, for
any 1 ≤ p, q ≤ ∞, with the usual modification for q = ∞:

(i) ||f ||p + (
∑∞

l=0(2
lα||f − Plf ||p)q)1/q,

(ii) ||P0f ||p + (
∑∞

l=0(2
lα||Rlf ||p)q)1/q,

(iii) (
∑∞

l=0(2
lα2−ln/p

∑N
j=1 ||ajl||lp)q)1/q,

where {ajl} are given in (9).

(iv) inf(
∑∞

l=0(2
lα2−ln/p

∑N
j=1 ||cjl||lp)q)1/q

where the infimum is taken over all admissible Lp-convergent representa-
tions

f(x) =
∑N

j=1

∑∞
l=0

∑
ν∈�n cjl(ν)φj(2

lx− ν),

(v)
∑N

j=1 ||bj||lp + (
∑∞

l=0(2
lα2ln(1/2−1/p)

∑N
j=1

∑2n−1
ε=1 ||bεjl||lp)q)1/q

where {bj} and {bεjl} are given in (12).

Proposition 1 ([Saka 1]). Given k + 1 > s > 0. Assume that Φ =
{φ1, . . . , φN} of L∞ is refinable and has L2-stable shifts. Then we have
for any 1 ≤ p, q ≤ ∞,

Bs
pq(Φ) ⊂ Bs

pq(R
n)

provided that there exists a positive number s0 with s0 > s such that
supl≥0 2ls0|osck

pφj(·, l)|p < ∞ for all j = 1, . . . , N , where the norm | · |p
and osck

p are given in (4) and (1) respectively.

Sketch of Proof. We shall prove for any f ∈ Bs
pq(Φ),

(

∞∑
l=0

(2lsσ̃p
l (f))q)1/q ≤ C(||f ||p + (

∞∑
l=0

(2lsσp
l (f))q)1/q)
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where σp
l is the errors of Lp-approximation given in (6) associated with

Φ and σ̃p
l (f) = ||osck

pf(·, l)||p . Since σp
l (f) → 0 as l → ∞ (1 ≤ p ≤ ∞),

we have an Lp-convergent series

f(x) = P0f(x) +

∞∑
l=0

Rlf(x)

≡
N∑

j=1

∞∑
l=0

∑
ν∈�n

ajl(ν)φj(2
lx− ν)

where P0f(x) =
∑N

j=1

∑
ν∈�n aj0(ν)φj(x− ν) and

Rlf(x) =
∑N

j=1

∑
ν∈�n aj(l+1)(ν)φj(2

l+1x − ν) are given in (9). Then we
have

σ̃p
l0
(f) = σ̃p

l0
(P0f +

∞∑
l=0

Rlf)

≤ σ̃p
l0
(P0f) +

∞∑
l=0

σ̃p
l0
(Rlf) ≡ I0 +

∞∑
l=0

I ′l .

We shall give an estimate of I0. By (10) we have

I0 ≤ C

N∑
j=1

||
∑
ν∈�n

|aj0(ν)|osck
pφj(x− ν, l0)||p

≤ C

N∑
j=1

||aj0||lp|osck
pφj(·, l0)|p ≤ C||P0f ||p sup

j
|osck

pφj(·, l0)|p.

If l < l0, then we see by (10) that

I ′l ≤ C2−(l+1)n/p
N∑

j=1

||
∑

ν

|aj(l+1)(ν)|osck
pφj(x− ν, l0 − l − 1)||p

≤ C

N∑
j=1

2−(l+1)n/p||aj(l+1)||lp|osck
pφj(·, l0 − l − 1)|p

≤ C||Rlf ||p sup
j

|osck
pφj(·, l0 − l − 1)|p.
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If l ≥ l0, then we have by the definition,

I ′l ≤ ||Rlf ||p.
From Hardy’s inequality and Theorem 3, these complete the proof of
Proposition 1.

A following corollary can be proved by the same way in the proof of
Proposition 1.

