
(

Memoirs of the Faculty of Education and Human StudieS)
Akita University (Natural Science)
59, 1- 9 (2004)

On Mod p2 Periodicity of Coefficients of Modular

Polynomials of Order p

Hideji ITO

We investigate periodic properties of the coefficients modulo p2 of modul'ar polynomials of
order p of various modular functions which correspond to the conjugacy classes of the Monster
simple group.

1 Introduction

Let j(z) be the elliptic modular function and m a

natural number. Then j(z) and j(mz) satisfy certain

algebraic equation

q,m(j(z),j(mz)) = O.

The polynomial q,m(X, Y) E Z[X, Y] is called mod­

ular polynomial of j(z) of order m and satisfies many

properties. In particular, we have the Kronecker

congruence relation for rational primes p:

q,p(X, Y) == (XP - Y)(X - YP) (mod p).

We can put <I>p(X, Y) Xp+l + yp+l +
I:O::;n,m::;p anmXnym (anm E Z). In terms of their

coefficients anm , above congruence means anm == 0

(mod p) except when (n, m) = (1,1), (p,p).

In Ito [5], we computed explicit forms of <I>p(X, Y)

and as a by-product we discovered certain periodic

properties of their coefficients when reducing them

modulo p2.

Suppose 0 < ni, mi < p, (ni' mi) =J. (1,1) (i =

1,2). If nl + ml == n2 + m2 (mod p - 1), then

we have anI ml /p == an2m2 /p (mod p) for p::;

31, P = 41,47,59,71.

We also noted the famous fact that the set P =

{primes pip:::; 31, p = 41,47,59, 71} is precisely

the set of primes that divide the order of the Monster

simple group M.

Kaneko [8] gave a proof of our observation. Actu­

ally what he theoretically showed is to derive our nu­

merical observation from a result of Ogg [10] : all the

supersingular j-invarinats modulo pare F p-rational

if and only if p is contained in P.

In [6], we investigate the case of j(Z)1/3 (this has

the same modular polynomial as that of j(3z)1/3

which corresponds to the conjugacy class 3C of M
in the notation of Conway-Norton [1]) and found

the same type of periodic property holds for the

primes in P~c = {2, 5, 7, 13, 19,31}. The set P3c (=

P~c U {3}) precisely constitute the prime divisors of

the order of the centralizer of 3C.

The purpose of this paper is as follows.

(1) We give an explanation of the periodicity in

the case of j(z)1/3 just like the one given by Kaneko

in the case of j(z).

(2) We investigate (mainly numerically) the case

of other modular functions which correspond to con­

jugacy classes X of M. Especially we found another

kind of periodicity- which we call of (p + I)-type ­

in some cases. (For example, X = 2B and p = 7,13.)

Partial results and many detailed tables of anm/p

(mod p) etc. can be found in Ito [7].

2 The case of j(z)

Our present study stems from the work of Kaneko

[8]. So we review his method rather closely in the

following four steps.

(1) Transform the polynomial q,p(X, Y) in two

variables into the polynomial Rp(X) in one variable:

Rp(X) = ~q,p(X, XP).
P

By the Kronecker congruence relation, Rp(X) is con­

tained Z[X]. Put Rp(X) = L:~=o diXi. Then we

have
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(XP2_X) ~ ~ ... (**)
LJ X-a

aESo

(**) =

(I: fa ha(X))(l+Xp-l + X 2(p-l) + ...+ Xp(p-l)).
aESo

(4) The periodic property of anm/p in the range

o < n, m < p, (n, m) 1= (1,1) is incorporated with

that of dk in the range p + 1 < k ::; p2 - 1. So we

can concentrate on the terms

= (1 + Xp-l + X 2(p-l) + ... + XP(p-l))ha(X).

Here ha (X) is a polynomial (E Fp[Xl) of degree

::; p - 1 and has no constant term because a 1= O.

