
Analysis of Algorithms Related to
Multivariate Public Key Cryptosystems and

the Transport Layer Security Protocol

（多変数公開鍵暗号及び

トランスポート層セキュリティプロトコル

に関するアルゴリズムの解析）

2023 年
黒川 貴司

Akita University

Akita University

Analysis of Algorithms Related to

Multivariate Public Key Cryptosystems and

the Transport Layer Security Protocol

Takashi Kurokawa

Division of
Electronic and Computer Systems Engineering,

Department of
Electrical, Electronic and Computer Systems Engineering,

Graduate School of
Engineering and Resource Science,

Akita University

2023

Akita University

2

Akita University

Contents

1 Introduction and Background 1
1.1 Post-quantum cryptography and NIST PQC Standardization . . 1
1.2 MPKC . 2
1.3 MQ problems . 2

1.3.1 The Fukuoka MQ Challenges 2
1.4 SSL 1.0 and TLS 1.0 . 3

1.4.1 Overview of the Record Layer 3
1.4.2 The CBC Mode in SSL 3.0 and TLS 1.0 4

1.5 Attacks against SSL 3.0 and TLS 1.0 6

2 Preliminaries and Notations 11
2.1 Monomials and Terms . 11
2.2 Gröbner bases . 11
2.3 Targeted MQ problems . 12
2.4 Gröbner bases Computation Algorithms 13

2.4.1 Buchberger’s algorithm 13
2.4.2 The F4 algorithm . 15
2.4.3 The algorithm proposed by Ito et al. 18

2.5 Proposed methods . 18
2.5.1 Subdividing Methods . 19
2.5.2 Removal method . 20

2.6 The Game-Playing Approach . 22
2.6.1 The Difference Lemma . 22
2.6.2 The pseudorandom permutation/pseudorandom function

(PRP/PRF) Switching Lemma 23
2.7 PRFs and PRPs . 24
2.8 Symmetric Key Encryptionss and Message Authentication Codes 24
2.9 Indistinguishability under Chosen-Plaintext Attack 25
2.10 The CBC Mode in the TLS 1.0 25

2.10.1 Weak CBC Mode in TLS1.0 26
2.10.2 Unpatched CBC . 26

3 Contributions 29
3.1 Selection Strategy of F4-style Algorithm 29

3.1.1 Software performance comparisons 29
3.1.2 The performance behavior of the proposed method in the

first half . 30
3.1.3 Conclusions and future work 34

i

Akita University

ii CONTENTS

3.2 Security of the Patched CBC Mode 39
3.2.1 Patched CBC . 39
3.2.2 Security Proof of Theorem 3.2.1 41

Akita University

Abstract

In recently, the development in quantum computing has been progressing at
a steady pace. Furthermore, there is a growing concern that Rivest-Shamir-
Adleman and elliptic curve cryptosystems, which have been widely used for a
long time, may be vulnerable to compromise in the future because of Shor’s
algorithm. Although it is difficult to predict when a large-scale quantum com-
puter with error correction will become widely available, it will take significant
time to deploy cryptographic technology in society, and if it is not adequately
secure, various adverse effects will occur.

The post-quantum cryptography standardization project is currently led by
the National Institute of Standards and Technology. Several public-key cryp-
tosystems were proposed for the project. Of these, there are public-key cryp-
tosystems that rely on the hardness of solving a system of multivariate quadratic
(MQ) polynomial equations over finite fields, known as multivariate public-key
cryptosystems (MPKCs). By the end of 2022, the project has moved to a fourth
round of the evaluation process, and no MPKCs remain. However, as the project
is currently soliciting applications for digital signature schemes featuring a short
signature length and fast signature verification, it is expected that MPKCs with
such characteristics will reemerge. To assess the security of MPKCs, it is crucial
to evaluate the difficulty of solving a system of MQ polynomial equations, which
is referred to as the MQ problem.

There are several algorithms for solving MQ problems, including the Gröbner
basis algorithm and its variant, the F4 algorithm. In the Gröbner basis algo-
rithm, two polynomials are reduced by canceling their leading monomials. The
two polynomials and the monomials utilized to cancel their leading monomials
are referred to as a critical pair. The F4 algorithm constructs a matrix known as
the Macaulay matrix from the critical pairs and applies Gaussian elimination to
reduce multiple polynomials simultaneously. However, it has the disadvantage
that the computational cost increases as the matrix size increases. To overcome
this disadvantage, ongoing research aims to divide the set of critical pairs into
subsets; perform Gaussian elimination of the Macaulay matrix for each subset;
and ignore the remaining subsets when a zero polynomial is generated.

We propose several methods for dividing the set of critical pairs and demon-
strate through computer experiments that they can reduce the processing time
compared with the F4 algorithm, which is implemented using the OpenF4 li-
brary. The method of generating the sample MQ problems utilized in the exper-
iments is the same as that used in the Fukuoka MQ Challenge. The experiments
also confirmed that the failure rate is minimal, even when the remaining critical
pairs are omitted during Gaussian elimination of the Macaulay matrix. Addi-
tionally, the experiments indicated that the minimum number of critical pairs

iii

Akita University

iv CONTENTS

required to lower the Macaulay matrix’s rank is almost constant. However,
further study is needed to theoretically support such a property.

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) protocol,
which is a cryptographic communication protocol, can be widely used on the in-
ternet services, such as online shopping. It includes not only an encryption func-
tion to provide confidentiality but also a function to authenticate the entities.
If these functions are tampered with, secure communication services cannot be
utilized. In recent years, a variety of attack methods against SSL/TLS, includ-
ing Compression Ratio Info-leak Made Easy (CRIME), LUCKY THIRTEEN,
Padding Oracle On Downgraded Legacy Encryption (POODLE), and Browser
Exploit Against SSL/TLS (BEAST) have been proposed, and instances of their
practical implementation have been made public. Specifically, the BEAST at-
tack is an attack that can be applied to a particular block cipher mode of
operation, known as the Cipher Block Chaining (CBC) mode in TLS 1.0. The
CBC mode of TLS 1.0 has two vulnerabilities: the padding scheme and the
method of selecting the initialization vector (IV). These vulnerabilities can be
exploited if a security bug is contained in a web browser.

As a countermeasure against the BEAST attack, the ”1/n− 1 record split-
ting” patch was proposed, which is a method of dividing the transmitted data
into the first byte and the remainder, as opposed to transmitting all the data
at once. The patched CBC mode proved secure against chosen-plaintext at-
tacks. In the CBC mode, certain information is appended when encrypting
data. Specifically, the bit string seq num, which serves as a counter, is ap-
pended, and the message authentication code is then applied. Because of such
operations, the output of the IV becomes unpredictable when the first byte is
processed. This is likely the reason why the ”1/n− 1 record splitting” patch is
an effective countermeasure.

Akita University

Chapter 1

Introduction and
Background

1.1 Post-quantum cryptography and NIST PQC
Standardization

In recent years, research and development of quantum computers have pro-
gressed rapidly. For example, noisy intermediate-scale quantum computers are
already in practical use. Shor [65] demonstrated that solving both the inte-
ger factorization problem (IFP) and the discrete logarithm problem (DLP) is
theoretically tractable in polynomial time. Rivest-Shamir-Adleman (RSA) and
elliptic curve cryptosystems are widely used in applications, and their secu-
rity depends on the IFP and DLP, respectively. If large-scale reliable quantum
computers were made available, many existing information and communication
systems would become insecure. Although it is unknown when such computers
will be available, research and development of secure cryptosystems against both
quantum and conventional computers are urgent issues, where such systems are
referred to as post-quantum cryptography (PQC). Research, development, and
standardization projects for PQC are ongoing against this background.

The PQC Standardization Process was started by the National Institute of
Standards and Technology (NIST) in 2016. Several cryptosystems have been
proposed for the NIST PQC project, including lattice-based cryptosystems and
code-based cryptosystems. The multivariate public key cryptosystem (MPKC)
is one of the cryptosystems proposed for the NIST PQC project.

Several MPKCs were also proposed for the NIST PQC project [51], e.g., the
GeMSS [15], LUOV [12], MQDSS [16], and Rainbow [23] MPKCs. In the fourth
round of the NIST PQC project, NIST issued a new request for proposals of dig-
ital signature schemes with short signatures and fast verification [54]. MPKCs
are frequently more efficient than other public key cryptosystems, primarily
digital signature schemes; researching the security of MPKCs is still essential.

1

Akita University

2 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.2 MPKC

Research into MPKCs began in the 1980s. One of the most well-known public
key cryptosystems based on multivariate polynomials over a finite field was
proposed by Matsumoto and Imai [46]. Patarin [56] later demonstrated that the
Matsumoto-Imai cryptosystem is insecure. At the same time, Patarin proposed
the hidden field equations (HFE) public key cryptosystem by repairing their
cryptosystem[57] and did the Oil and Vinegar scheme (OV) [55]. Note that
there are several variations of the HFE and OV schemes, e.g., Kipnis, Patarin,
and Goubin proposed the unbalanced OV scheme (UOV) [38]. In addition,
Patarin et al. introduced the isomorphisms of polynomials problems and the
morphism of polynomials problem [57, 58], and the security of MPKC depends
on these problems. Attacks against the basic HFE were developed by Kipnis
and Shamir [40], Courtois [18], and Faugère and Joux [30], and an attack against
the OV scheme was developed by Kipnis and Shamir [39].

1.3 MQ problems

The security of an MPKC is highly dependent on the hardness of solving a
system of multivariate quadratic (MQ) polynomial equations over finite fields
because multivariate polynomial equations are transformed into MQ polynomial
equations by increasing the number of variables and equations. Solving such
systems is referred to as the MQ problem. It is also fundamental for breaking a
cryptosystem that we translate its underlying algebraic structure into a system
of multivariate polynomial equations. There are three well-known algebraic
approaches to solving the MQ problem: the XL algorithm proposed by Courtois
et al. [17] and the F4/F5 algorithm proposed by Faugère [27, 28].

1.3.1 The Fukuoka MQ Challenges

In addition to theoretical evaluations of the computational complexity of the
algorithms, practical evaluations are also crucial in the research of cryptography,
e.g., such as many efforts against the RSA challenge [2], the ECC challenge [1],
and the Lattice challenge [3]. The Fukuoka MQ challenge project [71, 70] was
started in 2015 to evaluate the security of the MQ problem. In the Fukuoka MQ
challenge project, the MQ problems are classified into encryption and digital
signature schemes. Each scheme in this project is then classified into three
categories according to the number of quadratic equations (m), the number of
variables (n), and a characteristic of the finite field. The encryption schemes are
classified into types I to III, which correspond to the condition where m = 2n
over F2, F256, and F31, respectively. The digital signature schemes are classified
into types IV to VI, which corresponds to the condition where n ≈ 1.5m over
F2, F256, and F31, respectively. At the time of writing, all best records in the
Fukuoka MQ challenge except type IV are set by variant algorithms of both the
XL and the F4 algorithm. For example, we improved the F4-style algorithm
and set new records of both type II and III, as described below, but a variant
of the XL algorithm later updated the record of type III.

Akita University

1.4. SSL 1.0 AND TLS 1.0 3

1.4 SSL 1.0 and TLS 1.0

SSL 3.0/TLS 1.0 was formerly one of the most widely used cryptographic pro-
tocols in the internet services. SSL 3.0 [31] was released by Netscape Commu-
nications in 1996 and then TLS 1.0 [19] was released by Internet Engineering
Task Force (IETF) in 1999. They were then updated and TLS 1.1 [20], 1.2 [21],
and 1.3 [60] were released in 2006, 2008, and 2018, respectively.