Corollary. Given s > 0. Assume that Φ = {φ1, . . . , φN} and Φ′ =
{φ′

1, . . . , φ
′
L} of L∞ are refinable and have L2-stable shifts. Then we

have for any 1 ≤ p, q ≤ ∞,

Bs
pq(Φ

′) ⊂ Bs
pq(Φ)

provided that there exists a positive number s0 with s0 > s such that
supl≥0 2ls0|φ′

j − Plφ
′
j|p <∞ for all j = 1, . . . , L, where the operator Pl is

given in (5) associated with Φ.

For a positive integer k and 1 ≤ p ≤ ∞, Lp
k = Lp

k(R
n) is denoted

to be the space of all functions f such that f(x)(1 + |x|)k ∈ Lp. If φ ∈
Lp(Rn) (1 ≤ p ≤ ∞) is compactly supported, then φ ∈ Lp

k. Furthermore,
we observe that if there are constants C > 0 and δ > k such that |φ(x)| ≤
C(1 + |x|)−n−δ for all x ∈ R

n then φ ∈ L∞
k . For a finite subset Φ of L∞

k ,
the domain of the operator Pl given in (5), can be extended to include
the linear space P

k of all polynomials of degree no greater than k on R
n.

For a finite subset Φ of L1
k, we say that Φ satisfies the Strang-Fix

condition of order k if there is a finite linear combination φ of the func-
tions of Φ and their shifts such that φ̂(0) �= 0 and ∂αφ̂(2πν) = 0, |α| ≤
k − 1, ν ∈ Z

n with ν �= 0.

Lemma 1 ([Lei-Jia-Cheney]). Let Φ be a finite subset of L∞
k that has

L2- stable shifts. Then Φ satisfies the Strang-Fix condition of order k if
and only if P0q = q for any q ∈ P

k−1.
Moreover, if this is the case, then we have

||Plf − f ||p ≤ C2−lk
∑
|α|=k

||∂αf ||p

for any f in the Sobolev space W p
k (Rn) (1 ≤ p ≤ ∞), with a constant C

independent of f, p and l , that is, W p
k (Rn) ⊂ Bs

pq(Φ) if 0 < s < k and
1 ≤ q ≤ ∞.
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4 Characterization of Besov spaces

by multiresolution approximation

Let Πl = {2−l(T + ν)}ν∈�n for a nonnegative integer l.

Proposition 2 ([Saka 1]). Given 1 ≤ p, q ≤ ∞ and k > s > 0. Assume
that a finite subset Φ = {φ1, . . . , φN} of L∞

k satisfies
(a) Φ has L2-stable shifts,
(b) Φ is refinable,
(c) Φ satisfies the Strang-Fix condition of order k.

Then we have
Bs

pq(R
n) ⊂ Bs

pq(Φ)

.

Sketch of Proof. We shall prove for any f ∈ Bs
pq(R

n),

(
∞∑
l=0

(2lsσp
l (f))q)1/q ≤ C||f ||Bs

pq(�
n)

where σp
l is given in (6) associated with Φ. We choose a function χ in

C∞
c (Rn) such that

∫ |χ(u)|du = 1 and supp χ ⊂ {u ∈ R
n : |u| < 1/k}.

We write χl(u) = 2lnχ(2lu), hl(x) =
∫

(f(x) − �k
uf(x))χl(u)du and

gl = Plhl − hl where Pl is given in (5) associated with Φ. Then we have
for 1 ≤ p ≤ ∞,

||f − Plf ||p ≤ ||f − hl||p + ||gl||p + ||Plhl − Plf ||p
≤ C||f − hl||p + ||gl||p ≡ CI1 + I2.

Obviously we have :

I1 ≤ C sup
|u|<2−l

||�k
uf ||p.