Therefore it holds that

XP2 - X XP - X

XP -X X-a

XP2 -X

X-a

We have

Since z= faha(X) is of degree::; p - 1, the coeffi­
aESo

cients of (**) repeat as those of I:: fa ha(X). This
aESo

proves the periodicity of dk and hence that of anm/p

(mod p).Rp(X) mod p = F(X) + ~ x f_a r>, •

XP2 - X LJ <A

aESo

(2) Consider the partial fraction expansion of
R (X)
Xp~ _ X in F p[X]. The denominator XP2 - X

factors into the product of irreducible polynomials

f(X) of F p[X] of degree 1 or 2. If f(X) also ap­

pears in the factorization of the numerator Rp (X),

then f(X) can be cancelled out and f(X) does not

appear as one of the denominators in the partial frac­

tion expansion. Now the crucial point is the follow­

ing.

If the root a of f(X) is not supersingular j­

invariant in Fp nor is equal to 0 nor is equal to

1728 (mod p), then we have Rp(a) = O. (That is,

f(X) appears in the factorization of Rp(X).)

(An elementary proof of this is given by Kaneko­

Zagier [9] p.124.)

So we have

(i) 1 = p2 +P - 1, dz = 744,

(ii) if k = m+np for 0 < m, n < p, (m, n) 'I (1,1),

then dk = anm ·

Here anm's are the coefficients of <pp(X, Y) as in sec­

tion 1.

Here we put So = {supersingular j-invariants

(1= 0,1728) E Fp} and F(X) is a polynomial of de­

gree p -1 and fa E F p(a). Also, we sometimes omit

mod p when from the context there arise no misun­

derstanding.

Hence we can write

Rp(X) mod p

= (XP2-X)F(X)+(XP2_X) ~~ ... (*)
LJ X-a

aESo

Note that at this stage a is only assumed to be in

F p2 not necessarily in F p' So if a does not contained

in F p then the term fa/(X - a) together with its

conjugate over F p becomes a fraction whose denom­

inator is some irreducible quadratic polynomial in

Fp[X].

(3) Here enters the assumption: p is in P =
{primes pip::; 31,p = 41,47,59,71}. It is well

known that for p in P all the supersingular j­

invariants in characteristic pare F p-rational and vice

versa (Ogg [10] 7-07). Therefore for primes p in P,

a's in the formula (*) are actually contained in F p'

That is, (*) holds as an equality in Fp(X).

In Ito [5], we also make the following observation.

Suppose p = 13,17,19 or 31. Then to each n(2 ::;

n ::; p - 1), the anm/p (mod p)(1 :::; m :::; p - 1)

repeat themselves the following values:

{8,12,5,1} '" ifp= 13,

{2, 13,8,1,15,4,9, 16} if P = 17,

{7, I,ll} if P = 19,

{7, 1,27,24, 3} if p = 31.

"When n = 1, then the same thing occurs but the

range of m has to be changed to 2 ::; m < p.

As to this Kaneko [8] wrote "In conclusion, we

remark that the other observation made in § 5 of

Ito's paper can also be explained by using the above

Key lemma," (this means the formula (*) in (2)),

and omitted any detail.

We think it worthwhile to treat these matters in

some detail.

Write I:: faha(X) = b1X + b2X 2 + ... +
aESo

bp_1Xp-l. The number {b1 , b2 , ... , bp-d repeat it-

self in the sequence {dk} in the range p + 1 < k :::;

p2 -1.
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Proposition 2.1. (i) Let elY be the order of a

in F;. Then the period (=the length of periodic

numbers) of {b1 , b2 , ..• , bp-d divides the least com­

mon multiple of elY for all a E So.

(ii) We have b1 + b2 + ... + bp - 1 = 0 in Fp •

Proof. Suppose first the set So contains only one

element a. Set m = elY' Then 0: satisfies xm -1 = O.

From (xm - 1)/(X - 0:) = (X m - o:m)/(x - 0:), we

have

Example 2.4 p = 19. We have

R19 (X) = 1 + llX + 7X2 + X 3 + llX4

X19 2
- X

7
+7X

5
+X

6
+···+3X

18
+ X-7'

In characteristic p = 19, the set of supersingular

j-invariants is {7,18}. But 18 == 1728 (mod 19).

