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Besov regularity and
Pointwise regularity

Koichi Saka

1 Introduction

There are many ways to characterize Besov spaces. Among them in the
discrete version are regular wavelet expansion, Littlewood-Paley decom-
position, polynomial approximation, spline approximation, mean oscilla-
tion, and difference operator (See [Meyer], [Triebel|] and [Wojtaszczyk]).

We apply these characterizations to study these pointwise versions. In
particular we consider a characterization in a framework of multiresolu-
tion approximation and give conditions of finitely many functions which
generate Besov spaces in a view of multiresolution approximation scheme.
This result is a generalization of characterizations of Besov spaces given
by regular wavelet functions and by spline functions (See [Sickel] and
[Wojtaszczyk|). Moreover we investigate to give descriptions of scaling
exponents for Besov regularity and pointwise regularity.

We give scaling exponents for Besov regularity of some spline series
and estimates of a pointwise Holder exponent of self-similar series. We
apply this result to compute pointwise Holder exponents of several oscil-
latory functions (ref. [Jaffard 1]).

The plan of sections in our paper is as follows:

In the second section we give characterizations of Besov spaces and
those pointwise versions.

In the third section we consider a multiresolution analysis {V;} gener-
ated by finitely many functions and give properties of Besov space norms
defined by approximation errors associated with {V;}.

In the fourth section we give some conditions of finitely many func-
tions which characterize a Besov space by multiresolution approximation.
This result gives a generalization of characterizations of Besov spaces
given by regular wavelet functions and by spline functions, and we also
give characterizations of the pointwise Holder space by multiresolution
approximation.

In the fifth section we give descriptions of scaling exponents of Besov
regularity and poitwise regularity by characterizations of Besov spaces.
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Moreover, we give scaling exponents for Besov regularity of some spline
series.

In sixth section we give estimates of a pointwise Holder exponent for
a self-similar series and apply to compute a pointwise Holder exponent of
several oscillatory functions(e. g. Takagi functions, Weierstrass function
and Levy’s functions ).

We use C' to denote a positive constant different in each occasion.
But it will depend on the parameter appearing in each problem. The
same notations C' are not necessarily the same on any two occurrences.

2 Besov spaces and pointwise regularity

Let Qg be a unit cube with sides parallel to the axes of coordinates,
centered at the origin in R". We define for a function f on R",

osc¥ f(z,]) = in o — Pdy) /P
ol (1) = Peﬂﬁk(@l( I Ql(x)\f(y) P(y)|Pdy) (1)

where Q;(x) = 27'Qq+x and |Q;(x)| is the volume element of Q;(z), and
P* is the linear space of all polynomials of degree no greater than & on
R™.

Definition.
Given s > 0, k a nonnegative integer with k41 > sand 1 < p,q < oco.
A function f is said to belong to the Besov space By (R") if

o0

B3, &) = |[fllp + Z 218||osckf D)9V < oo. 2)

=0

[1£]

with the usual modification for ¢ = oco. We note that the above definition
is independent of the choice of nonnegative integers k with k41 > s and
osc’; in the definition can be replaced by oscy. We can see W7 1 (R™) C
By (R") if s < k + 1. For a domain D of R", we define by restriction
Bs (D) = B;,(R")|p.

Let A, f denote the difference operator A, f(z) = f(x +u) — f(x).

Theorem A ([Triebel]). Given s > 0 , a nonnegative integer k with
k+1>sand1 <p,q<o0.



Akita University

Then we have equivalent ones of the Besov space norm. given in (2),if
one of them exists, with the usual modification for ¢ = 0o,

ey ~ W71l (2 sup 1AL A1)
1=0 Ju|<

For x € R”, a bounded function f € T}, () means that

Z (2%0sc) f (1) )NV < 00
1=0
with the usual modification for ¢ =
We have the embedding theorem : T’g c(x) C Ty (x) for B > a >0,
1<¢n<ooand 1 <p< oo, and Ty (v ) C Ti(x), Tg(x) C Tpy(z) for
a>0,1<n<¢{<ooand 1 <p,qg< 0.
We write T3 __(x) = C*(x).