SSL 3.0/TLS 1.0 was deployed to perform almost all the popular network
services securely; for example, online shopping and online banking. At the same
time, many cryptographic attacks against SSL 3.0 and TLS 1.0 were found, e.g.,
Compression Ratio Info-leak Made Easy (CRIME) [61], Lucky Thirteen [5],
Browser Exploit Against SSL/TLS (BEAST) [24], Padding Oracle On Down-
graded Legacy Encryption (POODLE) [49] and RC4 biases attacks [4, 34].1

In SSL 3.0/TLS 1.0, many cryptographic primitives are employed, e.g., RSA
[50], DH(E)2 [22], AES [52], RC4 [64], CBC mode [25], and HMAC [53]. Herein,
we will focus on the CBC mode in SSL 3.0/TLS 1.0, which can cause security
issues in SSL 3.0/TLS 1.0.

According to the SSL Pulse data [68], TLS 1.0 was the most widely used
protocol version through SSL/TLS3, and the CBC mode was included in many
cipher suites of them, at the time of writing the paper [42].4. Although a software
patch was released for the CBC mode, it is unclear whether the patched CBC
mode is secure against BEAST attacks or how secure it is.

1.4.1 Overview of the Record Layer

SSL 3.0 and TLS 1.0 consist mainly of the Record, Handshaking, Change Cipher
Spec, and Alert Protocol. Herein, we explain only the record protocol. It divides
the data passed by higher layers into information blocks. One of the specified
information blocks is the SSLCiphertext or the TLSCiphertext as shown in List-
ing 1.1, 1.2. If the block cipher encryption is chosen by the CipherSuite in the
SSL/TLS, the GenericBlockCipher is selected as the fragment.

Listing 1.1: SSLCiphertext Structure in SSL 3.0

struct {
ContentType type;
ProtocolVersion verions;
uint16 length;
select (CipherSpec.cipher_type) {

case stream: GenericStreamCipher;
case block: GenericBlockCipher;

} fragment;
} SSLCiphertext;

block -ciphered struct {
opaque Content[SSLCompressed.length];
opaque MAC[CipherSpec.hash_size];
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;

} GenericBlockCipher;

1For the overview of these attacks, see [63].
2DHE denotes ephemeral Diffie-Hellman key exchange.
3As of December 2015, 98.8% of the sites surveyed by the SSL Pulse support TLS 1.0.
4As of December 2015, 0.3% of the sites surveyed by the SSL Pulse support only RC4

cipher suites.

Akita University

4 CHAPTER 1. INTRODUCTION AND BACKGROUND

Listing 1.2: TLSCiphertext Structure in TLS 1.0

struct {
ContentType type;
ProtocolVersion verions;
uint16 length;
select (CipherSpec.cipher_type) {

case stream: GenericStreamCipher;
case block: GenericBlockCipher;

} fragment;
} TLSCiphertext;

block -ciphered struct {
opaque Content[TLSCompressed.length];
opaque MAC[CipherSpec.hash_size];
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;

} GenericBlockCipher;

The selected block cipher encrypts the GenericBlockCipher in combination
with the CBCmode of operation. To force the total length of this block structure
to be an integral multiple of the block size of the chosen block cipher, the padding
is appended just after the MAC.

In SSL 3.0, each byte of the padding is indefinite, and the padding length is
less than the cipher block size or zero. In TLS 1.0, each byte of the padding is
filled with the padding length value, and the padding length is up to 255 bytes.

The MAC is generated using the computation in Listing 1.3, 1.4. Note that
the seq num denotes the sequence number of the record.

Listing 1.3: MAC in SSL 3.0

hash(MAC_write_secret + pad_2 +
hash(MAC_write_secret + pad_1 + seq_num +

SSLCompressed.type + SSLCompressed.length +
SSLCompressed.fragment));

where "+" denotes concatenation.

Listing 1.4: MAC in TLS 1.0

HMAC_hash(MAC_write_secret , seq_num + TLSCompressed.type +
TLSCompressed.version + TLSCompressed.length +
TLSCompressed.fragment));

where "+" denotes concatenation.

1.4.2 The CBC Mode in SSL 3.0 and TLS 1.0

In the SSL/TLS, a plaintext is “tagged” before the encryption, and the tag is
computed as the MAC, as described above. In other words, before encrypting a
plaintext M , the tag t is firstly generated and secondly appended to M . Then
the message

M ′ = M∥t

is encrypted using the CBC mode, as shown in Figure 1.1. Then, the ciphertext
of the (tagged) message

M ′ = (M ′[0],M ′[1], . . . ,M ′[m− 1])

is represented as

FK(IV⊕M ′[0]), . . . ,FK(C[m− 2]⊕M ′[m− 1]∥padding∥padding length),
(1.1)

Akita University

1.4. SSL 1.0 AND TLS 1.0 5

Figure 1.1: The CBC Mode in SSL 3.0 and TLS 1.0

where FK : {0, 1}λ → {0, 1}λ is a secure block cipher which can be modeled
as the pseudorandom permutation (See Section 2.7), λ is the block length, IV
is an initialization vector, padding is the padding of the GenericBlockCipher
structure, padding length is the length of padding,

C[i] =


FK(IV⊕M ′[0]) for i = 0,

FK(C[i− 1]⊕M ′[i]) for 1 ≤ i ≤ m− 2,

FK(C[m− 2]⊕M ′[m− 1]∥padding∥padding length) for i = m− 1.

The IV for the first record is generated from the SecurityParameters in the
SSL/TLS, and the IV of the next record is set from a ciphertext block of a
previous record.

The CBC mode in the SSL/TLS has two potential weaknesses: one is in the
padding scheme, and the other is in handling the IV [48].

Padding: In the encryption of the form (1.1), which follows the Mac-then-Enc
paradigm [33], the MAC is not applied to the padding. In other words, the
padding is appended after the tag generation. When catching an error in this
form, we can consider two cases: the error of the padding scheme and that of the
MAC. If an adversary can distinguish these two cases, an attack known as the
padding oracle attack [69] may work. For example, a timing analysis [14] enables
the adversary to distinguish these two cases. Other side-channel information
may also be exploited to attack the CBC mode. In fact, Möller et al. [49] found
a practical attack against the CBC mode in SSL 3.0, named the POODLE attack
(See Section 1.5). Because TLS and SSL employ a different padding schemes,
this attack cannot be applied directly to the CBC mode in TLS. However, some
implementations of TLS were affected by the POODLE attack [44].

Choice of IV: In SSL 3.0 and TLS 1.0, the IV after the first record is chosen from
the last block of the ciphertext; therefore, an adversary who can eavesdrop on
the ciphertexts knows the IV before the next plaintext is encrypted [62]. Thus,

Akita University

6 CHAPTER 1. INTRODUCTION AND BACKGROUND

the IV is predictable from the adversary’s point of view, so the CBC mode in
SSL 3.0 and TLS 1.0 does not satisfy indistinguishability. This fact does not
immediately imply that the adversary can recover the whole plaintext, and it
would be expected that the time complexity of recovering the plaintext would
be O(2λ) for one block of ciphertexts. However, Duong and Rizzo demonstrated
the BEAST attack [24], whose time complexity is O(λ).

In TLS 1.1 [20] and TLS 1.2 [21], the subsequent IV is securely sent from
one to the other by the following structure (See Listing 1.5).

Listing 1.5: GenericBlockCipher Structure in TLS 1.1 and TLS 1.2

block -ciphered struct {
opaque IV[CipherSpec.block_length];
opaque content[TLSCompressed.length];
opaque MAC[CipherSpec.hash_size];
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;

} GenericBlockCipher;

1.5 Attacks against SSL 3.0 and TLS 1.0

In this section, we give outlines of the BEAST, POODLE, and RC4 bias attacks
by comparison.

Web browsers and web application programming interfaces adopt the Same-
Origin Policy (SOP) [9] to restrict interactions between different domains. There-
fore, a security flaw in SOP involves substantial risk of data theft, such as secret
information typed into legitimate websites and HTTP cookies [8] by an attacker.

In the attacks cited below, we implicitly assume that a target of an attacker
knows a vulnerability of SOP in a target’s web browser, and so on.

Let us suppose that the attacker can control the following actions of the
target, as shown in Figure 1.2:

S1. To direct the target to a rogue web server that the attacker can control
and access to it.

S2. To infect the target with a malicious code inserted at a web page on a
rogue web server.

S3. To direct the target to a legitimate web server and access it.

S4. To make the target send private secret information to a legitimate web
server.

The BEAST Attack

The BEAST attack5 [24] is the chosen-plaintext attack against SSL 3.0 and
TLS 1.0 and is mainly divided into two phases, as shown in Figure 1.3:

B1. Chosen Boundary Phase:

(a) An attacker generates a string of a certain length and sends it to a
target.

5BEAST stands for “Browser Exploit Against SSL/TLS”.

Akita University

1.5. ATTACKS AGAINST SSL 3.0 AND TLS 1.0 7

Figure 1.2: Schematic View of Attack Scenarios

(b) The target (unknowingly) prepends it to a plaintext to be encrypted,
encrypts the resulting text in CBC mode and sends a ciphertext to
a server.

(c) The attacker knows the ciphertext.

B2. Blockwise Phase:

(a) The attacker XORs a certain block of the plaintext, a certain block
of the ciphertext, and the last block of ciphertext, and sends it to the
target.

(b) The target (unknowingly) encrypts the resulting text and sends the
ciphertext to the server.

(c) The attacker repeats the above procedures until a certain condition
is satisfied.

We refer to such an attack as a BEAST type of attack. Note that, in the first
phase, it is crucial to make a first unknown byte put as the last byte of a certain
(but not first) block of plaintext. In the second phase, the attacker can learn
the IV of the next record as the last block of the last ciphertext despite not
knowing the first IV. Moreover, the attacker can learn the unknown byte m[0]
if he continues to encrypt forged blocks C∗[0]⊕C∗[n−1]⊕ (r||i)(i = 0, . . . , 255)
until the resulting encrypted block C∗[n] equals to a former block C∗[1], as
shown in Figure 1.3.

At the second block of the first record, we have

F−1
K (C∗[1]) = C∗[0]⊕ P ∗[1] = C∗[0]⊕ (r||m[0]),

and at the first block of the second record, thanks to the cancelation of C∗[n−1],
we have

F−1
K (C∗[n]) = C∗[n− 1]⊕ (C∗[0]⊕ C∗[n− 1]⊕ (r||i)) = C∗[0]⊕ (r||i).

Then m[0] = i when the identity C∗[n] = C∗[1] holds.

Akita University

8 CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.3: Schematic View of the BEAST Attack

Figure 1.4: Sequential Alignment on the Chosen Boundary Phase in the BEAST
Attack

The other unknown bytes of plaintext can be decrypted if the attacker ad-
justs a length of a prepending string in the manner mentioned above (Fgure 1.4).

To mount the BEAST attack, two underlying conditions are necessary. One
is that there exists a vulnerability to bypass the SOP in the browser, and
the other is the predictability of IV, which is the case of the CBC mode in
SSL 3.0/TLS 1.0. The attack had a significant impact since Duang and Rizzo
presented the software bug on SOP in Java. However, many software bugs other
than SOP in Java may exist. Hence, browser vendors such as Google, Microsoft,
and Mozilla released a software patch for the CBC mode in addition to the patch
for Java [63].

The POODLE Attack

The POODLE attack [49] is the man-in-the-middle attack against CBC mode
in SSL 3.0, which exploits the weakness of the validity check of the padding

Akita University

1.5. ATTACKS AGAINST SSL 3.0 AND TLS 1.0 9

scheme, and is mainly divided into two phases described below (Figure 1.5):

P1. Chosen Boundary Phase:

(a) An attacker generates strings and sends them to a target.

(b) The target (unknowingly) inserts them into a plaintext so that only
an unknown byte is put as the last byte of a certain block, and a
boundary between the rightmost byte of the MAC and the leftmost
byte of the padding becomes a block boundary.