So So = {7} in the case p = 19. \Ve have C7 = 3 and

{72 , 7, I} = {ll, 7,1} (mod 19).

Example 2.2 P = 13. We have

R13 (X) = 5+X+8X2+12X3+5X4+X5+8X6
X13 2

- X

+12X7+5X8+4X9+5XIO+10Xll+3X12+~.
X-t)

In characteristic p = 13, there is only one su-

persingular j-invariant: j = 5. (See, for example,

J.Gonzalez [4] p.67.) Put 0: = 5 in Fi3' Then

we see that the order elY = 4 and {53, 52 ,51,1} =
{8, 12,5, I} (modulo 13). This explains the case

p = 13.

Example 2.3 p = 17. We have

R 17 (X) = 9 + 16X + 2X2 + 13X3 + 8X4 + X 5
X17 2

- X

+15X6+4X7 +9X8 + 16X9+ 2X 10 +X ll +9X12

+3X
13 + 16X

14
+ 15X15 + 13X16 + X ~ 8'

In characteristic p = 17, the set of supersingu­

lar j-invariants is {0,8}. We have e8 = 8 and

{8 i li = 7,6,5, ... ,I,O} = {15,4,9,16,2,13,8,1}

(mod 17). Multiplying them by 4 merely causes

permutation among them. This explains the case

p = 17.

So, writing as
(X P2 _ X) _b_ = XP2 - X XP - X xm - 1b

X - 0: XP - X Xm - 1 X - 0: '

we see that the sequence {bo:m- 1,bo:m- 2, ... ,bo:,b}

repeats itself in {b1 , b2 , ••• , bp-d.

\Vhen So contains more than one element we

add each periodic numbers coming from each 0: E

So· This gives us the whole periodic sequence in

{b1 ,b2 , ..• ,bp - 1 }

(2) As in (i) it suffices to treat the case So = {a}.

So we must show that 1 + 0: + 0:2 + ... + o:m-l = 0

in F p' But this is clear from o:m = 1 and 0: =f: 1. 0

b
X -0:

b___(Xm - 1 + o:Xm - 2 + 0:2x m - 2

xm -1
+. " + o:m-2 X + o:m-l).

Example 2.5 p = 31. We have

R3r(X) = 24 + 3X + 7X2 + X 3 + 27X4 + ...
X31 2

- X

29 20 7
+3X + X - 4 + X - 2 .

In characteristic p = 31, the set of supersingular

j-invariants is {2, 4, 23}. But 23 == 1728 (mod 31).

So So = {2,4}. We have C2 = e4 = 5. Hence the

period is 5 and a little calculation gives the values

of the case p = 31.

3 The Case of j(z)I/3

Let <I>13)(X, Y) be the modular polynomial of

j(Z)1/3. (See Ito [6].) Just like <I>p(X, Y), <I>~3\X,Y)

satisfies the Kronecker congruence relation. So if we

put

R~3) (X) = ~<I>~3) (X, XP),
P

then R~3)(X) is contained in Z[X]. In [6] we ob­

served that there is certain priodicity among the co­

efficients of <I>~3) (X, Y) in some cases. Now we can

explain these phenomenon as in the same way as

in section 2. Recall that we denote by P the set

of rational primes for which all the supersingular j­

invariants in characteristic pare F p-rational and by

So the set {supersingular j-invariants (=f: 0, 1728) E

F p }.

Theorem 3.1 Suppose pEP and all the third roots

of j E So are F p -rational. Then the coefficients of

<I>13
) (X, Y) have periodic property just like that of

<I>p(X, Y).

Proof. \Ve repeat the same argument as in section 2.

Suppose a satisfies 0:3 = j E F p' What we have to do

is to show that if j is not supersingular j-invariant
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(3)( )_nor 0 nor 1728 (mod p) then we have Rp Q - O.

For that we use the following formula:

where ( is a primitive third root of 1. (See Elkies [3]

p.37 or Ito [6].) By the assumption, we can assume

that p == 1 (mod 3). Combining above formula with

the next lemma we have the assertion of our theo-

rem.