Theorem 1 ([Saka 1]). Given s > 0 , a nonnegative integer k with
kE+1>sand1 <p,q< o0.

Then for x € R™ following statements of a bounded function f are
equivalent, with the usual modification for ¢ = oo,

(i) f € Tpy(x),

() (TR0 sty | 18K Sl ) V7)) < o

1
1Qu(@)] Jg,

We will define the Littlewood-Paley decomposition. Let ¢ be a func-
tion in the Schwartz class S(R") with the following properties: supp
pC{eeR : Jgf <1y and @) = Lon {6 € R : ¢ <271},
Let $(z) = 276(22) — o(x). Let w(z) = 2"p(2a), Sif = f * o,
P(x) = 2Mp(2lz) and fy = fxap for [ =0, 1, 2, .... Then for f € &
we have Littlewood-Paley decomposition:

f=oxf+> dixf=Sf+> h (3)
=0 =0

Theorem B ([Triebel]). Let 1 < p,q < oo and s > 0.
Then we have equivalence of norms if one of them exists, for Littlewood-
Paley decomposition given in (3), with the usual modification ¢ = oo
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i) 1]
~ (i) (11l + (@8I = Sifllp) )Mo,

~ (iif) [1SoSfIlp + (22 (21 fillp) ).

The following statement is a pointwise version of Theorem B and can
be proved by Theorem 1 using the same way as in [Andersson)].

B3, (R™)s

Theorem 2 ([Saka 1]). Let s > 0 and f a bounded function on R".

(a) For xz € R", following statements are equivalent:

(i) feC(),

(b) If f € C*(x), then it holds

(i) [fily)| <CQR"+ |z —yl)* foralll=0,1,2,--.
Conwversely, if it holds for s > s’ > 0,

(iit) [fi(y)] < C278(1+ 2z —y|)*  foralll=0,1,2,---,

then f € C*(x).

3 Multiresolution approximation

For 1 < p < o0, let LP = LP(R™) be the linear space of all functions ¢
for which

ol = ([ (3 lota =)o) < o ()

T vEL™

with the usual modification for p = co and the unit cube 7' = [0, 1]™.
Clearly, £P C LP(R™) and L> C LP C L9 C L' = L'(R") for 1 < ¢ <
p<oo. If ¢ € LP(R") (1 < p < 00) is compactly supported, then ¢ € LP.
Furthermore, we observe that if there are constants C' > 0 and § > 0
such that |¢(z)] < C(1 4+ |z|)™ for all 2 € R" then ¢ € L.
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A finite subset ® = {¢1,...,¢n} of L™ is said to have LP-stable
shifts (1 < p < o0), if there are constants C; > 0 and Cy > 0 such that
for any sequences ¢; € IP(Z") (j=1,...,N),

N
ClZ||CJ||lp<||ZZCJ (@ =)l < Co ) Nl
j=1

j=1vezn

Theorem C ([Jia-Micchelli]). For a finite subset ® = {¢1,... ,on} of

L>®, we have following equivalent conditions:

(i) ® has L*-stable shifts,

(ii) ® has LP-stable shifts for 1 < p < oo,

(iii) there is a set of functions ® = {¢1,... ,dn} in L, dual to ® in
the sense that

/@-(w — ,u)ék(x —v)dr = 0,0k, J,k=1,... N, pvelZ,
where § is the Kronecker’s symbol.

Let T = {T + v},ez» with the unit cube T' = [0, 1]". For an integer
[ and a finite subset ® = {¢1,... ,dn} of L> with L*-stable shifts, we
define operators P, f given by

Pf(x Z D262 ) (2 —v) (5)

Jj=1vezn

where (f, ¢;(2' - —v) = [ f(y) (5 oy —v) dy and ® = {¢y,... oy} is
dual to @ in Theorem C.

Let VP = {320 >, cpna;(V)ds(z —v) : a; € IP(Z")} and let V7 =
{f(2'z) : f € VP}. Then for 1 < p < oo, the operator P, is a bounded
projection operator of LP(R") onto V}” (1 < p < c0) in the sense that
P f = f for any f € V.