We shall give an estimate of I2 :

I2 = (
∑

Q∈Πl

∫
Q
|gl(x)|pdx)1/p

= (
∑
ν∈�n

∫
2−lT

|gl(x− 2−lν)|pdx)1/p. (13)
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Let qz be the (k − 1)-th Taylor polynomial of hl about z ∈ R
n and

let rz be the corresponding remainder. Since Φ satisfies the Strang-Fix
condition of order k, we see from Lemma 1

gl(x− 2−lν) = Plrx−2−lν(x− 2−lν)

= 2ln

∫
K(2lx, 2ly)rx−2−lν(y − 2−lν)dy

where K(x, y) =
∑N

j=1

∑
ν∈�n φj(x− ν)¯̃φj(y− ν). To estimate I2, we use

rx−2−lν(y − 2−lν)

=

∫ 1

0

∑
|β|=k

k

β!
∂βhl(x+ t(y − x) − 2−lν)(1 − t)k−1(y − x)βdt,

and

|∂βhl(x)| ≤ C

k∑
e=1

(

∫
|u|<1/k

|f(x− e2−lu)|pdu)1/p

≤ C

k∑
e=1

(2ln

∫
|2lu|<e/k

|f(x− u)|pdu)1/p

≤ C2ln/p(

∫
|2lu|<1

|f(x− u)|pdu)1/p.
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Hence we get an estimate:

(
∑
ν∈�n

|rx−2−lν(y − 2−lν)|p)1/p

≤ C

∫ 1

0

∑
|β|=k

(
∑

ν

|∂βhl(x+ t(y − x) − 2−lν)|p)1/p

× (1 − t)k−1|x− y|kdt
≤ C

∫ 1

0

∑
|β|=k

(
∑

ν

2ln

∫
|2lu|<1

|f(x+ t(y − x) − 2−lν − u)|pdu)1/p

× (1 − t)k−1|x− y|kdt
≤ C

∫ 1

0

2ln/p(
∑

ν

∫
2−l(T+ν)

|f(x+ t(y − x) + u)|pdu)1/p

× (1 − t)k−1|x− y|kdt
≤ C

∫ 1

0

2ln/p||f ||p(1 − t)k−1|x− y|kdt ≤ C|x− y|k2ln/p||f ||p.

Hence, since Φ ⊂ L∞
k , we get an estimate of I2 in (13):

I2 ≤ C2ln(

∫
2−lT

∑
ν

(

∫
|K(2lx, 2ly)||rx−2−lν(y − 2−lν)|dy)pdx)1/p

≤ C2ln(

∫
2−lT

(

∫
|K(2lx, 2ly)|(

∑
ν

|rx−2−lν(y − 2−lν)|p)1/pdy)pdx)1/p

≤ C2n(l+l/p)||f ||p(
∫

2−lT

(

∫
|K(2lx, 2ly)||x− y|kdy)pdx)1/p

≤ C||f ||p(
∫

T

(

∫
|K(x, y)||2−l(x− y)|kdy)pdx)1/p

≤ C||f ||p2−lk(

∫
T

(

∫
|K(x, y)||x− y|kdy)pdx)1/p ≤ C||f ||p2−lk.

Now we combine the estimates of I1 and I2 to write

||f − Plf ||p ≤ CI1 + I2 ≤ C( sup
|2lu|<1

||�k
uf ||p + 2−lk||f ||p).

This implies that

(

∞∑
l=0

(2lsσp
l (f))q)1/q ≤ C||f ||Bs

pq(�
n).
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This completes the proof of Proposition 2.

A following theorem is an immediate consequence of Proposition 1
and Proposition 2. This theorem is a generalization of results in [Devore-
Popov] and [Sickel].

Theorem 4 ([Saka 1]). Given 1 ≤ p, q ≤ ∞ and k > s > 0. Assume
that a finite subset Φ = {φ1, . . . , φN} of L∞

k satisfies
(a) Φ has L2-stable shifts,
(b) Φ is refinable,
(c) there exists a positive number s0 with s0 > s
such that supl≥0 2ls0|osck−1

p φj(·, l)|p <∞ for all j = 1, . . . , N,
(d) Φ satisfies the Strang-Fix condition of order k.

Then we have Bs
pq(R

n) = Bs
pq(Φ) with equivalent norms

||f ||Bs
pq(�

n) ∼ ||f ||Bs
pq(Φ)

where the norms ||f ||Bs
pq(�

n) and ||f ||Bs
pq(Φ) are given in (2) and (7) re-

spectively.

Remark. When {φj}N
j=1 have compact supports, we see that the condi-

tion (c) in Theorem 4 can be rephrased as :

(c)′ There exists a positive number s0 > s such that

sup
l≥0

2ls0||osck−1
p φj(·, l)||p <∞

for all j = 1, . . . , N , that is, φj ∈ Bs0
p∞(Rn) if s0 < k.