Lemma 3.2 Supposep == 1 (mod 3). Then we have

the equality

as functions on F p2. (In particular Q :j:. 0 never

annihilates cI>~3) (X, (XP)cI>~3)(X, (2 XP).)

Proof. Since p == 1 (mod 3) we have (P = (. By the

congruence relation

cI>~3)(X,Y) == (XP - Y)(X - YP) (mod p),

we have

cI>~3) (X, (XP)cI>~3)(X, (2 XP)

== (XP - (XP)(X - (P XP
2
)(XP - (2 XP)

X (X - (2 p XP2) (mod p)

XP(1 - ()X(1 - (XP2-1 )XP(1 _ (2)

xX(1 - (2 XP
2
-1) (mod p)

(1 - ()(1 - (2)X2P+2(1 _ (XP
2 -1)

X(I_(2Xp2-1) (modp)
3X2p+2

x (1 - (2 XP2-1 _ (XP2 -1 + X 2p2 -2) (mod p)

3X2p(X2 + XP
2
+1 + X 2p

2
) (mod p)

3X2p(X2 + X 2 + X 2) (as functions on F p2 )
9X2p+2

(We use the relation XP2 = X when we consider

both sides as functions on F p2 in the last but one

line.) 0

The primes in {13, 19,31} satisfy the assumption

of the theorem as the following table shows.

p supersingular j-invariant P/3 (mod p)

13 5 7, 8, 11

19 7 4, 6, 9

18( == 1728 mod 19) 8, 12, 18

31 2 4, 7, 20

4 16, 18, 28

23( == 1728 mod 31) 12, 21, 29

Explicit forms of R~3) (X)/(XP
2

- X) mod p are

given as follows.

p = 13.

4 7 10 12 ~ _4_
10X+6X +12X +X +X+2+X+5+X+6

P = 19.

3X + 10X4 + 16X7 + 12X10 + 13X13 + X 16

469
+ X + 10 + X + 13 + X + 15

p = 31.

30X + 2X4 + 24X7 + 14X10 + 15X16 + 22X19

25 2 19 10
+X

22
+ X + X + 11 + X + 24 + X + 27

8 9 14
+X + 15 + X + 3 + X + 13

4 The case of tfB (£ == 2,3,5)

We use the notation of Conway-Norton [1]. The

conjugacy classes of fB (f = 2,3,5,7,13) correspond

to modular functions tiB. Explicitly they are given

as
24

(
T](z) ) (24,l-1)

tiB(Z) = T](£z)

where T](z) is the Dedekind eta function. For above

values of £, fB corresponds to fo(f) and Xo(e) is of

genus 0 (notations being the standard one). So j(z)

can be written by tiB. Explicit forms of them can be

gotten, for example, as follows. Taking into consid­

eration of poles and degrees ([SL2 (Z) : f o(£)] = £ +
1), we can write j (z) = (t~~1 + at~B +... + b) / (tiB) i .

Substitute q-expansions of j(z) and tiB and compare

their coefficients. (The explicit forms of them are

given in appendix.)

Rewriting above formula we obtain the defining

equation of tiB over Q(j(z)), which we denote by

fiB (X, j) = O. For example,

One may notice that the constant term of feB is of

the form fm and the exponent m is a multiple of f.

This is true in general and is proved by J.GonzaJez

[4] (Theorem 2.1) in more precise form.

Now tiB has modular equations (Cummins­

Gannon [2]) which we denote as

-4-

Akita University



In the following we denote by PiB the set of prime

divisors of the order of eM (fB) (the centralizer of

fB in M).