We say @ = {¢1,...,¢n} of L™ is refinable if there exist sequences
cjr € 1M(Z") (1 <j,k < N) such that

chﬂk Vor(2x —v), xzeR" j=1,... N.

k=1 vezZm



Akita University

A following theorem implies that {V}"} is a multiresolution analysis
in LP(R") for 1 <p < 0.

Theorem D ( [Jia-Micchelli] and [Zhao]). If a finite subset ® of L™ is
refinable and has L*-stable shifts, then the sequence of sets {V/} (1 <
p < 00) satisfies following properties:

i) feVie fle—v)e VY foralvelZ™,
i) feVP e f(2z) € Vlil,
(i) - C VPV

(iv) MiezVP ={0} (1 <p < 0),

(v) U2 V)P is dense in LP(R™) (1 < p < 00).

Assume that ® of £ satisfies conditions of Theorem D.
Given a function f in LP(R™) (1 < p < o0), 0} (f) denotes the error
of LP-approximation from V}” in LP(R"):

op (f) = inf{|[f = S|l : S €V} (6)
Clearly we have the following equivalence:

o (f) ~If = Bifllp, [ €LP(R") (1<p<o0)

Given s > 0 and 1 < p,q < oo. A function f is said to belong to
By (@) if

o0

B @ = |IFllp + (Q_(25af (/)HH < 00 (7)

=0

[1£]

with the usual modification when ¢ = oo. Let

le:-Pl+1f_-Plf7 l:0717 (8)

We put

Pof(x) = 3000 X e ajo(¥) (= v),

RiG@) = 3 Y a2 - ), ©

j=1vezn
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Since ® has stable shifts, we have

N
1P fllp ~ 2251 Mlajollw,

N
1Rl ~ 270> " aginllw, 1=0,1,.... (10)

j=1

Then for f € B; (®) we have

f(x) =Ry f(x +Zle ZZ aji a:—z/)

— j=1 1=0 vezn

Moreover from [Wojtaszczyk, Theorem 5.10] there exists an associ-

ated set of wavelets {¢)$}Z17 % ™" in £, that is, {¢$(z— y)}jj:j. Nezn

is an orthonormal basis in Wy = V2 © VZ in L?(R") , whose wavelet ex-
pansion of a function f € L*(R") is given by

f(z) = Z] 1 D pern bj(V)di(z —v)

N 2"—-1 oo

220 2 K2 e —v) (11)

=1 e=1 [=0 veZ"

bi(v) = (f(y), &i(y — ). b5y (v) = (f(y), 2" P52y —v)). (12)

Then we have
Pof(x) = 3000 2 e by (V) e ( — v),
Rif(z) =30 S22t S0 05, (0)2 205 (2 — v), 1=0,1,... .

and

N 2"-1

[[Rfllp ~ 227D N b e (1< p < 00).

=1 e=1

A following result can be proved from easy routine using Hardy’s in-
equalty.
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Theorem 3 ([Saka 1]). Assume that a finite subset ® = {¢1,... ,dn}
of L> is refinable and has L?-stable shifts. Given o > 0, there are
equivalences of the norm || f|| g (@) given in (7), if one of them exists, for
any 1 < p,q < oo, with the usual modification for ¢ = oo

@ 111+ CZZo @9 = Pfllp)DH,

(i) (1Pofllp + o 2N 1) D),

(i) (2227?35, [laqllw) )M,
where {aj;} are given in (9).

(iv) inf(o2p(2 27 30 Hleilli) )

where the infimum s taken over all admissible LP-convergent representa-
tions

Fla) =300 S0 Y e ()i (2 — v),

(V) 300 ol + (S22t 222w 520 S il w) )
where {b;} and {5} are given in (12).

Proposition 1 ([Saka 1]). Given k+1 > s > 0. Assume that ® =
{p1,...,On} of L is refinable and has L*-stable shifts. Then we have
for any 1 < p,q < oo,

B;,(®) C By, (R")

provided that there exists a positive number sg with sqg > s such that
sup;so 2°°fosch; (-, )|, < oo for all j = 1,... N, where the norm | - |,
and osc’; are giwen in (4) and (1) respectively.