(c) The target encrypts the resulting text in CBC mode and sends a
ciphertext to a server.

P2. Blockwise Phase:

(a) The attacker substitutes a certain block of ciphertext, including the
unknown byte for the last block of ciphertext.

(b) The attacker continues the above steps until the server can decrypt
the manipulated ciphertext without errors.

Figure 1.5: Schematic View of the POODLE Attack

The attacker can learn the unknown byte m when the server decrypts the ci-
phertext without errors (256 times on average). At the second and the last
block, we have

F−1
K (C[1]) = C[0]⊕ P [1] and F−1

K (C[n− 1]) = C[n− 2]⊕ P [n− 1],

and under the condition that no error occurs when decrypting, we have

P [1] = C[0]⊕F−1
K (C[1]) = C[0]⊕F−1

K (C[n− 1]) = C[0]⊕C[n− 2]⊕ P [n− 1].

Akita University

10 CHAPTER 1. INTRODUCTION AND BACKGROUND

Then

m = the last byte of P [1] = the last byte of (C[0]⊕ C[n− 2]⊕ P [n− 1])

= the last byte of (C[0]⊕ C[n− 2])⊕ (block size− 1),

because the server only checks whether the last byte of (F−1
K (C[1])⊕C[n− 2])

equals the padding length when decrypting.
To avoid the POODLE attack, SSL 3.0 was disabled by default in some web

browsers [43, 6, 47] and was then deprecated by IETF RFC 7568 [7].

RC4 Bias Attacks

RC4 bias attacks are plaintext recovery attacks in the broadcast setting where
the same plaintext is encrypted with different keys, as shown in Figure 1.6.
These attacks are not related to the CBC mode. Several biases of the RC4
keystream have already been found ([34, 4]).

Figure 1.6: Schematic View of the Broadcast Setting

Key RC4 Z ,1 Z ,2 Z ,3 Z ,4

Figure 1.7: The RC4 Keystream

For example, in the broadcast setting, the second byte of the RC4 keystream
(Figure 1.7) is biased to zero [45]. In other words, Z2 = 0 occurs with twice
the expected probability. So most frequent value of a ciphertext C2(= P2⊕Z2)
can be regarded as a plaintext P2 in this case. Given 232 ciphertexts, the first
257 bytes of the RC4 keystream Z1, Z2, . . . , Z257 can be extracted with the
probability more than 0.5 [35]. Note that an attacker does not need multiple
receivers and the broadcast setting can be feasible in attack scenarios similar to
the other attacks.

Because of RC4 bias attacks, the use of the RC4 cipher suites in TLS was
prohibited by IETF RFC 7465 [59].

Akita University

Chapter 2

Preliminaries and Notations

2.1 Monomials and Terms

Here, let N the set of all natural numbers, let Z be the set of all integers, let Z≥0

be the set of all nonnegative integers, and let Fq be a finite field with q elements.
R denotes a polynomial ring of n variables over Fq, i.e., R = Fq[x1, . . . , xn] =
Fq[x].

A monomial xa is defined by a product xa1
1 · · ·xan

n , where the a = (a1, . . . , an)
is an element of Zn

≥0. In addition, M denotes the set of all monomials in R,
i.e., M = {xa1

1 · · ·xan
n | a1, . . . , an ∈ Z≥0}. For c ∈ Fq and u ∈ M, we call the

product cu a term and c the coefficient of u. T denotes the set of all terms, i.e.,
T = {cu | c ∈ Fq, u ∈ M}. For a polynomial f =

∑
i ciui ∈ R for ci ∈ Fq\{0}

and ui ∈M, T (f) denotes the set {ciui}, andM(f) denotes the set {ui}.
The total degree of xa is defined by the sum a1 + · · ·+ an, which is denoted

by deg (xa). The total degree of f is defined by max {deg(u) | u ∈M(f)} and
is denoted by deg(f).

The degree reverse lexicographical order ≺ is fixed throughout this article
as a monomial order. For a polynomial f ∈ R, LM(f) denotes the leading
monomial of f , i.e., LM(f) = max≺M(f), and LT(f) denotes the leading term
of f , i.e., LT(f) = max≺ T (f). In addition, LC(f) denotes the corresponding
coefficient for LT(f). A polynomial f is called monic if LC(f) = 1.

For a subset F ⊂ R, LM(F) denotes the set of leading monomials of poly-
nomials f ∈ F , i.e., LM(F) = {LM(f) | f ∈ F}.

For two monomials xa = xa1
1 . . . xan

n and xb = xb1
1 . . . xbn

n where a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Zn

≥0, their corresponding least common multiple (LCM) and the

greatest common divisor (GCD) are defined as LCM(xa, xb) = xc where c =
(max(a1, b1), . . . ,max(an, bn)), and GCD(xa, xb) = xc where c = (min(a1, b1), . . . ,min(an, bn)).

For two subsets A and B, A ≺ B is defined if a ≺ b holds for a ∈ A and
b ∈ B.

2.2 Gröbner bases

The concept of Gröbner bases was introduced by Buchberger [13] in 1979. Com-
puting Gröbner bases is a standard tool to solve simultaneous equations. This

11

Akita University

12 CHAPTER 2. PRELIMINARIES AND NOTATIONS

section presents the definitions and notations used in Gröbner bases. Note that
methods to compute Gröbner bases are explained in Section 2.4.

Here ⟨G⟩ denotes an ideal generated by a subset G ⊂ R. G ⊂ I is called
a basis of an ideal I if I = ⟨G⟩ holds. We refer to G as Gröbner bases of I if
for all f ∈ I there exists g ∈ G such that LM(g)| LM(f). To compute Gröbner
bases, we need to compute polynomials called S-polynomials.

Here, let f ∈ R and G ⊂ R. It is said that f is reducible by G if there exist
u ∈ M(f) and g ∈ G such that LM(g) | u. So we can eliminate cu from f by
computing f − cu

LT(g)g, where c is coefficient of u in f . In this case, g is said to

be a reductor of u. If f is not reducible by G, then f is said to be a normal
form of G. Repeatedly reducing f using a polynomial of G to obtain a normal
form is referred to as normalization, and the function normalizing f using G is
represented by NF(f,G).

For example, let f = x1x2 + x3, g1 = x1 − x3, g2 = x2x3 + 1 ∈ Fq[x1, x2, x3]
and G = {g1, g2}. First, the term x1x2 in f is divisible by LM(g1) = x and
f − x2g1 = f1 is obtained. Next, the term x2x3 in f1 is divisible by LM(g2) =
x2x3 and f1 − g2 = x3 − 1 = f2 is obtained. Finally, f2 is the normal form of f
by G since f2 is not reducible by G.

A critical pair of two polynomials (g1, g2) is defined by the tuple (LCM(LCM(g1),LCM(g2)),
t1, g1, t2, g2) ∈ R×M×R×M×R such that

LM(t1g1) = LM(t2g2) = LCM(LM(g1),LM(g2)).

For a critical pair p of (g1, g2), GCD(p), LCM(p), and deg(p) denote GCD(p) =
GCD(LM(g1), LM(g2)), LCM(p) = LCM(LM(g1), LM(g2)), and deg(p) =
deg(LCM(p)), respectively.

The S-polynomial, Spoly(p) (or Spoly(g1, g2)), of a critical pair p of (g1, g2)
is defined as follows:

Spoly(p) = Spoly(g1, g2) = v1g1 − v2g2,

v1 =
LCM(p)

LT(g1)
, v2 =

LCM(p)

LT(g2)
.

Left(p) and Right(p) denote Left(p) = v1g1 and Right(p) = v2g2, respec-
tively.

2.3 Targeted MQ problems

Let F be a subset {f1, . . . , fm} ⊂ R, and let fj ∈ F be a quadratic poly-
nomial (i.e., deg(fj) = 2). The MQ problem is to compute a common zero
(x1, . . . , xn) ∈ Fn

q for a system of quadratic polynomial equations defined by F ,
i.e.,

fj(x1, . . . , xn) = 0 for all j = 1, . . . ,m.

The MQ problem is discussed frequently in terms of MPKCs because repre-
sentative MPKCs, e.g., UOV [38], Rainbow [23], and GeMSS [15] use quadratic
polynomials. Note that these schemes are signature schemes and employ a sys-
tem of MQ polynomial equations under the condition where n > m.

The computation of Gröbner bases is a fundamental tool to solve the MQ
problem. If n < m, the system of F tends to have no solution or exactly one

Akita University

2.4. GRÖBNER BASES COMPUTATION ALGORITHMS 13

solution. If the system of F has no solution, ⟨1⟩ can be obtained as a Gröbner
bases of ⟨F ⟩. If it has a solution α = (α1, . . . , αn) ∈ Fn

q , ⟨x1 − α1, . . . , xn − αn⟩
can be obtained as a Gröbner bases of ⟨F ⟩. Thus, it is easy to obtain the solution
of the system of F from the Gröbner bases of ⟨F ⟩.

If n > m, it is generally necessary to compute Gröbner bases concerning lex-
icographic order using a Gröbner basis conversion algorithm, e.g., FGLM [29].
Another method is to convert the system associated with F to a system of mul-
tivariate polynomial equations by substituting random values to some variables
and then compute its Gröbner bases. The process is repeated with other random
values if there is no solution. This method is called the hybrid approach [11]
and typically substitutes random values to n − m + 1 variables. Hence, it is
crucial to solving the MQ problem with m = n+ 1.

Note that, in our experiments, as described in Section 3.1.1, we generate
the MQ problems (m = n + 1) with random polynomial coefficients to have
at least one solution in the same manner as the Fukuoka MQ challenges [70,
Algorithm 2 and Step 4 of Algorithm 1], and we assume that LC(fj) ̸= 0 for
all input polynomial fj (j = 1, . . . ,m) because such polynomials are obtained
with non-negligible probability for experimental purposes. Taking a change of
variables into account, the probability is exactly 1 − {1 − (1 − 1/q)m}n. For
example, it is close to 1 for q = 31 and (n,m) = (16, 17).

2.4 Gröbner bases Computation Algorithms

In this section, we introduce three algorithms to compute Gröbner bases. First,
we introduce the Buchberger-style algorithm. Next, we describe the F4 al-
gorithm proposed by Faugère. Finally, we described the F4-style algorithm
proposed by Ito et al., which is the primary focus of this article.

2.4.1 Buchberger’s algorithm

In 1979, Buchberger [13] introduced the concept of Gröbner bases and proposed
an algorithm to compute them. He found that Gröbner bases can be computed
by repeatedly generating S-polynomials and reducing them. Algorithm 2.4.1
describes the Buchberger-style algorithm to compute Gröbner bases. First, we
generate a polynomial set G and a set of critical pairs P from the input polyno-
mials F . We then repeat the following steps until P is empty: select one critical
pair p from P , generate an S-polynomial s, reduce s to the polynomial h by G,
and update G and P from (G,P, h) if h is a nonzero polynomial. The Update
function (Algorithm 2.4.2) is frequently used to update G and P , which works
to omit some redundant critical pairs [32]. If a polynomial h is reduced to zero,
then G and P are not updated; thus the pair that generates an S-polynomial
to be reduced to zero is redundant. Here, a pair selection method that selects
the pair with the lowest LCM (referred to as the normal strategy) is frequently
employed. If the degree reverse lexicographic order is used as a monomial or-
der, then the pair with the lowest degree is naturally selected under the normal
strategy.