Observation 2. Let anm be the coefficients of

xnym in <I>1iB )(X, Y). In some cases there is an­

other type of periodicity among anm :

Like before (X = 2B), for a conjugacy class of

X of M , we denote by <I>1X ) (X, Y) corresponding

modular polynomial and by ea the order of a in F";.

p = 23. j = 0 and j = 3(= 1728 (mod 23))

and j = 19 are the supersingular j-invariants in

characteristic p = 23 .

hB(X,O) = (X + 3)3 (mod 23)

hB(X,3) =(X + 18)(X + 17)2 (mod 23)

hB(X,19) = (X + 5)(X + 15)(X + 16)

(mod 23)

R~;B)(X)/(X232 - X) =22 + 3X + l1X2

+3X3 + 19X4 + 15X5 + 10X6 + ... + 22X22

18 8 1 2 6+-- +-- +--+--+--
X + 3 X + 5 X + 15 X + 17 X + 16

(mod 23)

hB(X,5) =(X +1)(X2+8X + 1) (mod 13)

RgB)(X)/(X132 -X) =2+5X +12X2+X3

+8X4 + llX5 + 10X6 + 11X7 + 8X8 + X 9

+12X10 + 5X ll + 2X12 + _9_ + ------::_7X_+_2_
X + 1 X2 + 8X + 1

(mod 13)

From this we see that Ri;B) (X) has no periodicity

of normal type among its coefficients. But by direct

calculation, one knows they have periodicity of (p +
1)-type. We can give an explanation as in the next

proposition.

Example 4.2 (periodic of (p + I)-type) t2B, p =

13.

j = 5(t 1728 (mod 13)) is the only supersingular

j-invariant in characteristic p = 13.

hB(X,O) =(X + 3)3 (mod 11)

hB(X,l) =(X + 9)(X + 5)2 (mod 11)

R~~B) (X)/(X
1l2

- X) =9 + 6X + 5X2+ 5X3

+8X4 + 2X5 + 5X6 + 6X7 + 6X8 + 3X9 + 9X10

5 9
+ X + 3 + X + 5 (mod 11)

p = 7. j = 6(= 1728 (mod 7)) is the only su-

persingular j-invariant in characteristic p = 7.

hB(X,6) = (X + l)(X + 6)2 (mod 7)

R~2B)(X)/(X72 -X) =4+4X+4X2+4X3+
4

4X4 + 4X5 + 4X6 + -X (mod 7)
+6

p = 11. j = 0 and j = 1(= 1728 mod 11) are

the supersingular j-invariants in characteristic p =
11.

(mod p)'f h anI ml - a n2m2
~ nl-ml = n2-m2 t en --=--

p p

for 0 < ni, mi < p, (ni, mi) i- (1,1) (i = 1,2).

Later we give an explanation of the origin of this

phenomenon. Considering that we call this type of

periodicity of (p + I)-type, while the previous one is

to be called normal type or (p - I)-type.

As the cases of j(z) and j(Z)1/3 suggest, we are led

to consider whether coefficients of <I>1lB )(X, Y) have

periodic property modulo p2 or not for those val­

ues of p which divide the order of centralizer of the

conjugacy classe fB in M.

By computing their explicit forms we have several

observations. As before So is the set of supersingular

j-invariant (i- 0, 1728) in characteristic in p. Put

R1iB )(X) = !<I>~iB) (X, XP).
P

Observation 1. Coefficients of R1iB)(X) mod p

have periodic property if all the following assump­

tions hold:

(i) all the supersingular j -invariants in So are F P­

rational,

(ii) if j E So, then ftB(X,j) mod p factors as

ftB(X,j) =(X - a)(X - (3) (X - 1') (mod p)

(a,(3,1' E F p ),

(iii) if j = 0 orj = 1728 mod p is supersingular

j -invariant in characteristic p, then f(X, 0) mod p

or f(X, 1728) mod p havs a multiple factor X - 8 of

degree one (8 E F p).

To express it more explicitly, under these assump­

tions, numerial examples show that we have partial

fraction expansion of the following form:

RUB) (X)
p 2 mod p

XP -X

=F(X)+~+~+~+~+....
X-a X-(3 X-1' X-8

Here F(X) is a polynomial E F p[X] of degree p - 1

and Sa etc. are contained in Fp'

Example 4.1 t2B

{2,3,5,7,11,13,23}.