Sketch of Proof. We shall prove for any f € By (®),

Z 215 p 1/q < C Hpr Z 215 p 1/q)
=0 =0
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where o7 is the errors of LP-approximation given in (6) associated with
® and 7 (f) = |[osch f(-,1)|[, - Since o (f) = 0asl — oo (1<p < o0),
we have an LP-convergent series

where Pyf(z) = Zjvzl Y vezn @jo(V)oi(z — v) and

Rif(x) = Zjvzl > vezn @) (V)9 (2 e — v) are given in (9). Then we
have

o1 (f) =60 (Pof + Y _Rif)

=0
< P+ n(Rif)=l+ ) 1.
=0 =0

We shall give an estimate of Iy. By (10) we have

Iy < CZ I Z lajo(v IOSC ¢j(x —v,lo)llp

j=1 vezn

N
< O lajolliwloscid; (- lo)l, < ClIPofll, sup |osche; (-, 1o) |-

J=1

If I < ly, then we see by (10) that

I <C2 “*””/”Z 1> lajarny@)losepey(x = v,lo — L= 1),

< CZ 272 )| |irfoscydy (-, lo — L= 1),

j=1

< ClRifllp sup |OSC];¢J'(': lo—1—=1)lp.
j



Akita University

If [ > [y, then we have by the definition,

I < |[Rufl-
From Hardy’s inequality and Theorem 3, these complete the proof of
Proposition 1.

A following corollary can be proved by the same way in the proof of
Proposition 1.

Corollary. Given s > 0. Assume that ® = {¢1,... ,on} and ' =
{d),..., L} of L are refinable and have L*-stable shifts. Then we
have for any 1 < p,q < 00,

B;, (@) C B, (®)
provided that there exists a positive number sg with sqg > s such that
SUp;>q 2l50]¢9 — Pgil, < oo forallj=1,...,L, where the operator P, is
giwven in (5) associated with ®.

For a positive integer k and 1 < p < oo, L} = L7(R") is denoted
to be the space of all functions f such that f(z)(1 + |z|)* € LP. If ¢ €
LP(R™) (1 < p < o0) is compactly supported, then ¢ € £}. Furthermore,
we observe that if there are constants C' > 0 and 0 > k such that |¢(x)| <
C(1+ |z|)™"° for all z € R" then ¢ € £5°. For a finite subset ® of L,
the domain of the operator P, given in (5), can be extended to include
the linear space P¥ of all polynomials of degree no greater than k& on R™.

For a finite subset ® of L;, we say that ® satisfies the Strang-Fix
condition of order k if there is a finite linear combination ¢ of the func-
tions of ® and their shifts such that ¢(0) # 0 and 9°¢(27v) = 0, |a| <
k—1, veZ"with v # 0.

Lemma 1 ([Lei-Jia-Cheney]). Let ® be a finite subset of L3° that has
L?- stable shifts. Then ® satisfies the Strang-Fiz condition of order k if
and only if Pyg = q for any q € P 1.

Moreover, if this is the case, then we have

12f = flly < C27% > 110° £,

|a|=k
for any f in the Sobolev space W} (R™) (1 < p < o0), with a constant C
independent of f,p and 1 , that is, W(R") C B3 (®) if 0 < s < k and
1 <g< o0

10
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4 Characterization of Besov spaces
by multiresolution approximation

Let IT; = {27YT + v)},ezn for a nonnegative integer [.

Proposition 2 ([Saka 1]). Given1 <p, ¢ < oo andk >s > 0. Assume
that a finite subset ® = {¢1,... ,pn} of LI satisfies
(a) @ has L*-stable shifts,
(b) ® is refinable,
(c) ® satisfies the Strang-Fix condition of order k.
Then we have
B;,(R™) C B, (®)

Sketch of Proof. We shall prove for any f € B; (R"),

(@ o(F)) < Cllf

1=0

Bsq(Rn

where o] is given in (6) associated with ®. We choose a function x in
C2°(R") such that [ |x(u)|du =1 and supp x C {u € R" : |u| < 1/k}.

We write xi(u) = 2°x(2), u(z) = J(/(x) — ALf())xi(w)du and
g1 = Phy — hy where P, is given in (5) associated with ®. Then we have
for 1 < p < oo,

Lf = Biflly < f = tallp + Nlaillp + [Pl — Pif]]
< CHf—thp"‘||9l||p50]1+]2.