Akita University

14 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Algorithm 2.4.1 Buchberger-style Algorithm

Input: F = {f1, . . . , fm} ⊂ R.
Output: A Gröbner bases of ⟨F ⟩.
1: (G,P)← (∅, ∅), i← 0
2: for f ∈ F do
3: (G,P)← Update(G,P, f)
4: end for
5: while P ̸= ∅ do
6: i← i+ 1
7: pi ← an element of P
8: P ← P\{pi}
9: si ← Spoly(pi)

10: hi ← NF(si, G)
11: if hi ̸= 0 then
12: (G,P)← Update(G,P, hi)
13: end if
14: end while
15: return G

Algorithm 2.4.2 Update

Input: G ⊂ R, P is a set of critical pairs, and h ∈ R.
Output: Gnew and Pnew.
1: h← h

LC(h)

2: C ← {(h, g) | g ∈ G}, D ← ∅
3: while C ̸= ∅ do
4: p← an element of C, C ← C\{p}
5: if GCD(p) = 1 or ∀p′ ∈ C ∪D,LCM(p′) ∤ LCM(p) then
6: D ← D ∪ {p}
7: end if
8: end while
9: Pnew ← {p ∈ D | GCD(p) ̸= 1}

10: for p = (g1, g2) ∈ P do
11: if LM(h) ∤ LCM(p) or

LCM(LM(h),LM(g1)) = LCM(p) or
LCM(LM(h),LM(g2)) = LCM(p) then

12: Pnew ← Pnew ∪ {p}
13: end if
14: end for
15: Gnew ← {g ∈ G | LM(h) ∤ LM(g)} ∪ {h}
16: return (Gnew, Pnew)

Akita University

2.4. GRÖBNER BASES COMPUTATION ALGORITHMS 15

2.4.2 The F4 algorithm

The F4 algorithm [27], which is a representative algorithm to compute Gröbner
bases, was proposed by Faugère in 1999, and it reduces S-polynomials simulta-
neously. In this article, we present an F4-style algorithm with this feature.

Here, let G be a subset of R. A matrix in which the coefficients of polyno-
mials in G are represented as corresponding to their monomials is referred to
as a Macaulay matrix of G. G is said to be a row echelon form if LC(g1) = 1
and LM(g1) ̸= LM(g2) for all g1 ̸= g2 ∈ G. The F4-style algorithm reduces
polynomials by computing row echelon forms of Macaulay matrices. For ex-
ample, let f = x1x2 + x3, g1 = x1 − z3, g2 = x2x3 + 1 ∈ Fq[x1, x2, x3] as in
the fourth paragraph of Section 2.2. Note that we use x2g1 and g2 to compute
NF(f, {g1, g2}) = x3 − 1. The Macaulay matrix M of {f, g1, g2} is given as
follows:


x1x2 x2x3 x3 1

f 1 0 1 0
x2g1 1 −1 0 0
g2 0 1 0 1

 = M.

In addition, a row echelon form M̃ of M is given as follows:

M̃ =

1 0 0 1
0 1 0 1
0 0 1 −1

 .

We can obtain x3 − 1 from M̃ .

Here, the F4-style algorithm is described in Algorithm 2.4.3. The main
process is described in line 5 to 14, which selects some critical pairs using the
Select function and reduces the polynomials of the pairs using the Reduction
function (Algorithm 2.4.5). The Select function (Algorithm 2.4.4) selects
critical pairs with the lowest degree based on the normal strategy. In particular,
the F4-style algorithm selects all critical pairs with the lowest degree. The
Reduction function collects reductors to reduce the polynomials and computes
the row echelon form of the set of them. In addition, the Simplify function
(Algorithm 2.4.6) determines the reductor whose degree is lowest from the sets
of polynomials obtained during the computation of the Gröbner bases.

Akita University

16 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Algorithm 2.4.3 F4-style Algorithm

Input: F = {f1, . . . , fm} ⊂ R.
Output: A Gröbner basis of ⟨F ⟩.
1: (G,P)← (∅, ∅), i← 0
2: for f ∈ F do
3: (G,P)← Update(G,P, f)
4: end for
5: while P ̸= ∅ do
6: i← i+ 1
7: Pd, d← Select(P)
8: P ← P\Pd

9: L← {Left(p) | p ∈ Pd} ∪ {Right(p) | p ∈ Pd}
10: (H̃i

+
, Hi)← Reduction(L,G, (Hj)j=1,...,i−1)

11: for h ∈ H̃i
+
do

12: (G,P)← Update(G,P, h)
13: end for
14: end while
15: return G

Algorithm 2.4.4 Select

Input: P ⊂ R×R.
Output: Pd ⊂ P and d ∈ N.
1: d = min{deg(LCM(p)) | p ∈ P}
2: Pd = {p | deg(p) = d, p ∈ P}
3: return (Pd, d)

Algorithm 2.4.5 Reduction

Input: L ⊂M×R, G ⊂ R, and H = (Hj)j=1,...,i−1, where Hj ⊂ R.
Output: H̃+ and H ⊂ R.
1: L′ ← {Simplify(t, f,H) | (t, f) ∈ L}
2: H ← {t ∗ f | (t, f) ∈ L′}
3: Done = LM(H)
4: while Done ̸=M(H) do
5: u← an element ofM(H)\ Done
6: Done ← Done ∪{u}
7: if ∃g1 ∈ G s.t. LM(g1) divides u then
8: u1 ← u

LM(g1)

9: (u2, g2)← Simplify(u1, g1,H)
10: H ← H ∪ {u2g2}
11: end if
12: end while
13: H̃ ← row echelon form of H
14: H̃+ ← {h ∈ H̃ | LM(h) /∈ LM(H)}
15: return (H̃+, H)

Akita University

2.4. GRÖBNER BASES COMPUTATION ALGORITHMS 17

Algorithm 2.4.6 Simplify

Input: u ∈M, f ∈ R, and H = (Hj)j=1,...,i−1, where Hj ⊂ R.
Output: (unew, fnew) ∈M×R.
1: for t ∈ list of divisors of u do
2: if ∃j s.t. tf ∈ Hj then

3: H̃j ← row echelon form of Hj

4: h← an element of H̃j s.t. LM(h) = LM(tf)
5: if u ̸= t then
6: return Simplify(ut , h,H)
7: else
8: return (1, h)
9: end if

10: end if
11: end for
12: return (u, f)

Akita University

18 CHAPTER 2. PRELIMINARIES AND NOTATIONS

2.4.3 The algorithm proposed by Ito et al.

Redundant critical pairs do not necessarily vanish after processing the Update
function. Here, we introduce a method [36] to omit many redundant pairs. We
assume that the degree reverse lexicographic order is employed as a monomial
order, and the normal strategy is used as the pair selection strategy in the
Gröbner bases computation. In addition, Dreg denotes the highest degree of
critical pairs appearing in the Gröbner bases computation. For example, when
solving the MQ problem in the Gröbner bases computation, in many cases, the
degree d of the critical pairs changes, as described below.

Ascending part︷ ︸︸ ︷
d =2, 3, . . . , Dreg − 1︸ ︷︷ ︸

First half

Dreg, Dreg − 1, Dreg − 2, . . .︸ ︷︷ ︸
Second half

In this article, the computation until the degree of the selected pair is Dreg is
referred to as the first half. In the first half of the computation, many redundant
pairs are reduced to zero. When solving the MQ problem, Ito et al. found that
if a critical pair of degree d is reduced to zero, all pairs of degree d stored at that
time are also reduced to zero with a high probability. Thus, redundant critical
pairs can be efficiently eliminated by ignoring all stored pairs of degree d after
the critical pairs of degree d are reduced to zero. Algorithm 2.4.7 introduces
the above method into Algorithm 2.4.3. In Algorithm 2.4.7, Pd is the set
of pairs with the lowest degree d that are not tested. The subset P ′ contains
critical pairs selected by Pd, and H+ is new polynomials obtained by reducing
P ′. If the number of new polynomials H+ is less than the number of selected
pairs P ′, then a reduction to zero has occurred, and at this time, Pd is deleted.
We add the process from line 19 to 21 to select pairs with the lowest degree
according to the normal strategy.

Note that Ito et al.[36] stated that the proposed method was valid for MQ
problems associated with encryption schemes, i.e., of type of m = 2n, but other
MQ problems, including those of type m = n+ 1, are not discussed. Moreover,
they set the number of selected pairs |P ′| to 256 to divide Pd. Hence, they need
to guarantee whether this subdividing method is optimal.

2.5 Proposed methods

As mentioned in the section above, the SelectPd function serves to select a
subset Pd of all the critical pairs at each step for the reduction part of the F4-
style algorithm. In addition, Ito et al.[36] proposed a method in which they
subdivide Pd into smaller subsets {C1, . . . , Ck} and perform the Reduction
function and the Update function for each set Ci consecutively during no S-
polynomials are reduced to zero at the reduction. On the way, if some S-
polynomials reduce to zero at the reduction of a set Cj for the first time, this
method ignores the remaining sets {Cj+1, . . . , Ck} and removes them from all
the critical pairs.

In their paper, it was confirmed that their proposed method was effective
for solving the MQ problems of the condition where m = 2n and k = 256 only

Akita University

2.5. PROPOSED METHODS 19

Algorithm 2.4.7 F4-style Algorithm Proposed by Ito et al.

Input: F = {f1, . . . , fm} ⊂ R.
Output: A Gröbner basis of ⟨F ⟩.
1: (G,P)← (∅, ∅), i← 0, Dreg ← 0
2: for f ∈ F do
3: (G,P)← Update(G,P, f)
4: end for
5: while P ̸= ∅ do
6: (Pd, d)← Select(P)
7: if Dreg < d then
8: Dreg ← d
9: end if

10: while Pd ̸= ∅ do
11: i← i+ 1
12: P ′ ← a subset of Pd

13: (P, Pd)← (P\P ′, Pd\P ′)
14: L← {Left(p) | p ∈ P ′} ∪ {Right(p) | p ∈ P ′}
15: (H̃i

+
, Hi)← Reduction(L,G, (Hj)j=1,...,i−1)

16: for h ∈ H̃i
+\{0} do

17: (G,P)← Update(G,P, h)
18: end for
19: if ∃h ∈ H̃i

+\{0} s.t. deg(h) < d then
20: break
21: end if
22: if |H̃i

+| < |P ′| and Dreg = d then
23: (P, Pd)← (P\Pd, ∅)
24: end if
25: end while
26: end while
27: return G

and it was not mentioned that other types, especially m = n + 1, or other
subdividing methods.

2.5.1 Subdividing Methods

To solve the MQ problems, Ito et al.[36] fixed the number of elements of each
Ci to 256, i.e., |Ci| = 256. Here we propose three types of subdividing methods
in the following [41].

SD1: The number of elements in Ci (i < k) is fixed except Ck.
|Ci| = 128, 256, 512, 768, 1024, 2048, and 4096 are set in our experiment.

SD2: The number of subdivided subsets is fixed.
k = 5, 10, and 15 are set in our experiment.

SD3: The fraction of elements to be processed in the remaining element in Pd is
fixed, i.e., | C1 |= max(⌊r | Pd |⌋, 1) and | Ci |= max(⌊r | Pd\∪i−1

l=1 Cl |⌋, 1)

Akita University

20 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Algorithm 2.5.1 SubDividePd

Input: Pd ⊂ P and d ∈ N.
Output: C1, . . . , Ck ⊂ Pd

1: Pd = C1 ⊔ C2 ⊔ · · · ⊔ Ck (disjoint union) s.t. Ci ≺ Cj for i < j
2: return {C1, . . . , Ck}

for i > 1.
r = 1/5, 1/10, and 1/15 are set in our experiment.

Furthermore, we propose two subdividing methods based on SD1 in Section
3.1.2.