We say that a function on R
n is k-regular if it is of class Ck and

rapidly decreasing in the sense that |∂αf(x)| ≤ CN(1 + |x|)−N for all
N = 0, 1, 2, . . . and all |α| ≤ k. Any k-regular function belongs to L∞

N

for any N ≥ 0 and any k-regular function f satisfies the condition (c) in
Theorem 4 : supl≥0 2lk|osck−1

p f(·, l)|p <∞.
Hence we get a result of [Wojtaszczk].

Corollary 1 . Let 1 ≤ p, q ≤ ∞ and k > s > 0. Assume that a finite
subset Φ = {φ1, . . . , φN} of k-regular functions on R

n satisfies:
(a) Φ has L2-stable shifts,
(b) Φ is refinable.
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Then there exists a set {ψε
j}ε=1,... ,2n−1

j=1,... ,N of k-regular wavelets associated
with Φ, and we have equivalence of norms, if one of them exist, for
wavelet expansion given in (11) with the usual modification for q = ∞:

(i) ||f ||Bs
pq(�

n),

∼ (ii) ||f ||Bs
pq(Φ),

∼ (iii)
∑N

j=1 ||bj||lp + (
∑∞

l=0(2
l(s+n/2−n/p)

∑N
j=1

∑2n−1
ε=1 ||bεjl||lp)q)1/q.

We define the tensor product B-spline by Mk =
∏n

i=1Mk(xi), x =
(x1, . . . , xn) ∈ R

n, k = 1, 2, . . . . where Mk(t) is the k-th order central

B-spline, that is, M̂k(t) = (
sin(t/2)

t/2
)k. Let us denote by {ei}n

i=1 the set of

unit vectors in R
n. We put en+1 =

∑n
i=1 e

i, and X = {x1, . . . , xd0} with
x1 = e1, . . . , xd1 = e1, xd1+1 = e2, . . . , xd1+d2 = e2, . . . , xd1+···+dn+1 =
en+1, . . . , xd0 = en+1 where d0 = d1 + · · · + dn+1.

We denote the box splineB(x,X) corresponding toX given by B̂(x,X) =

(2π)−n/2
∏d0

j=1

1 − eixj ·x

ixj · x . In the case , the k-th order tensor product B-

spline Mk satisfies the conditions of Theorem 4, particularly, Mk ∈
B

k−1+1/p
p∞ (Rn) and Mk satisfies the Strang-Fix condition of order k.

The above box spline B(x,X) also satisfies the conditions of Theorem
4 replacing the above k by k = min{di +dj : i, j = 1, . . . , n+1, i �= j}.

Hence we get results of [DeVore-Popov] and [Sickel].

Corollary 2 . Theorem 4 remains true for the tensor product B-spline
Φ = {Mk} or the box spline Φ = {B(x,X)}.

A following theorem is a pointwise version of Corollary 1 of Theorem
4.

Theorem 5 ([Saka 1]). Suppose that k > s > 0. Assume that a finite
subset Φ = {φ1, . . . , φN} of k-regular functions on R

n satisfies:
(a) Φ has L2-stable shifts,
(b) Φ is refinable.

Then for x ∈ R
n and a bounded function f on R

n , following statements
are equivalent:

(i) f ∈ Cs(x),
(ii) |f(y) − Plf(y)| ≤ C(2−l + |x− y|)s l = 0, 1, 2, · · ·

where Plf is given in (5).
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Corollary. Suppose that the conditions in Theorem 5 are satisfied. Let
s > s′ > 0.

(a) If f ∈ Cs(x), we have

|Rlf(y)| ≤ C(2−l + |x− y|)s l = 0, 1, 2, . . .

where Rlf is given in (8). If it holds

|Rlf(y)| ≤ C2−sl(1 + 2l|x− y|)s′ l = 0, 1, 2, . . . ,

then f ∈ Cs(x).