Obviously we have :

L < C sup [[AGf]lp-

luj<2-t

We shall give an estimate of I, :

ZQEHZ fQ |gi() [Pdx)'/P

Z/ZT]glx—Q W) [Pdx)'P. (13)

VEL™

11
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Let ¢, be the (k — 1)-th Taylor polynomial of h; about z € R™ and
let 7, be the corresponding remainder. Since ¢ satisfies the Strang-Fix
condition of order k, we see from Lemma 1

gz —27) = Pry_o(x —27)
= 2" [ K2y ly -2 )y
where K(x,y) = Zjvzl Y vezn @i — V)g_gj (y — v). To estimate I, we use

Typ—o-1, (Y — 271y)

O 8=k

and

k
o°h <C fz — e27t) [Pdu) /P
10 h(a) ;</|u|<w\ (x — e2"'u) Pdu)

2lu|<e/k

<oy [ i wpd

< e[ - wpan®
[2tul<1

12
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Hence we get an estimate:

(Z ’rfo—lu(y - Qill/ﬂp)l/p

vEL™

<

IN

IN

X

<

¢ [ S e+ tly ) — 2t

O 1pI=k v
1 — Yo — ylFdt
y

/ Z ZQl”/ 1f(z+tly —2) — 27w —u)[Pdu)'/?
0 \2lu|<1

IBl=k v

(1—t)" o — yl*dt
/ (S [ W) P
T-‘rl/)
)k 1|l’ y|kdt
¢ / 25|11~ 1o — 't < Ol — g2

Hence, since & C L°, we get an estimate of I5 in (13):

B o2 S IR 2y — 2 )dy )
2717

<

<

<

<

e[ ([ 1K@ Y s iy = 2 ) oy )
[ ([ K 2l =yl dyyaa)
Il [ ([ 1K Gl o= o) Pdgrde)

Ol 11,27 / ( / K (2, )|z — yl*dy)Pdz)V? < Of|f]],2"*

Now we combine the estimates of I; and I, to write

lf = Pifll, < CL+ 1, < C( sup ||AFFL, + 271 £1],)-

This implies that

[2tu|<1
0o
(D@5 (MY < ClIf ||, -
=0

13



Akita University

This completes the proof of Proposition 2.

A following theorem is an immediate consequence of Proposition 1
and Proposition 2. This theorem is a generalization of results in [Devore-
Popov| and [Sickel].

Theorem 4 ([Saka 1]). Given 1 <p, g < oo and k > s > 0. Assume
that a finite subset ® = {1, ... ,on} of L satisfies

(a) ® has L*-stable shifts,

(b) ® is refinable,

(c) there exists a positive number sy with sy > s

such that sup;sq 2% |osch™'¢; (-, 1)], < oo forall j=1,... N,

(d) ® satisfies the Strang-Fix condition of order k.
Then we have B, (R") = B> (®) with equivalent norms

in

B3, (R™) and ||f|

Bz, &) ~ || fl|Bs, @)

where the norms || f]
spectively.

B3, (@) are given in (2) and (7) re-

Remark. When {¢, }jvzl have compact supports, we see that the condi-
tion (c) in Theorem 4 can be rephrased as :

(¢) There exists a positive number sy > s such that

sup 2% losck g5 (-, )], < o0

for all j =1,..., N, that is, ¢; € B3 (R") if so < k.

We say that a function on R" is k-regular if it is of class C* and
rapidly decreasing in the sense that [0°f(z)] < Cn(1 + |z|)™" for all
N =0, 1, 2, ... and all |o| < k. Any k-regular function belongs to L
for any N > 0 and any k-regular function f satisfies the condition (c¢) in
Theorem 4 : sup;s 2% |osch™" f(-,1)], < oco.

Hence we get a result of [Wojtaszczk].

Corollary 1 . Let 1 <p, g < o0 and k > s > 0. Assume that a finite
subset ® = {¢p1,...,on} of k-reqular functions on R™ satisfies:

(a) @ has L*-stable shifts,

(b) ® is refinable.