2.5.2 Removal method

It is essential to skip redundant critical pairs in the F4-style algorithm because
it takes extra time to compute reductions of larger matrix sizes. To solve the

Algorithm 2.5.2 F4-style Algorithm Integrating the Proposed Methods

Input: F = {f1, . . . , fm} ⊂ R.
Output: A basis of ⟨F ⟩.
1: (G,P)← (∅, ∅), i← 0
2: for h ∈ F do
3: (G,P)← Update(G,P, h)
4: end for
5: while P ̸= ∅ do
6: (Pd, d)← SelectPd(P)
7: P ← P\Pd

8: while Pd ̸= ∅ do
9: // Use the method presented in Section 2.5.1

10: {C1, . . . , Ck} ← SubDividePd(Pd)
11: for l = 1 to k do
12: i← i+ 1
13: Pd ← Pd\Cl

14: L← {Left(p′) | p′ ∈ Cl} ∪ {Right(p′) | p′ ∈ Cl}
15: (H̃i

+
, Hi)← Reduction(L,G, (Hj)j=1,...,i−1)

16: for h ∈ H̃i
+\{0} do

17: (G,P)← Update(G,P, h)
18: end for
19: // Use the method presented in Section 2.5.2

20: if 0 ∈ H̃i
+

then
21: Pd ← ∅
22: break
23: end if
24: end for
25: end while
26: end while
27: return G

Akita University

2.5. PROPOSED METHODS 21

MQ problems that are defined as systems of m quadratic polynomial equations
over n variables, Ito et al.[36] experimentally confirmed that once a reduction
to zero occurs for some critical pairs in P ′ ⊂ P then nothing but a reduction
to zero will be generated for all subsequently selected critical pairs in P in the
case of R = F256 or F31, the number of polynomials m = 2n and the number of
variables n = 16, . . . , 25.

We also checked such a hypothesis through computational experiments. We
integrated our proposed methods into the F4-style algorithm using OpenF4
version 1.0.1 [37] as defined in Algorithm 2.5.2 and checked the hypothesis as
described below. The OpenF4 library is an open-source implementation of the
F4-style algorithm and is suitable for integrating our proposed methods into the
F4-style algorithm.

Hypothesis. If a Macaulay matrix constructed by critical pairs p′ ∈ P ′ (⊂ P)
has some reductions to zero, i.e., 0 ∈ H̃ at line 15 in Algorithm 2.5.2 with the
normal strategy, then all remaining criitical pairs p ∈ P s.t. deg(LCM(p)) =
deg(LCM(p′)) will be reduced to zero with a high probability.

We will explain the difference between a checking algorithm and a measur-
ing algorithm. In the algorithm for measuring the software performance of the
OpenF4 library and our methods, as defined in Algorithm 2.5.2, once a re-
duction to zero occurs, then the remaining critical pairs in Pd are removed. In
other words, in such an algorithm, a new next Pd is selected immediately after
occurring a reduction to zero. On the other hand, in the algorithm for check-
ing the hypothesis as described above, we need to continue reductions for all
remaining critical pairs and monitor that reductions to zero are consecutively
generated after occurring a reduction to zero for the first time. However, note
that because the behavior of the checking algorithm needs to match that of the
measuring algorithm, every internal state just before processing the remaining
critical pairs in the checking algorithm is reset to the state immediately after
occurring a reduction to zero.

To check the hypothesis, we performed solving the MQ problems of random
coefficients over F31 for the condition where m = n + 1 and n = 9, . . . , 16 by
Algorithm 2.5.2 with the SD1 method. A hundred samples were generated
for each problem of n < 16. Because of processing times, fifty samples were
generated for each problem of n = 16. Furthermore, | Ci | of SD1 is fixed to
1, 16, 32, 256, and 512 for n = 9, . . . , 12; n = 13; n = 14; n = 15; and n = 16,
respectively.

Our experiments showed that the hypothesis was valid with about 0.9 prob-
ability and neither temporary basis (i.e., an element in G, at line 17 in Al-
gorithm 2.5.2) nor a critical pair of higher degree arises from unused critical
pairs in omitted subsets with about 0.1 probability. Moreover, all outputs for
all problems contain the initial values with no errors.

Akita University

22 CHAPTER 2. PRELIMINARIES AND NOTATIONS

2.6 The Game-Playing Approach

In the field of cryptography, security proofs are typically formulated as a se-
quence of rewriting a program, which is called a game [10, 66]. In each game,
there exist (at least) two entities: an adversary and a challenger, and in fact,
they are probabilistic processes that communicate with each other. In each
game, the adversary also calls procedures which are named oracles. These inter-
actions are regarded as games played between the adversary and the challenger.
A game G is linked to a specific event S, and security related to game G is evalu-
ated by the probability that event S occurs for all interactions by the adversary.
To prove security, we construct a sequence of games: G0 → G1 → · · · → Gn

and define event Si associated with game Gi (i = 0, . . . , n), where G = G0 and
S = S0. In the security proof, we evaluate the difference in the probability
between two events |Pr[Si]− Pr[Si+1]| at some upper bound (n = 0, . . . , n− 1)
and show that Pr[Sn] is equal to some particular probability: typically, either
0 or 1/2. The security is proven if we can show that Pr[S] is negligibly close
to the target probability through a sequence of game transformations. Here, it
means that the difference between these probabilities is smaller than the inverse
of every polynomial in the security parameter and for all sufficiently large values
of the security parameter. The changes by the transition between games Gi and
Gi+1 should be very small in order to minimize |Pr[Si] − Pr[Si+1]| as much as
possible.

The following paragraphs contain three standard types of transitions between
successive games.

Bridging steps: In such transitions, game Gi is rewritten, and it does not
involve the change in the probability; i.e., Pr[Si] = Pr[Si+1].

Transitions based on indistinguishability: In such transitions, the change
is very small, but the difference in the probability distributions between two
events Si and Si+1 is computationally or statistically indistinguishable by every
efficient adversary. Here, it means that the time complexity of the efficient
algorithm (adversary) is bounded by a polynomial in the security parameter.

Transitions based on failure events: In such transitions, games Gi and
Gi+1 are identical unless some failure event F occurs, i.e., events Si ∧ ¬F and
Si+1∧¬F are the same. Let A, B, F be events. We write the symbol A∧¬F ⇔
B ∧ ¬F if events A ∧ ¬F and B ∧ ¬F are the same.

2.6.1 The Difference Lemma

Lemma 2.6.1 (Difference Lemma). Let A, B, F be events. Suppose that A ∧
¬F ⇔ B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F].

Proof. If A ∧ ¬F ⇔ B ∧ ¬F then Pr[A ∧ ¬F] = Pr[B ∧ F]. We have

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ ¬F]− Pr[B ∧ F]− Pr[B ∧ ¬F]|
= |Pr[A ∧ F]− Pr[B ∧ F]|
≤ Pr[F].

Akita University

2.6. THE GAME-PLAYING APPROACH 23

2.6.2 The pseudorandom permutation/pseudorandom func-
tion (PRP/PRF) Switching Lemma

The symbol AP ⇒ 1 denotes the event that an adversary A, which is equipped
with an oracle P , outputs the bit 1. Let Perm(n) be the set of all permutations
on {0, 1}n. Let Func(n) be the set of all functions from {0, 1}n → {0, 1}n. The
symbol x

$← X denotes an assignment to x of an element uniformly randomly
selected from a finite set X.

Lemma 2.6.2 (PRP/PRF Switching Lemma). Let n ≥ 1 be an integer. Let A
be an adversary that asks at most q oracle queries. Then

|Pr[Aπ ⇒ 1]− Pr[Aρ ⇒ 1]| ≤ q(q − 1)

2n+1
,

where π is a random permutation oracle π
$← Perm(n) and ρ is a random

function oracle ρ
$← Func(n).

Proof. We define two games S0 and S1 shown in Figure 2.1. Game S1 includes
the boxed statement, and game S0 does not include it. The flag bad is a Boolean
value, true or false, and is initialized to false. The symbol image(π) denotes
the complement of image(π) relative to {0, 1}n. The array π[·] is initialized to
undefined everywhere. Note that execution in the procedure P (X) goes back
to the beginning when the flag bad is set.

procedure P (X) : Game S0

Y
$← {0, 1}n Game S1

if Y ∈ image(π) then bad ← true, Y
$← image(π)

return π[X]← Y

Figure 2.1: Games Invoked in the Proof on the Switching Lemma

As game Si progresses, the array π[·] is filled with some value in {0, 1}n.
Game S0 simulates a random function ρ

$← Func(n). Then Pr[Aρ ⇒ 1] =

Pr[AS0 ⇒ 1]. Game S1 simulates a random permutation π
$← Perm(n). Then

Pr[Aπ ⇒ 1] = Pr[AS1 ⇒ 1]. By the Difference Lemma (Lemma 2.6.1), we have

|Pr[Aπ]− Pr[Aρ]| = |Pr[AS1]− Pr[AS0]|
≤ Pr[AS0 sets bad].

Let Ci be the event that a value Y
$← {0, 1}n is already included in image(π)

in i-th query. We have

Pr[AS0 sets bad] ≤ Pr[C1] + Pr[C2] + · · ·+ Pr[Cq]

≤ 0

2n
+

1

2n
+ · · ·+ q − 1

2n

=
q(q − 1)

2n+1
.

Akita University

24 CHAPTER 2. PRELIMINARIES AND NOTATIONS

2.7 PRFs and PRPs

Let λ and τ denote security parameters, each representing the length in a byte.
The length λ is considered as the block cipher’s block size, and hence λ is a
multiple of eight. The negligible function is denoted by ϵ(λ), or simply by ϵ.

PRF and PRP: A PRF P consists of a pair of algorithms (K,F):

• The key generation algorithm K is a probabilistic polynomial-time (ppt)
algorithm and generates a key K.

• The evaluation algorithm F is a deterministic polynomial-time algorithm.
It generates F(K,x) given the key K and a point x.

Definition 2.7.1 (PRF). We say that P = (K,F) is PRF if for any ppt
algorithm A,∣∣Pr[K $← K : AF(K,·) = 1]− Pr[F ′ $← R : AF ′(·) = 1]

∣∣≤ ϵPRF(λ),

where R is a set of all functions such that both the domain and range are the
same as F(K, ·), respectively.

If the function FK(·) := F(K, ·) is a permutation, we say that P is a PRP.
In this case, we denote the negligible function by ϵPRP.

2.8 Symmetric Key Encryptionss and Message
Authentication Codes

Symmetric Key Encryption (SKE): The SKE scheme SE consists of a triple of
algorithms (K, E ,D):

• The key generation algorithm K is a ppt algorithm, which generates a key
K.

• The ppt encryption algorithm E takes a key K and a plaintext M as
input, and outputs a ciphertext C. If we consider a stateful SKE, then E
has additional input st as a state, and outputs a new state st′.

• The decryption algorithm D is a deterministic polynomial time algorithm.
This algorithm takes a ciphertext C and a key K as input and outputs
a plaintext M or ⊥ representing an invalid ciphertext. If we consider a
stateful SKE, then D is given a state st and outputs a new state st′.

The SKE scheme must be “decryptable.” That is, for any key K and any
plaintext M ,

D(K, E(K,M)) = M

holds.

Message Authentication Code: The MAC scheme MA consists of a triple of
algorithms (K, T ,V).

• The key generation algorithm K is a ppt algorithm and outputs a key K.

Akita University

2.9. INDISTINGUISHABILITY UNDER CHOSEN-PLAINTEXT ATTACK25

• The tag generation algorithm T is a deterministic polynomial-time algo-
rithm. This algorithm takes a key K and a plaintext M as input and
outputs a tag t of length τ .

• The verification algorithm V is a deterministic polynomial-time algorithm.
This algorithm takes key K, message M , and tag t as input and outputs
0 or 1.

We say that MA satisfies the completeness if V(K,M, t) = 1 is equivalent
to t = T (K,M). We assume that, for a randomly chosen key K, T (K, ·) is a
PRF. The negligible function will be denoted as ϵPRF.