(b) If f ∈ Cs(x), we have

|bεjl(ν)| ≤ C2−(s+ n
2
)l(1 + |2lx− ν|)s

for j = 1, . . . , N, l = 1, 2, 3, . . . , ε = 1, . . . , 2n − 1 and any ν ∈ Z
n where

bεjl(ν) is given in (12). If it holds

|bεjl(ν)| ≤ C2−(s+ n
2
)l(1 + |2lx− ν|)s′

for j = 1, . . . , N, l = 1, 2, 3, . . . and ε = 1, . . . , 2n − 1 and any ν ∈ Z
n,

then f ∈ Cs(x).

(c) For {ajl(ν)} given in (9), if it holds

|ajl(ν)| ≤ C2−sl(1 + |2lx− ν|)s′

for j = 1, . . . , N, l > 0 and ν ∈ Z
n, then f ∈ Cs(x).

5 Scaling exponents

For 1 ≤ p, q ≤ ∞ we define αpq(f) = sup{s ≥ 0 : f ∈ Bs
pq(R

n)} for
functions f ∈ Lp(Rn) and αpq(f,D) = sup{s ≥ 0 : f ∈ Bs

pq(D)} for a
domain D in R

n. If there is not a positive number s with f ∈ Bs
pq(R

n),
then we define αpq(f) = 0. We remark that αpq(f) > 0 for any f ∈
Lp(Rn) in the case 1 ≤ p <∞.

In the same manner we define αpq(f, x) = sup{s ≥ 0 : f ∈ T s
pq(x)}

for x ∈ R
n and bounded functions f on R

n. We put αp(f) = αp∞(f),
α(f) = α∞(f), αp(f, x) = αp∞(f, x) and α(f, x) = α∞(f, x).

We can prove a following proposition by the embedding theorem.
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Proposition 3 ([Saka 1]).

(i) αp(f) = αpη(f) for 1 ≤ p, η ≤ ∞,

(ii) α(f) > αp(f) − n
p
≥ αq(f) − n

q
for 1 ≤ q ≤ p <∞ ,

(iii) αp(f, x) = αpη(f, x) for 1 ≤ p, η ≤ ∞,

(iv) α(f) ≤ α(f, x) ≤ αp(f, x) ≤ αq(f, x) for 1 ≤ q ≤ p <∞.

Let φ1 be the Rademacher function given by φ1(x) = 1 (0 ≤ x < 1/2),
φ1(x) = −1 (1/2 ≤ x < 1), φ1(x) = 0 elsewhere.

Let φ2 be the tent function given by φ2(x) = 2x (0 ≤ x < 1/2),
φ2(x) = 2(1 − x) (1/2 ≤ x < 1), φ2(x) = 0 elsewhere .

For β > 0, we conside a function F which is given by a series

F (x) =
∞∑
l=0

2l−1∑
ν=0

2−βlφk(2
lx− ν)

.

Theorem 6 .
Let 1 ≤ p ≤ ∞ and k = 1, 2.

(a) If β < k − 1 + 1
p
, then αp(F ) = β,

(b) If k − 1 + 1
p
≤ β, then αp(F ) = k − 1 + 1

p
.

Sketch of Proof.
(I) The case k = 1.

Let

F (x) =

∞∑
l=0

2l−1∑
ν=0

2−βlφ1(2
lx− ν). (14)

Step (i)
If p = ∞, we should delete the statement (a).

Step(ii)
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When β = 1, we get F (x) = 2(1−2x) on I = [0, 1],　F (x) = 0, x /∈
I. Hence αp(F ) = 1

p
(1 ≤ p ≤ ∞).

Step (iii)
If p = ∞ and β �= 1, then F /∈ Cα(R) = Bα

∞∞(R) for each α > 0
because of that F is not continuous. Hence α∞(F ) = 0 if β �= 1.

Step (iv)
Suppose that β �= 1 and 1 ≤ p < ∞. Then the function F is discon-

tinuous at dyadic points with jumps and so we have from the embedding
theorem(cf. [Triebel]) F /∈ Bs

p∞(R) if s ≥ 1
p
. Hence we have

αp(F ) ≤ 1

p
. (15)

We can consider the expansion (14) as a wavelet expansion on R .
Then from Theorem 4, we see if 0 < s < 1

p
, F ∈ Bs

p∞(R) if and only

if s ≤ β. Therefore if β < 1
p
, then αp(F ) = β, and if β ≥ 1

p
, then

αp(F ) ≥ 1
p
. Hence by (15) we have αp(F ) = 1

p
if β ≥ 1

p
. This completes

the case k = 1.