14
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Then there exists a set {wj}jzll?\?_l of k-regular wavelets associated
with ®, and we have equivalence of norms, if one of them exist, for

wavelet expansion given in (11) with the usual modification for ¢ = oo:
(1) /]
~ (i) [|f]

N oo s4n/2—n N 21 (|7
~ (iii) Zj:l 1651w + (Zl:o(Ql( n/2-n/p) Zj:l Py Hblelp)q)l/q'

We define the tensor product B-spline by My = [\, Mg(x;), = =
(x1,...,2,) € R, k=1,2,.... where Mg(t) is the k-th order central
sin(t/2)

B, (R™)s

B;q(<1>)7

B-spline, that is, My (t) = (15/72)]“ Let us denote by {e'}; the set of
unit vectors in R". We put "™ =" e’ and X = {z,... ,2%} with
pl = el ot = el phtt = @2 gphitd = o2 pditeddatl o
et o a% = e where dy = dy + -+ dpys- A
We denote the box spline B(z, X) corresponding to X given by B(z, X) =
1 — eixjw
(2m)~"/2 Hjozl ———— In the case , the k-th order tensor product B-
izt -

spline M|, satisfies the conditions of Theorem 4, particularly, M; &

B;fo;lﬂ/ P(R™) and My satisfies the Strang-Fix condition of order k.
The above box spline B(z, X) also satisfies the conditions of Theorem

4 replacing the above k by k = min{d;+d; : i,j=1,... ,n+1, i #j}.
Hence we get results of [DeVore-Popov| and [Sickel].

Corollary 2 . Theorem 4 remains true for the tensor product B-spline
O = { My} or the box spline & = {B(z, X)}.

A following theorem is a pointwise version of Corollary 1 of Theorem

4.

Theorem 5 ([Saka 1]). Suppose that k > s > 0. Assume that a finite
subset ® = {¢p1,...,on} of k-reqular functions on R™ satisfies:

(a) ® has L*-stable shifts,

(b) ® is refinable.
Then for x € R™ and a bounded function f on R™ , following statements
are equivalent:

(i) feCs(x),
i) [f(y)— Pfy) <CE+|z—y|)® 1=0,1,2--

where P f is given in (5).

15
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Corollary. Suppose that the conditions in Theorem 5 are satisfied. Let
s>s >0.

(a) If f € C*(z), we have

[Rify)l <CE "+ ]z —yl)” 1=012,...
where Ry f is given in (8). If it holds

[Rif(y)| < C2 A+ 2w —y))” 1=0,1,2,...,
then f € C*(x).

(b) If f € C*(x), we have

b5, ()] < C27CF (1 + |20 — v])?

forgj=1,... N, 1=1,2,3,...,e=1,...,2" =1 and any v € Z" where
b5, (v) is given in (12). If it holds

b5 (V)] < C27CFD(L 4 |2 — )

fory=1,... N, [=1,2,3,... and e=1,...,2" —1 and any v € Z",
then f € C*(x).

(c) For{aj(v)} giwen in (9), if it holds

jau(v)] < C27(1 + [2'z — v])*
forj=1,... N, I >0and veZ" then f € C*(x).

5 Scaling exponents

For 1 < p,q < oo we define apy(f) = sup{s > 0 : f € B; (R")} for
functions f € LP(R") and ap,(f, D) = sup{s > 0 : f € B; (D)} for a
domain D in R". If there is not a positive number s with f € By (R"),
then we define a,,(f) = 0. We remark that a,,(f) > 0 for any f €
LP(R™) in the case 1 < p < 0.

In the same manner we define a,,(f,z) = sup{s > 0: f € T5 (z)}
for z € R™ and bounded functions f on R". We put a,(f) = apeo(f),
o) = anelf), ap(f, 7) = ageolf,) and a(f, 2) = aue( /).

We can prove a following proposition by the embedding theorem.