2.9 Indistinguishability under Chosen-Plaintext
Attack

To define security, we consider the left-or-right oracle LRK,b(M0,M1) = E(K,Mb),
where b ∈ {0, 1}.

Definition 2.9.1 (Indistinguishability under Chosen-Plaintext Attack (IND-CPA)).
We say that the SKE SE = (K, E ,D) satisfies the (ϵIND, q) IND-CPA if for any
ppt algorithm A,

AdvIND(λ) =
∣∣Pr[K $← K, b $← {0, 1}, b′ $← ALRK,b(·,·) | b = b′]− 1

2

∣∣ ≤ ϵIND(λ),

where q is the number of queries to LR oracle.

2.10 The CBC Mode in the TLS 1.0

In the CBC mode of the SSL/TLS, before encrypting the plaintext Content,
some additional information for maintaining the SSL/TLS session is appended.
That is, according to the record layer (Section 1.4.1),

Content, MAC, padding, padding length

are encrypted simultaneously. Here padding is a padding, padding length is
the length of the padding, and MAC is a tag of

MAC write secret, seq num, type, version, length, fragment

computed by the keyed-hash MAC (HMAC).

A sequence number seq num is a binary sequence of 64-bit length. This
is a counter starting from 0, and it is incremented for each record. This was
originally designed to prevent the replay attacks, but we will show later that this
counter makes the “patched” CBC mode in TLS 1.0 indistinguishable. There
is other information, such as type and versions, but these are not related to
our security analysis, and we will omit them henceforth.

Let λ be a block length of the underlying block cipher (in byte), and let ∥
be concatenation. Then, for a binary sequence X, we define X[i] as

X =

λ byte︷︸︸︷
X[0] ∥

λ byte︷︸︸︷
X[1] ∥ · · · ∥

≤λ byte︷ ︸︸ ︷
X[n− 1], X[i..] =

λ byte︷︸︸︷
X[i] ∥ · · · ∥

≤λ byte︷ ︸︸ ︷
X[n− 1] .

Akita University

26 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Algorithm KWeakCBC Algorithm EWeakCBC(K,M ; st)

K
$← KPRP IV← st

Output K M [0], . . . ,M [n− 1]←M
C[0]← FPRP(K,M [0]⊕ IV)
For i = 1 to n− 1

C[i]← FPRP(K,M [i]⊕ C[i− 1])
Output C = (IV, C[0], . . . , C[n− 1]) and st = C[n− 1]

Table 2.1: The Original CBC Mode in TLS 1.0 (WeakCBC mode)

Hence, except for the last block X[n − 1], X[i] is λ byte. Let X[i] be a byte
sequence of λ′(≤ λ) byte. Then we define X[i][j] as

X[i] =

1 byte︷ ︸︸ ︷
X[i][0] ∥ · · · ∥

1 byte︷ ︸︸ ︷
X[i][λ′ − 1], X[i][j..] = X[i][j]∥ · · · ∥X[i][λ− 1]∥X[i+ 1..].

2.10.1 Weak CBC Mode in TLS1.0

Let P = (KPRP,FPRP) be a PRP. The CBC mode in TLS 1.0 is implemented as
in Table 2.1, where we assume that the length of the message M is a multiple of
λ, and the IV is chosen randomly at the beginning. The decryption algorithm
DWeakCBC is not described since it is trivial.

This version of the CBC mode is called the WeakCBC mode. In this mode
WeakCBC mode, since the adversary knows IV(= C[n− 1]) in advance, it does
not satisfy the IND-CPA security. This is the reason why the original CBC
mode (WeakCBC) is vulnerable to the BEAST attack.

2.10.2 Unpatched CBC

Algorithm KWeakTLS1.0 Algorithm DWeakTLS1.0(K,C; st)

KWeakCBC
$← KWeakCBC Parse st as c

KMA
$← KMA Parse K as (KWeakCBC,KMA)

K ← (KWeakCBC,KMA) M ′ ← DWeakCBC(KWeakCBC, C)

Output K M ′′ ← Pad−1(M ′)
If M ′′ ̸= ⊥ then parse M ′′ as M∥t

Algorithm EWeakTLS1.0(K,M ; st) else output ⊥
Parse st as (stWeakCBC, c) If T (KMA, c∥|M |∥M) = t,
Parse K as (KWeakCBC,KMA) output (M, c+ |M |)
t← T (KMA, c∥|M |∥M) else output ⊥
(C, stWeakCBC)← EWeakCBC(KWeakCBC,Pad(M∥t); st)
Output (C, (stWeakCBC, c+ |M |))

Table 2.2: Unpatched CBC (WeakTLS1.0)

In TLS 1.0, the encryption is done by Mac-then-Enc. Hence, the tag is
generated before the message is encrypted in the CBC mode. (Table 2.2.) In

Akita University

2.10. THE CBC MODE IN THE TLS 1.0 27

Table 2.2, c plays the role of the counter which starts from 0. The counter
represents the sequence number seq num in Section 2.10. Other information,
such as type is not related to our security analysis, and hence we will omit it
from this algorithm.

We call the authenticated encryption of Table 2.2 WeakTLS1.0. The al-
gorithm Pad is the padding algorithm which is defined as (1.1), and Pad−1 is
the algorithm which removes the padding. As defined in Section 2.8, MA =
(KMA, T ,V) is the MAC.

Since IV is predictable, WeakTLS1.0 does not satisfy the IND-CPA property.

Akita University

28 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Akita University

Chapter 3

Contributions

3.1 Selection Strategy of F4-style Algorithm

In this section, we describe the software performance of the proposed methods
introduced in Section 2.5. Then, we describe the behavior of the proposed
methods in the first half of the computation.

3.1.1 Software performance comparisons

We integrated our proposed methods into the F4-style algorithm using the
OpenF4 library version 1.0.1 [37] and compared their software performances,
including the original OpenF4. In measuring CPU time, only the functions
included in the OpenF4 library were used. We used a non-uniform memory
access (NUMA) machine with four nodes of Intel(R) Xeon(R) Platinum 8180 at
2.50 GHz processors and 256 GB RAM each (1TB RAM total).

We benchmarked these implementations on the MQ problems similar to the
Fukuoka MQ challenge of Type V over a base field F256 and Type VI over a
base field F31 [71]. These problems are defined as MQ polynomial systems of
m equations over n variables with m = n + 1, based on the hybrid approach
[11]. We experimented with ten samples for each parameter : m = n + 1 and
n = 9, . . . , 15 over F256 and m = n + 1 and n = 9, . . . , 16 over F31. Note
that, on our machine, we could not run these programs for n > 16 over F31

and for n > 15 over F256 because the OpenF4 library needs more significant
memory than the installed RAM of our machine. Our benchmarking results for
m = n+1 and n = 9, . . . , 15 over F256 are listed in Table 3.1 and for m = n+1
and n = 9, . . . , 16 over F31 are listed in Table 3.2. For the first and second
halves of the computation, the top four records by the proposed methods and
the record by the OpenF4 library are shown in Figure 3.1a, Figure 3.1b, Figure
3.2a, and Figure 3.2b.

These experiments observed that there was no failure to compute solutions,
including initially selected values and standard variations (σ) of the CPU times
were relatively small and the F4-style algorithms integrating our proposed meth-
ods were faster than the original OpenF4 library, e.g., up to factor 7.21 in the
case of SD1 under n = 15 and | Ci |= 512 over F256 and up to factor 6.02 in
the case of SD1 under n = 16 and | Ci |= 1024 over F31. By these results,
it could be argued that SD1 is faster than all other methods. However, if we

29

Akita University

30 CHAPTER 3. CONTRIBUTIONS

focus only on the first half of the computation, it is found that the SD3 method
with r = 15 may be faster than otherwise in the case of both F256 and F31. This
reason will be discussed in the next section. If we distinguish between the first
and second halves, we conclude that it is appropriate to apply the SD3 method
with r = 15 in the first half and the SD1 method with | Ci |≤ 512 in the second
half. For example, a combination of SD3 with r = 1/15 for the first half and
SD1 with | Ci |= 512 for the second half (i.e., SD3 followed by SD1) is faster
than otherwise, e.g., up to factor 7.76 for (n,m) = (16, 17) over F31.

3.1.2 The performance behavior of the proposed method
in the first half

In our experiments, we counted CPU time and the number of critical pairs
used at each reduction. Our experiments found that the minimum number of
critical pairs that generate a reduction to zero for the first time is approximately
constant. Note, however, that if more than one of the critical pairs arises, we
take the maximum number among them. The number of critical pairs that
generate a reduction to zero for the first time for each (n,m) and d is listed in
Table 3.3. The symbol Total in Table 3.3 is defined by the number of critical
pairs before reducing the Macaulay matrix for each (n,m) and d. The symbol
Min in Table 3.3 is defined by the minimum number of critical pairs that generate
a reduction to zero for the first time for each (n,m) and d. The ratio of Min
to Total is shown in Figure 3.4a. Figure 3.4a shows that the ratios gradually
decrease, and the decreasing ratios are not constant. These tendencies likely
caused that SD3 with r = 1/15 was handy in the first half.

Here, we propose the subdividing method SD4 in the first half in the fol-
lowing.

SD4: The number of elements in the first subset | C1 | is 1 plus the number
Min specified in Table 3.3, regarding SD1. | Ci | (i > 2) is fixed to a small
value in place.

We experimented with SD4 in the first half followed by SD1 with | Ci |= 512 in
the second half (i.e., SD4⇒ SD1). Our benchmarking results of SD4 followed
by SD1 are listed in Table 3.1 and 3.2. For the first half of the computation,
the record by SD4 and the record by the OpenF4 library are shown in Figure
3.3a and 3.3b.

Here, we investigate the approximation of the ratio (r) shown in Figure 3.4a.
The Simplify function outputs a product xi×p such that xi is a variable and p
is a polynomial with a high probability, as stated in the paper [27, Remark 2.6].
So, it seems likely that rows of the Macaulay matrix are composed of products
xa1
1 · · ·x

ai
i × p where 1 ≤ i ≤ n and p is a polynomial with a high probability

because of the normal strategy. In addition, matrix elements in the leftmost
columns of the Macaulay matrix come from the leading monomials. Hence, it
seems reasonable to suppose that the ratio r is approximately related to the
number of monomials of degree d:

| {xa1
1 . . . xan

n |a1 + · · ·+ an = d} |=
(
d+ n− 1

n− 1

)
≈ dn−1

(n− 1)!
+ (lower terms).