-5-
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Proposition 4,3 Suppose the partial fraction ex­

pansion of ~<I>~X)(X,XP)/(XP2- X) modp has a
p

term whose denominator g(X) is an irreducible poly-

nomial of degree 1 or 2 in F p[X]. Let a(g) be a

root of g(X) = O. If the eo;(g) for all g(X) 's divide

p + 1, then the coefficients (mod p2) of <I>~X) (X, Y)

have periodic property of (p + 1) -type.

Proof. Recall the argument in section 2. We have

only to deal with the case of deg g(X) == 2. So we

have Xp+1 - 1 = g(X)h(X) for some polynomial

h(X) in F p[X] of degree p - 1. Write as follows:

XP2 _ X XP2 - X Xp+1 - 1

g(X) Xp+1 - 1 g(X)

= X(1+XP+1 +X2(p+1) +.. ·+X(p-2)(p+1)) .h(X).

From this we have periodicity modulo p+ 1 among

coefficients of ~<I>~X)(X,XP) just like in section 2.
p

Also note that if k = m + np then k = m + n((p +
1) -1) == m - n (mod (p+ 1)). Hence we have our

assertion. 0

Example 4.2 (Continued.) The case of X = 2B

and p = 13. j = 5 is the only supersingular j­

invariant in characteristic p = 13. Suppose a satis­

fies a 2 + 8a + 1 == 0 (mod 13). Then a 2 = -8a-l

in F~3' \Ve compute a 7 == -1 (mod 13). So

eo; = 14 in accordance with proposition 4.3.

Example 4.4 The case of X = 3B. P3B

{2, 3, 5,7,11, 13}.

p = 5. (periodic of normal type)

hB(X,O) == (X + 2)(X + 3)2 (mod 5).

R~3B)(X)/(X52 -X) == 3+4X +2X2+X3+3X4

1+-- (mod 5).
X+3

p= 7.

hB(X,6) == (1 + 4X + X 2)2 (mod 7).

R~3B)(X)/(X72 -X) == 2+5X2+X3+5X4 +2X6

5+6X
+ 1 + 4X + X2 (mod 7).

If a is a root of 1 + 4X + X 2 == 0 (mod 7) then

by calculation we see eo; = 8. So in this case we have

periodicity of (p + I)-type.

p = 11.

hB(X,O) == (X + I)3(X + 5) (mod 11).

hB(X, 1) == (X + 3)2(X + 6)2 (mod 11).

RgB)(X)/(X
112 _ X) == 10 + 7X2+ 3X3

+···+IOX
10

+ X: 1+ X :3+ X :6 (mod 11).

So in this case we have periodicity of normal type.

p = 13.

hB(X,5) == (1 + 3X + X 2)(1 + 7X + X 2)

(mod 13).

RgB)(X)/(X132 -X) == 1+9X +2X2+ .. ·+X12

4 + 3X 8 + X (d 13)
+ 1 + 7X + X2 + 1 + 3X + X2 rna .

If a is a root of 1 +7X +X2 == 0 (mod 13) then

by calculation we see eo; = 14. Also if (3 is a root of

1 + 3X + X 2 == 0 (mod 13) then we see e(3 = 7. So

in this case we have periodicity of (p + I)-type.

p = 17. (We include this case to contrast against

above examples.)

hB (X, 0) == (5 + X)3 (10 + X) (mod 17).

hB(X,8) == (3 + X)(7 + X)(I5 + 7X + X 2)

(mod 17).

RgB)(X)/(X172 -X) == 5+X +7X2+ .. ·+5X16

8 1 -1 7 + 2X
+ 7 + X + 5 + X + 3 + X + 15 + 7X + X2

(mod 17).

If a is a root of 15+7X +X2 == 0 (mod 17) then

by calculation we see eo; = 48 and 48 is not a divisor

of p + 1 = 18. So in this case we have no periodicity

(neither normal nor (p + I)-type). Indeed, we can

see that by direct calculation of <I>gB) (X, Y).

Example 4,5 The case of X = 5B. P5B

{2, 3, 5, 7}.

When p = 7, there is no periodicity, while when

p = 11(1i P5B) we have periodicity of normal type.