16
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Proposition 3 ([Saka 1]).
(1) ap(f) = apy(f) for 1 < p,n < oo,
(i) a(f)>a(f) =5 =2 ay(f) =5 for1<g<p<oo,
(i) - ap(f, 2) = apy(f, ) for 1 <p,n < oo,
(iv) a(f) < alf,z) < ap(f,z) < ag(f,2) for 1 < g <p<oo.
Let ¢1 be the Rademacher function given by ¢4 (z) =1 (0 < x < 1/2),
O1(z) =—1(1/2 <z < 1), ¢1(z) = 0 elsewhere.
Let ¢y be the tent function given by ¢o(z) = 22 (0 < z < 1/2),

do(r) =2(1 —2) (1/2 <z < 1), ¢pa(x) = 0 elsewhere .
For # > 0, we conside a function F' which is given by a series

oo 20—1

F(r)=>_Y 22 —v)

=0 v=0

Theorem 6 .
Let 1 <p< oo and k=1,2.

(a) Ifﬂ<k—1+%, then o, (F) = 3,
(b) [fk—1+zl)§ﬂ, then&p(F):k—l—i-%.

Sketch of Proof.
(I) The case k = 1.

Let
F(z)=)_ i 278 %, (2l — v). (14)
Step (i)

If p = oo, we should delete the statement (a).

Step(ii)
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When g =1, we get Fi(x) =2(1—2z)on [ =[0,1],0 F(z) =0, = ¢
I. Hence ap(F):% (1 <p<o0).

Step (iii)
If p=o0and # # 1, then F' ¢ C*(R) = B%_(R) for each a > 0
because of that F' is not continuous. Hence an(F') =0 if § # 1.

Step (iv)
Suppose that § # 1 and 1 < p < oo. Then the function F' is discon-
tinuous at dyadic points with jumps and so we have from the embedding

theorem(cf. [Triebel]) F ¢ By (R) if s > 11). Hence we have

a,(F) < —. (15)

"=

We can consider the expansion (14) as a wavelet expansion on R .

Then from Theorem 4, we see if 0 < 5 < }D, F € By (R) if and only

if s < 3. Therefore if § < 119, then a,(F) = 3, and if g > 1—1) , then
a,(F) > zlf Hence by (15) we have a,(F) = 1% if > 113. This completes
the case k = 1.

(IT) The case k = 2.
Let

Step (i)

When 8 # 2 and § > 1, then we have a,(F) = a,(F’) + 1 where
Fl(z) =312, Zilz_ol 2Dy (2l — v).

From (I), we obtain a,(F) = fif 1 < g <1 +}% and a,(F) =1 —1—}0
if f>1+ .

Step (ii)

When g < 1, we apply wavelet analysis. We define a continuous
wavelet transform by

Wit = [ 1wy

18
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where ¢ € C™(R™) with compact support such that [ 2®p(z)dz = 0 for
each 0 < |a] < m. Since we have as the continuous version for wavelet
characterization of Besov spaces that

1
d
e = 171+ W 01

where W f(x,t) is a wavelet transform of f, then we see

)l/q

ap(f) = sup{s > 0 : limsup ¢~ *[|W f(-, )], < oo}
t—0

= inf{s > 0: limsup ¢ °*||W f(-,t)||, > 0}.
t—0

We can get following estimates by a method of [Jaffard 2].

Lemma A .
Let 1 <p<oo. If 3 <1, then

(a) limsupy_ . 2°N([ |WEF(z,27N)Pdz)"? < oo,
(b) limsupy_.. 2°N([ |WF(z,27N)|Pdz)"/? > 0
From this lemma we get o, (F) = §if g < 1.

Step (iii)
In the case =1 we use a following lemma

Lemma B (cf. [Jonsson-Kamont]).
Let1<p<ooandl/p<s<1. Let F(z) =" 022_12 Plepy (2l —

v)
Then F € B, (R) if and only if s < 3.