So, we assume that the r is proportional to a power of d, i.e., r ∝ dc (c: constant)
by ignoring lower terms. We have log r = a log d+ b (a, b: constant). To see the

Akita University

3.1. SELECTION STRATEGY OF F4-STYLE ALGORITHM 31

 1

 10

 100

 1000

 10000

 12 13 14 15

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD1(|Ci|=1024)
SD2(|Ci|=2048)
SD3(r=1/15)
SD2(k=15)

(a) CPU Times in the First Half

 1

 10

 100

 1000

 10000

 100000

 12 13 14 15

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD1(|Ci|=128)
SD1(|Ci|=256)
SD1(|Ci|=512)
SD1(|Ci|=768)

(b) CPU Times in the Second Half

Figure 3.1: Benchmark Results over F256 for m = n+ 1

Akita University

32 CHAPTER 3. CONTRIBUTIONS

 1

 10

 100

 1000

 10000

 13 14 15 16

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD1(|Ci|=4096)
SD2(k=15)
SD3(r=1/15)
SD3(r=1/5)

(a) CPU Times in the First Half

 10

 100

 1000

 10000

 100000

 13 14 15 16

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD1(|Ci|=512)
SD1(|Ci|=768)
SD1(|Ci|=1024)
SD1(|Ci|=256)

(b) CPU Times in the Second Half

Figure 3.2: Benchmark Results over F31 for m = n+ 1

Akita University

3.1. SELECTION STRATEGY OF F4-STYLE ALGORITHM 33

 1

 10

 100

 1000

 10000

 12 13 14 15

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD4 followed by SD1(|Ci|=512)
SD5 followed by SD1(|Ci|=512)
SD3 followed by SD1(r=1/15,|Ci|=512)

(a) CPU Times (sec) over F256 in the First Half

 1

 10

 100

 1000

 10000

 13 14 15 16

C
P
U

 t
im
e

 (
s
e
c
)

Degree of critical pairs

Original OpenF4
SD4 followed by SD1(|Ci|=512)
SD5 followed by SD1(|Ci|=512)
SD3 followed by SD1(r=1/15,|Ci|=512)

(b) CPU Times (sec) over F31 in the First Half

Figure 3.3: Benchmark Results for m = n+ 1

Akita University

34 CHAPTER 3. CONTRIBUTIONS

relation between d and r, r is displayed in the log-log scale as shown in Figure
3.4b. Furthermore, we assume that linear expressions in n approximate both a
and b, and we distinguish between the approximations according to whether n
is even and odd. The linear regression analysis of a (n = 9, . . . , 16) shows that

a ≈ a(n) =

{
0.0566n− 2.63 (n is odd),

0.0443n− 2.38 (n is even).

In addition, the regression analysis of b (n = 9, . . . , 16) shows that

b ≈ b(n) =

{
−0.0301n+ 1.15 (n is odd),

−0.0236n+ 1.01 (n is even).

Then, we add the constant value 0.0542 as r pass over all points in Figure
3.4b because the expected number of critical pairs should not be less than the
required number.

Finally, we propose the subdividing method SD5 in the first half in the
following.

SD5: The number of elements in the first subset | C1 | is r(d, n) multiplied by
the number Total specified in Table 3.3, regarding SD1. | Ci | (i > 2) is
fixed to a small value in place. r(n, d) is defined by the following:

r ≈ r(n, d) =

{
0.0542 + d 0.0566n−2.63 10−0.0301n+1.15 (n is odd),

0.0542 + d 0.0443n−2.38 10−0.0236n+1.01 (n is even).

We experimented with SD5 in the first half followed by SD1 with | Ci |= 512 in
the second half (i.e., SD5⇒ SD1). Our benchmarking results of SD5 followed
by SD1 are listed in Table 3.1 and 3.2. For the first half of the computation,
the record by SD5 and the record by the OpenF4 library are shown in Figure
3.3a and 3.3b.
Our benchmark results for MQ problems over F256 for m = n + 1 are shown
in Table 3.1. Our benchmark results for MQ problems over F31 for m = n + 1
are shown in Table 3.2. Experimental results of the number of critical pairs to
generate a reduction to zero in the first half for m = n + 1 over F256 and F31

are shown in Table 3.3.

3.1.3 Conclusions and future work

The experimental results in our previous study have demonstrated that the
subdividing method SD1 with | Ci |= 256 and the removal method are valid
for solving a system of MQ polynomial equations associated with encryption
schemes. In this study, we proposed three basic methods (SD1, SD2, and SD3)
and two extra methods (SD4 and SD5) in the subdividing method of the F4-
style algorithm. Our proposed method considerably improved the performance
of the F4-style algorithm by omitting redundant critical pairs based on the
removal method. Then, our experimental results validated these methods to
solve a system of MQ polynomial equations under m = n + 1. Furthermore,
we found that the number of critical pairs that generate a reduction to zero for
the first time was approximately constant under m = n + 1 within the range

Akita University

3.1. SELECTION STRATEGY OF F4-STYLE ALGORITHM 35

0.1

0.2

0.3

0.4

 0.15

 0.25

 0.35

 0.45

4 5 6 7 8 9 10

R
a
tio

 r
e
d
u
c
e
d

 t
o

 z
e
ro

 f
o
r
th
e

 fi
rs
t
tim

e

Degree of critical pairs

n=9
n=10
n=11
n=12
n=13
n=14
n=15
n=16
n=17
n=18

(a) Experimental Results of the Ratio of Critical Pairs for a Reduction to Zero in the
First Half over F256 and F31 for m = n+ 1

0.1

0.2

0.3

0.4

4 5 6 7 8 9 10

R
a
tio

 r
e
d
u
c
e
d

 t
o

 z
e
ro

 f
o
r
th
e

 fi
rs
t
tim

e

Degree of critical pairs

n=9
n=10
n=11
n=12
n=13
n=14
n=15
n=16
n=17
n=18

(b) log10-log10 Graph of the Ration of Critical Pairs for a Reduction to Zero in the
First Half over F256 and F31 for m = n+ 1

Figure 3.4: Benchmark Results for m = n+ 1 over F256

Akita University

36 CHAPTER 3. CONTRIBUTIONS

Table 3.1: Benchmark Results for MQ Problems over F256 for m = n+1, Total
CPU Time (sec)

(n,m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16)
Original OpenF4

Average 2.33× 10−1 1.58× 100 9.33× 100 7.24× 101 4.38× 102 3.76× 103 2.40× 104

σ 9.17× 10−3 2.32× 10−3 5.25× 10−3 1.10× 10−1 2.81× 10−1 9.77× 100 5.25× 102

Before Dreg 5.04× 10−2 5.47× 10−1 2.00× 100 2.38× 101 8.95× 101 1.17× 103 4.93× 103

After Dreg 1.80× 10−1 1.03× 100 7.33× 100 4.86× 101 3.48× 102 2.59× 103 1.91× 104

SD1
| Ci |= 128 Average 1.15× 10−1 5.74× 10−1 2.90× 100 1.54× 101 8.49× 101 5.72× 102 3.68× 103

σ 9.80× 10−4 1.37× 10−3 4.09× 10−3 1.74× 10−2 5.40× 10−2 5.51× 10−1 3.00× 101

Before Dreg 3.32× 10−2 2.82× 10−1 9.22× 10−1 8.91× 100 3.44× 101 3.82× 102 1.73× 103

After Dreg 7.77× 10−2 2.85× 10−1 1.96× 100 6.49× 100 5.04× 101 1.89× 102 1.96× 103

| Ci |= 256 Average 1.63× 10−1 6.50× 10−1 3.05× 100 1.75× 101 8.62× 101 5.85× 102 3.41× 103

σ 3.53× 10−3 9.17× 10−4 2.42× 10−3 1.41× 10−1 5.02× 10−2 8.31× 10−1 1.44× 101

Before Dreg 4.94× 10−2 3.01× 10−1 8.80× 10−1 8.22× 100 3.36× 101 3.15× 102 1.46× 103

After Dreg 1.10× 10−1 3.45× 10−1 2.16× 100 9.30× 100 5.26× 101 2.70× 102 1.95× 103

| Ci |= 512 Average 2.18× 10−1 9.51× 10−1 4.03× 100 1.89× 101 1.11× 102 6.64× 102 3.33× 103

σ 7.43× 10−3 1.86× 10−3 4.50× 10−3 8.20× 10−2 3.60× 10−2 8.27× 10−1 1.40× 101

Before Dreg 4.99× 10−2 4.41× 10−1 1.28× 100 7.91× 100 3.46× 101 3.06× 102 1.36× 103

After Dreg 1.65× 10−1 5.05× 10−1 2.74× 100 1.10× 101 7.62× 101 3.58× 102 1.97× 103

| Ci |= 768 Average 2.27× 10−1 1.22× 100 5.11× 100 2.28× 101 1.14× 102 7.10× 102 3.76× 103

σ 7.76× 10−3 1.50× 10−3 3.58× 10−3 1.24× 10−2 3.92× 10−2 1.01× 100 7.57× 100

Before Dreg 4.97× 10−2 5.43× 10−1 1.59× 100 1.00× 101 3.33× 101 3.05× 102 1.33× 103

After Dreg 1.75× 10−1 6.70× 10−1 3.51× 100 1.28× 101 8.07× 101 4.05× 102 2.42× 103

| Ci |= 1024 Average 2.29× 10−1 1.40× 100 6.18× 100 2.68× 101 1.24× 102 7.17× 102 4.40× 103

σ 8.80× 10−3 3.53× 10−3 2.80× 10−3 4.58× 10−2 3.18× 10−1 4.52× 10−1 1.35× 101

Before Dreg 4.95× 10−2 5.44× 10−1 1.93× 100 1.20× 101 3.84× 101 3.16× 102 1.32× 103

After Dreg 1.77× 10−1 8.50× 10−1 4.25× 100 1.47× 101 8.58× 101 4.01× 102 3.07× 103

| Ci |= 2048 Average 2.30× 10−1 1.57× 100 8.63× 100 4.17× 101 1.85× 102 9.04× 102 4.91× 103

σ 9.07× 10−3 1.19× 10−3 5.04× 10−2 2.42× 10−2 3.00× 10−1 1.80× 100 9.34× 100

Before Dreg 4.98× 10−2 5.42× 10−1 1.99× 100 1.89× 101 6.11× 101 3.71× 102 1.31× 103

After Dreg 1.77× 10−1 1.03× 100 6.64× 100 2.28× 101 1.23× 102 5.33× 102 3.60× 103

| Ci |= 4096 Average 2.30× 10−1 1.57× 100 9.35× 100 6.35× 101 2.92× 102 1.34× 103 6.47× 103

σ 9.19× 10−3 6.40× 10−4 8.52× 10−2 1.12× 10−2 2.14× 10−1 5.00× 10−1 1.73× 101

Before Dreg 4.95× 10−2 5.43× 10−1 1.99× 100 2.37× 101 8.93× 101 5.80× 102 1.99× 103

After Dreg 1.77× 10−1 1.03× 100 7.36× 100 3.97× 101 2.03× 102 7.57× 102 4.49× 103

SD2
k = 5 Average 1.17× 10−1 5.86× 10−1 3.33× 100 2.21× 101 1.38× 102 1.09× 103 7.25× 103

σ 1.14× 10−2 1.02× 10−3 2.54× 10−2 9.39× 10−3 1.68× 10−1 9.22× 10−1 5.91× 101

Before Dreg 3.50× 10−2 2.35× 10−1 8.18× 10−1 7.38× 100 3.02× 101 3.41× 102 1.48× 103

After Dreg 6.59× 10−2 3.41× 10−1 2.50× 100 1.47× 101 1.08× 102 7.50× 102 5.77× 103

k = 10 Average 1.27× 10−1 5.38× 10−1 2.67× 100 1.89× 101 9.63× 101 8.69× 102 5.58× 103

σ 4.58× 10−4 7.81× 10−4 2.51× 10−2 1.00× 10−2 3.96× 10−2 1.22× 100 1.03× 101

Before Dreg 3.64× 10−2 2.63× 10−1 9.39× 10−1 8.02× 100 3.19× 101 3.40× 102 1.49× 103

After Dreg 4.74× 10−2 2.61× 10−1 1.71× 100 1.08× 101 6.44× 101 5.30× 102 4.10× 103

k = 15 Average 1.19× 10−1 5.23× 10−1 2.73× 100 1.66× 101 9.53× 101 7.47× 102 3.77× 103

σ 3.00× 10−4 1.11× 10−3 3.87× 10−3 8.85× 10−3 1.19× 10−1 9.83× 10−1 8.57× 100

Before Dreg 3.73× 10−2 2.71× 10−1 1.06× 100 8.64× 100 3.41× 101 3.08× 102 1.33× 103

After Dreg 4.60× 10−2 2.25× 10−1 1.62× 100 7.85× 100 6.06× 101 4.39× 102 2.44× 103