This means strict analogy with the case of j(z) or

j(Z)1/3 cannot hold in general.

R~5B)(X)/(X72 -X) == 1+X+5X2+5X4 +6X5

6 1+4X
+X + 6+4X +X2 (mod 7).

f5B(X,6) == (6+X +X2)(6+4X +X2)2 (mod 7).

RgB)(X)/((X
112

- X) == 5 + X + 4X2 + X 3

4 10 9 9 3
+8X + ... + 5X + X + 2 + X + 6 + X + 8

4+-- (mod 11).
X+9

!5B(X,O) == (X + 2)3(X + 6)3 (mod 11).

f5B(X, 1) == (X + 8)2(X + 9)2(X2+ 4) (mod 11).
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Example 5.1 The case of t2A = t2B + 4096/t2B.

P2A = {2,3,5, 7,11,13,17,19,23,31,47}.

The class 2A corresponds to X o(2)+ = X o(2) /W2,
where W2 is the Fricke involution coming from the

(0 -1)linear fractional transformation 2 0 on the

upper half plane. The elliptic modular function j(z)

cannot be expressed in t2A alone but we have

Now jlw2 = j(2z). We know j(z) and j(2z)

satisfy the modular equation <I> 2 (X, Y) = O. Put

g2A(X,j) = <I>2(j,X2 + 49X - 29 13 - j). This

is contained in Z[X,j]. Also we put R12A )(X) =
~<I>12A) (X, XP). When p = 5, 7 we have anm/p == 0
p
(mod p) for n, m in the usual range.

(R~2A) (X)/(XP2 - X) mod p is a polynomial for

p = 5,7.)

By explicit calculation, we observe that the co­

efficients of <I>~lA) (X, Y) have periodic property of

normal type for all p i= Rin PiA. (Well, for p = 2,3,

periodic property is trivial matter. So we disregard

them here and in fact we already do so.)

But we are unable to give a theoretical explanation

nor give a formulation like before. Nonetheless it

seems some relation exists between periodicity and

supersingular j-invariants. Next example is a typical

one.

[5] Rideji Ito, Computation of the Modular Equa­

tion, Proc. Japan Acad. 71, Series (A) No.3 (1995),

48-50.

[4] J .Gonzalez, On the j-invariants of the

quadratic Q-curves, J .London Math.Soc. (2) 63

(2001), 52-68.

g2A(X,8) == X(X + 2)2(X + 13)2(X + 15)

(mod 17)
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denominators of the partial fraction expansion of

R~2A)(X)/(XP2 - X) mod p and the factorizations

of g2A (X, j) mod p where j is a supersingular j­
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in the denominator is a problem we must solve.

We also note that in case X = 5A, p = 13, there

occurs periodicity of normal type even though p = 13

is not contained in P5A. Taking the Example 4.5 also

into account, we realize that things are not so simple

as we first imagined them to be.
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p = 19.

R~;A)(X)/(X192 - X)== 4 + 8X + 17X2

18 15 6 ( )+ ... + 14X + -- +-- mod 19
9+X 12+X

g2A(X,18) == (X + 12)2(X + 14)(X +16)(X + 18)2

(mod 19)

g2A(X,7) == (X + 2)2(X + 9)2(X + 12)2(X + 18)2

(mod 19)

The Case of iRA (£ == 2,3,5,7)

p = II.

R~~A)(X)/(X112 - X) == 10 + 8X + X 2 + ...
1

+9X 10 + -- (mod 11)
8+X

g2A(X,0) == (X + 8)6 (mod 11)

g2A(X,I) == (X + 7)(X + 8)4(X + 9) (mod 11)

p = 13.

RgA)(X)/(X I32 - X) == 9 + 11X + X 2

12 11
+ ... + 2X + 8 + X (mod 13)

g2A(X,5) == (X + 2)3(X + 8)3 (mod 13)

p = 17.