(II) The case k = 2.
Let

F (x) =

∞∑
l=0

2l−1∑
ν=0

2−βlφ2(2
lx− ν)

.
Step (i)
When β �= 2 and β > 1, then we have αp(F ) = αp(F

′) + 1 where

F ′(x) =
∑∞

l=0

∑2l−1
ν=0 2−(β−1)lφ1(2

lx− ν).
From (I), we obtain αp(F ) = β if 1 < β < 1 + 1

p
and αp(F ) = 1 + 1

p

if β ≥ 1 + 1
p
.

Step (ii)
When β < 1, we apply wavelet analysis. We define a continuous

wavelet transform by

Wf(x, t) =

∫
f(y)t−nϕ(

y − x

t
)dy
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where ϕ ∈ Cm(Rn) with compact support such that
∫
xαϕ(x)dx = 0 for

each 0 ≤ |α| ≤ m. Since we have as the continuous version for wavelet
characterization of Besov spaces that

||f ||Bs
pq(�) = ||f ||p + (

∫ 1

0

(t−s||Wf(·, t)||p)q dt

t
)1/q

where Wf(x, t) is a wavelet transform of f , then we see

αp(f) = sup{s ≥ 0 : lim sup
t→0

t−s||Wf(·, t)||p <∞}
= inf{s ≥ 0 : lim sup

t→0
t−s||Wf(·, t)||p > 0}.

We can get following estimates by a method of [Jaffard 2].

Lemma A .
Let 1 ≤ p ≤ ∞. If β < 1, then

(a) lim supN→∞ 2βN (
∫ |WF (x, 2−N)|pdx)1/p <∞,

(b) lim supN→∞ 2βN (
∫ |WF (x, 2−N)|pdx)1/p > 0

From this lemma we get αp(F ) = β if β < 1.

Step (iii)
In the case β = 1 we use a following lemma

Lemma B (cf. [Jonsson-Kamont]).

Let 1 ≤ p ≤ ∞ and 1/p < s < 1. Let F (x) =
∑∞

l=0

∑2l−1
ν=0 2−βlφ2(2

lx−
ν)

Then F ∈ Bs
p∞(R) if and only if s ≤ β.

From this lemma , if β = 1, then αp(F ) ≥ 1. If αp(F ) > 1, then there
is s > 1 such that F ∈ Bs

p∞(R). Hence F ′ ∈ Bs−1
p∞ (R) but

F (x) =

∞∑
l=0

2l−1∑
ν=0

2−lϕ2(2
lx− ν)

is nondifferentiable at evry point x ∈ I. This is a contradiction. Hence
αp(F ) = 1. This completes the case k = 2.
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6 Estimates of pointwise regularity

Let T = [0, 1]n and Πl = {2−l(T + ν)}ν∈�n for a nonnegative integer l.
We write Q = 2−l(T + νQ) for Q ∈ Πl. Let Πl(T ) = {Q ∈ Πl : Q ⊂ T}
and Π(T ) = ∪∞

l=0Πl(T ). We put Π1 = {2−1(T + γi), i = 1, 2, . . . , 2n}
and Γ0 = {γ1, · · · , γ2n}. Then for Q ∈ Πl(T ), νQ is of a form νQ =
2l−1γi1 + · · · + γil, γi1 , · · · , γil ∈ Γ0 and we write MQy = 2ly − νQ

and μQ = μi1 · · ·μil for l > 0 where μ1, μ2, . . . , μ2n are real or complex
numbers with 0 < |μi| < 1 , i = 1, . . . , 2n. For l = 0 we put μT = 1. Let
φ be a bounded function which is zero outside T o, the interior of T .