From this lemma , if 5 = 1, then a,(F) > 1. If a,,(F') > 1, then there
is s > 1 such that F' € By (R). Hence F' € By_!(R) but

oo 20—1

= Z Z 27y (2l — 1)

=0 v=0

is nondifferentiable at evry point x € I. This is a contradiction. Hence
a,(F) = 1. This completes the case k = 2.
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6 Estimates of pointwise regularity

Let T = [0,1]" and II; = {27YT + v)},ez» for a nonnegative integer [.
We write Q = 27T +vg) for Q € II;. Let I(T) ={Q €1I,: Q C T}
and TI(T) = URJIL(T). We put I} = {27YT + ~,),i = 1,2,...,2"}
and I'g = {71, - ,72n}. Then for Q € IL(T), vg is of a form vy =
2y Yy Vi € Do and we write Mgy = 2y — vg
and p1g = i, -+ -y, for I > 0 where pg, pto, ..., pton are real or complex
numbers with 0 < || <1,i=1,...,2" For [ =0 we put ur = 1. Let
¢ be a bounded function which is zero outside 7, the interior of T
We consider a bounded function f which is given by a series

Fw) = Y neé(Mgy), yeR" (16)

QEI(T)

We remark that a(f) < a(¢). Let

P log | g
=1 f f
7o() gty Klgxl)BQ log(2=! 4 |z — 27 yg))

1
= liminf inf Lng‘
l—oo Ki(x)3Q log 2!

where Kj(z) = {Q € I(T) : B(x,27)NQ # 0} and B(x,27!) is a ball
centered at z with a radius 271, When z € Q = N2 Ugen,r) Q°(the

interior of @)) there exists a unique sequence {Q; . };>0 such that @, €
I(T) and z € Q7. Then we have for z €

1
T0(7) = lilrr_1> Ci)glf 401%)‘;2@?‘
Let for z € Q)
71(x) = lim inf log l1a..| Ha|
l—o00 10g Al(l')
where A;(z) = dist(z, 0Q, ) is the distance from x to the boundary 9Q);

A
of Q.. We remark for x € Q, 79(z) = 7 (z) if sup,~q ~ ()
IENTAVES

1($) < 00

A following theorem may be proved by the same way as in [Saka 2].
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Theorem 7 . Let f and ¢ be bounded functions given in (16). Then we
have

(i) a(f.z) > min(a(9), 7o(z)) forz € T,
(i) a(f,2) > min(a(é, %), 7(2))

A
for x € Q0 with sup;~, Alix < oo where Q; = 27YT° + ), v € T,
- I+1

()
i=1,...,2" and a(¢,;) = sup{s > 0: ¢ € C°(Q)} and C*(;) is
defined as the Besov space BZ . (€%;) on ;.

(iii) Suppose that p € C*(£;), 1 =1,...,2™ and there ezist a positive
number sy and yy € T° such that

|fi(y)l

sup sup =00
>0 oy (2704 [y — yol)%

Then 1o(z) > o f,x) for v € T where f; is given in (3).

Corollary. Let ¢ be a bounded function on R™ such that o € C>(§);),j =
1,...,2" and ¢ = 0 outside T°. Consider a bounded function f given by
(16) satisfying the condition (iii) in Theorem 7. Then we have

(i) 7o(z) > a(f,z) > min(a(¢), o(z)), €T,

(i) for x in Q with sup;s, % <00, aff,x) = 19(x) = 11 (2).
RVAVER]

Examples.
We put Il = {T" + v},¢z with the interval 7= [0, 1] on R.

(a) We consider the Takagi function such that

Z Z p(Mgx), VY eR

=0 QeI (T)

where 0 < ¢ < 1 and ¢ is a bounded function such that ¢(z) = x (0 <
r<1), d(x)=1—x (3 <z <1), ¢(x) =0 (otherwise).

log pu
Let 7 =
T log 2—1

= aff,x) foreach x € T.

. Then from the corollary of Theorem 7, if 7 < 1,
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(b) We consider the Weierstrass function

= uo(2')
=0

with 0 < p < 1 and ¢(z) = sin2wrz (x € R). The proof of Theorem 7
can be also applied to this function case.

log 1
log 2—1

Then we have 7 = a(f,z), Va € R. where the constant 7 =

is given in the part (a) above.

(c) We consider Levy’s function
Z > 27'¢(Mgz), VreR
1=0 QEI(T)

where ¢(z) =z — % (0<z<1), ¢(x) =0 (otherwise).

Then we can see that 1 = 7(z) = a(f,z) for a point z in Q with
sup Sil@)
120 Apyi()
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