RgA)(X)/(X172 - X) == 2 + 6X + 3x2

16 1 1
+···+10X +-+-- (mod 17)

X 13+X
g2A (X, 0) == X 3(X + 15)3 (mod 17)
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(2) The case of t2B (p = 13) ((p + I)-type)

The values of (bik /13) (mod 13) of <p~~2B) (X, Y).

168 2 5 12 1 8 11 10 11 8 1 12 5 013
2 3 2 5 12 1 8 11 10 11 8 1 12 0
5 2 3 2 5 12 1 8 11 10 11 8 1 0
12 5 2 3 2 5 12 1 8 11 10 11 8 0
1 12 5 2 3 2 5 12 1 8 11 10 11 0
8 1 12 5 2 3 2 5 12 1 8 11 10 0
11 8 1 12 5 2 3 2 5 12 1 8 11 0
10 11 8 1 12 5 2 3 2 5 12 1 8 0
11 10 11 8 1 12 5 2 3 2 5 12 1 0
8 11 10 11 8 1 12 5 2 3 2 5 12 0
1 8 11 10 11 8 1 12 5 2 3 2 5 0

12 1 8 11 10 11 8 1 12 5 2 3 2 0
5 12 1 8 11 10 11 8 1 12 5 2 38 013
0 0 0 0 0 0 0 0 0 0 0 0 0 0

The value of (bik/13) (mod 13) lies at the inter­

section of the (14 - i)-th row and the (14 - k)-th

column. (Here bnm is the coefficient of x n ym in

<I>i;B) (X, Y).)

Appendix l. Two examples of
periodicity of coefficients of modular
polynomials

Appendix 2. Explicit forms of j(z)
(1) The case of j(z) (p = 13) (normal type) in tiB

The values of (aik/13) (mod 13) of <P13(X, Y).

In the following we write te in place of teB for
168 3 10 5 4 5 12 8 1 5 12 8 1 213 short.3 12 8 1 5 12 8 1 5 12 8 1 5 2
10 8 1 5 12 8 1 5 12 8 1 5 12 3

t~ + 28 3t~ + 2163t2 + 224
5 1 5 12 8 1 5 12 8 1 5 12 8 10 j(z)
4 5 12 8 1 5 12 8 1 5 12 8 1 0 (t2)2
5 12 8 1 5 12 8 1 5 12 8 1 5 0
12 8 1 5 12 8 1 5 12 8 1 5 12 a (t2 + 28)3
8 1 5 12 8 1 5 12 8 1 5 12 8 a =

(t2)2
1 5 12 8 1 5 12 8 1 5 12 8 1 a
5 12 8 1 5 12 8 1 5 12 8 1 5 0

tj +22337t~ + 2·395t~ + 22314 t3 +318
12 8 1 5 12 8 1 5 12 8 1 5 12 0
8 1 5 12 8 1 5 12 8 1 5 12 8 0 (t3 )3
1 5 12 8 1 5 12 8 1 5 12 8 12 013
2 2 3 10 a 0 0 0 0 0 0 0 a 0 (t3 + 33 )(t3 + 35)3

The value of (aik/13) (mod 13) lies at the inter-
(t3)3

section of the (14 - i)-th row and the (14 - k)-th h5 (ts)
column. (ts)S

h7(t7)
(t7 )7

h13 (t13)
(t 13 )13
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h5 (t) = t6 + 2·3·53 t5 + 3255 7t4 + 225813t3

+32 5107t2 + 2.3 . 513 t + 515

h7 (t) = t8 + 22 n.17f + 2.74 4lt6 + 24 76 11t5

+5·77 132 t4 + 24 79 17t3 + 2·711 23t2

+22 713 t + 714

h13 (t) t14 + 2·373t13 + 5·132 233t12 + 22 74 133 t ll

+23 7. 134 487tlO + 225·n2 135 17t9

+2·11·137 137t8 + 22 5·137 1283t7

+2· 1386043t6 + 225·11·13919t5

+23 7.13 10 19t4 + 22 72 1311 t3

+52 1312 t2 + 2.1313 t + 1313

(t 2 + 5t + 13)

x(t4 + 13·19t3 + 225·132t 2 + 7.133t + 134)3
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