We consider a bounded function f which is given by a series

f(y) =
∑

Q∈Π(T )

μQφ(MQy), y ∈ R
n. (16)

We remark that α(f) ≤ α(φ). Let

τ0(x) ≡ lim inf
l→∞

inf
Kl(x)�Q

log |μQ|
log(2−l + |x− 2−lνQ|)

= lim inf
l→∞

inf
Kl(x)�Q

log |μQ|
log 2−l

where Kl(x) ≡ {Q ∈ Πl(T ) : B(x, 2−l) ∩ Q �= ∅} and B(x, 2−l) is a ball
centered at x with a radius 2−l. When x ∈ Ω ≡ ∩∞

l=0 ∪Q∈Πl(T ) Q
o(the

interior of Q) there exists a unique sequence {Ql,x}l≥0 such that Ql,x ∈
Πl(T ) and x ∈ Qo

l,x. Then we have for x ∈ Ω

τ0(x) = lim inf
l→∞

log |μQl,x
|

log 2−l
.

Let for x ∈ Ω

τ1(x) ≡ lim inf
l→∞

log |μQl,x
|

log Δl(x)

where Δl(x) = dist(x, ∂Ql,x) is the distance from x to the boundary ∂Ql,x

of Ql,x. We remark for x ∈ Ω, τ0(x) = τ1(x) if supl≥0

Δl(x)

Δl+1(x)
<∞.

A following theorem may be proved by the same way as in [Saka 2].
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Theorem 7 . Let f and φ be bounded functions given in (16). Then we
have

(i) α(f, x) ≥ min(α(φ), τ0(x)) for x ∈ T ,

(ii) α(f, x) ≥ mini(α(φ,Ωi), τ1(x))

for x ∈ Ω with supl≥0

Δl(x)

Δl+1(x)
< ∞ where Ωi ≡ 2−1(T o + γi), γi ∈ Γ0,

i = 1, . . . , 2n and α(φ,Ωi) = sup{s ≥ 0 : φ ∈ Cs(Ωi)} and Cs(Ωi) is
defined as the Besov space Bs

∞∞(Ωi) on Ωi.

(iii) Suppose that φ ∈ C∞(Ωi), i = 1, . . . , 2n and there exist a positive
number s0 and y0 ∈ T o such that

sup
l≥0

sup
y

|fl(y)|
(2−l + |y − y0|)s0

= ∞.

Then τ0(x) ≥ α(f, x) for x ∈ T where fl is given in (3).

Corollary. Let φ be a bounded function on R
n such that φ ∈ C∞(Ωj), j =

1, . . . , 2n and φ = 0 outside T o. Consider a bounded function f given by
(16) satisfying the condition (iii) in Theorem 7. Then we have

(i) τ0(x) ≥ α(f, x) ≥ min(α(φ), τ0(x)), x ∈ T ,

(ii) for x in Ω with supl≥0

Δl(x)

Δl+1(x)
<∞, α(f, x) = τ0(x) = τ1(x).

Examples.
We put Π = {T + ν}ν∈� with the interval T = [0, 1] on R.

(a) We consider the Takagi function such that

f(x) =

∞∑
l=0

∑
Q∈Πl(T )

μlφ(MQx), ∀x ∈ R

where 0 < μ < 1 and φ is a bounded function such that φ(x) = x (0 <
x ≤ 1

2
), φ(x) = 1 − x (1

2
≤ x < 1), φ(x) = 0 (otherwise).

Let τ =
log μ

log 2−1
. Then from the corollary of Theorem 7, if τ ≤ 1,

τ = α(f, x) for each x ∈ T .
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(b) We consider the Weierstrass function

f(x) =
∞∑
l=0

μlφ(2lx)

with 0 < μ < 1 and φ(x) = sin 2πx (x ∈ R). The proof of Theorem 7
can be also applied to this function case.

Then we have τ = α(f, x), ∀x ∈ R. where the constant τ =
log μ

log 2−1

is given in the part (a) above.

(c) We consider Lèvy’s function

f(x) =

∞∑
l=0

∑
Q∈Πl(T )

2−lφ(MQx), ∀x ∈ R

where φ(x) = x− 1

2
(0 < x < 1), φ(x) = 0 (otherwise).

Then we can see that 1 = τ1(x) = α(f, x) for a point x in Ω with

supl≥0

Δl(x)

Δl+1(x)
<∞.
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