SD3
r = 1/5 Average 1.12× 10−1 5.81× 10−1 3.27× 100 2.21× 101 1.35× 102 1.09× 103 7.04× 103

σ 1.02× 10−3 8.72× 10−4 4.84× 10−3 6.02× 10−3 7.38× 10−2 6.49× 10−1 8.54× 101

Before Dreg 3.49× 10−2 2.28× 10−1 8.06× 10−1 7.35× 100 3.00× 101 3.40× 102 1.48× 103

After Dreg 6.79× 10−2 3.40× 10−1 2.44× 100 1.47× 101 1.05× 102 7.50× 102 5.56× 103

r = 1/10 Average 1.16× 10−1 5.36× 10−1 2.96× 100 1.92× 101 1.15× 102 8.60× 102 5.88× 103

σ 5.39× 10−4 4.90× 10−4 2.23× 10−3 7.58× 10−3 4.53× 10−2 1.09× 100 4.79× 101

Before Dreg 3.60× 10−2 2.60× 10−1 9.19× 10−1 8.37× 100 3.14× 101 3.30× 102 1.47× 103

After Dreg 6.58× 10−2 2.62× 10−1 2.02× 10−0 1.08× 101 8.34× 101 5.30× 102 4.41× 103

r = 1/15 Average 1.17× 10−1 5.55× 10−1 3.19× 100 1.66× 101 9.41× 101 7.44× 102 4.94× 103

σ 3.00× 10−4 7.00× 10−4 2.88× 10−3 1.19× 10−1 1.12× 10−1 1.07× 100 9.59× 100

Before Dreg 4.26× 10−2 2.87× 10−1 1.04× 100 8.99× 100 3.35× 101 2.98× 102 1.31× 103

After Dreg 5.45× 10−2 2.48× 10−1 2.12× 100 7.55× 100 6.05× 101 4.46× 102 3.63× 103

SD3 followed by SD1 with r = 1/15 and | Ci |= 512
Average 2.23× 10−1 8.20× 10−1 3.78× 100 2.01× 101 1.11× 102 6.53× 102 3.24× 103

σ 6.45× 10−3 9.00× 10−4 3.04× 10−3 1.33× 10−2 9.05× 10−2 5.78× 10−1 1.35× 101

Before Dreg 4.28× 10−2 2.89× 10−1 1.05× 100 9.00× 100 3.36× 101 2.96× 102 1.30× 103

After Dreg 1.65× 10−1 5.13× 10−1 2.71× 100 1.11× 101 7.69× 101 3.57× 102 1.94× 103

SD4 followed by SD1 with | Ci |= 512
Average 1.91× 10−1 7.09× 10−1 3.48× 100 1.75× 101 1.03× 102 6.14× 102 3.10× 103

σ 6.78× 10−3 6.00× 10−4 3.29× 10−3 1.41× 10−2 7.21× 10−2 1.76× 100 1.11× 101

Before Dreg 2.30× 10−2 1.96× 10−1 7.25× 10−1 6.46× 100 2.61× 101 2.55× 102 1.14× 103

After Dreg 1.64× 10−1 5.08× 10−1 2.74× 100 1.10× 101 7.68× 101 3.59× 102 1.95× 103

SD5 followed by SD1 with | Ci |= 512
Average 1.39× 10−1 6.25× 10−1 3.33× 100 1.97× 101 1.09× 102 8.09× 102 4.26× 103

σ 6.64× 10−3 2.61× 10−3 1.68× 10−2 8.88× 10−3 5.87× 10−2 9.52× 10−1 6.62× 100

Before Dreg 2.49× 10−2 2.20× 10−1 7.96× 10−1 7.44× 100 3.04× 101 3.14× 102 1.42× 103

After Dreg 1.10× 10−1 4.00× 10−1 2.53× 100 1.23× 101 7.83× 101 4.95× 102 2.84× 103

σ stands for a standard deviation.

Akita University

3.1. SELECTION STRATEGY OF F4-STYLE ALGORITHM 37

Table 3.2: Benchmark Results for MQ Problems over F31 for m = n+ 1, Total
CPU Time (sec)

(n,m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17)
Original OpenF4

Average 1.22× 10−1 5.89× 10−1 2.55× 100 1.38× 101 8.00× 101 6.30× 102 3.74× 103 3.04× 104

σ 2.12× 10−3 3.44× 10−3 1.01× 10−1 1.51× 100 1.78× 10−1 2.32× 100 2.54× 102 4.32× 102

Before Dreg 2.82× 10−2 2.04× 10−1 5.75× 10−1 4.39× 100 1.48× 101 1.88× 102 7.28× 102 8.46× 103

After Dreg 8.98× 10−2 3.81× 10−1 1.97× 100 9.40× 100 6.52× 101 4.42× 102 3.01× 103 2.20× 104

SD1
|Ci| = 128 Average 7.07× 10−2 3.12× 10−1 1.38× 100 6.88× 100 3.23× 101 2.01× 102 1.32× 103 1.17× 104

σ 1.00× 10−3 1.85× 10−3 2.41× 10−2 1.42× 10−1 2.70× 10−1 5.46× 10−1 5.33× 100 6.83× 101

Before Dreg 2.11× 10−2 1.55× 10−1 4.25× 10−1 3.83× 100 1.34× 101 1.38× 102 6.09× 102 8.69× 103

After Dreg 4.60× 10−2 1.51× 10−1 9.46× 10−1 3.03× 100 1.89× 101 6.27× 101 7.11× 102 3.02× 103

|Ci| = 256 Average 9.17× 10−2 3.03× 10−1 1.24× 100 6.30× 100 2.79× 101 1.66× 102 9.76× 102 7.81× 103

σ 9.00× 10−4 2.42× 10−3 5.33× 10−3 1.31× 10−1 7.61× 10−2 2.76× 10−1 1.54× 100 2.45× 101

Before Dreg 2.73× 10−2 1.39× 10−1 3.43× 10−1 2.79× 100 1.03× 101 9.01× 101 4.02× 102 5.35× 103

After Dreg 5.93× 10−2 1.60× 10−1 8.85× 10−1 3.50× 100 1.76× 101 7.61× 101 5.74× 102 2.47× 103

|Ci| = 512 Average 1.12× 10−1 3.83× 10−1 1.35× 100 5.52× 100 2.90× 101 1.52× 102 7.97× 102 5.39× 103

σ 2.09× 10−3 2.24× 10−3 2.59× 10−2 2.65× 10−1 1.03× 10−2 1.36× 10−1 1.98× 100 1.70× 101

Before Dreg 2.74× 10−2 1.72× 10−1 4.30× 10−1 2.06× 100 8.69× 100 7.10× 101 2.99× 102 3.70× 103

After Dreg 8.08× 10−2 2.05× 10−1 9.12× 10−1 3.45× 100 2.03× 101 8.12× 101 4.99× 102 1.69× 103

|Ci| = 768 Average 1.18× 10−1 4.57× 10−1 1.56× 100 5.91× 100 2.72× 101 1.52× 102 8.02× 102 5.12× 103

σ 2.18× 10−3 1.85× 10−3 2.20× 10−2 1.89× 10−1 9.46× 10−3 2.13× 100 1.31× 100 5.24× 101

Before Dreg 2.75× 10−2 1.99× 10−1 4.91× 10−1 2.41× 100 7.07× 100 6.51× 101 2.67× 102 3.25× 103

After Dreg 8.59× 10−2 2.53× 10−1 1.06× 100 3.49× 100 2.01× 101 8.67× 101 5.35× 102 1.86× 103

|Ci| = 1024 Average 1.19× 10−1 5.17× 10−1 1.81× 100 6.70× 100 2.66× 101 1.49× 102 8.68× 102 5.05× 103

σ 1.80× 10−3 2.37× 10−3 1.75× 10−2 1.40× 10−1 4.72× 10−2 1.54× 100 1.77× 100 3.06× 101

Before Dreg 2.72× 10−2 2.00× 10−1 5.60× 10−1 2.75× 100 7.79× 100 6.28× 101 2.45× 102 2.75× 103

After Dreg 8.72× 10−2 3.13× 10−1 1.24× 100 3.95× 100 1.88× 101 8.61× 101 6.22× 102 2.30× 103

|Ci| = 2048 Average 1.18× 10−1 5.79× 10−1 2.34× 100 8.98× 100 3.42× 101 1.56× 102 8.63× 102 5.20× 103

σ 1.68× 10−3 1.83× 10−3 3.16× 10−2 1.43× 10−1 2.05× 10−2 4.88× 10−1 1.15× 101 2.37× 101

Before Dreg 2.73× 10−2 1.99× 10−1 5.79× 10−1 3.71× 100 1.07× 101 6.16× 101 2.14× 102 2.46× 103

After Dreg 8.66× 10−2 3.76× 10−1 1.77× 100 5.26× 100 2.34× 101 9.39× 101 6.48× 102 2.73× 103

|Ci| = 4096 Average 1.19× 10−1 5.81× 10−1 2.54× 100 1.23× 101 5.27× 101 2.16× 102 1.05× 103 6.09× 103

σ 1.63× 10−3 2.54× 10−3 9.76× 10−2 9.86× 10−1 1.15× 10−1 8.77× 10−1 1.48× 101 4.83× 101

Before Dreg 2.72× 10−2 2.00× 10−1 5.69× 10−1 4.36× 100 1.47× 101 9.12× 101 3.10× 102 2.44× 103

After Dreg 8.72× 10−2 3.76× 10−1 1.96× 100 7.91× 100 3.80× 101 1.25× 102 7.39× 102 3.65× 103

SD2
k = 5 Average 7.91× 10−2 3.01× 10−1 1.32× 100 6.13× 100 2.88× 101 1.83× 102 1.22× 103 8.53× 103

σ 2.12× 10−3 1.99× 10−3 1.35× 10−1 3.98× 10−1 2.44× 10−2 7.03× 10−2 5.35× 102 2.30× 102

Before Dreg 2.64× 10−2 1.32× 10−1 3.62× 10−1 2.07× 100 6.79× 100 5.97× 101 2.22× 102 2.42× 103

After Dreg 4.51× 10−1 1.60× 10−1 9.22× 10−1 4.03× 100 2.20× 101 1.23× 102 1.00× 103 6.11× 103

k = 10 Average 1.17× 10−1 3.38× 10−1 1.37× 100 6.67× 100 2.67× 101 1.65× 102 9.63× 102 7.10× 103

σ 1.08× 10−3 2.05× 10−3 8.76× 10−3 1.09× 100 2.97× 10−1 2.45× 10−1 9.38× 10−1 9.41× 102

Before Dreg 3.16× 10−2 1.74× 10−1 4.93× 10−1 2.89× 100 9.10× 100 7.15× 101 2.74× 102 2.58× 103

After Dreg 3.94× 10−2 1.48× 10−1 8.51× 10−1 3.72× 100 1.76× 101 9.38× 101 6.89× 102 4.51× 103

k = 15 Average 1.13× 10−1 3.68× 10−1 1.57× 100 7.05× 100 4.29× 101 1.56× 102 8.51× 102 5.73× 103

σ 8.72× 10−4 1.55× 10−3 1.29× 10−2 5.16× 10−1 1.03× 10−1 8.86× 10−2 1.63× 100 7.39× 100

Before Dreg 3.41× 10−2 1.93× 10−1 6.35× 10−1 3.64× 100 1.13× 101 7.28× 101 2.58× 102 2.28× 103

After Dreg 4.03× 10−2 1.47× 10−1 8.85× 10−1 3.32× 100 3.10× 101 8.36× 101 5.92× 102 3.45× 103

SD3
r = 1/5 Average 8.05× 10−2 2.99× 10−1 1.25× 100 5.89× 100 2.81× 101 1.80× 102 1.11× 103 8.39× 103

σ 1.02× 10−3 1.61× 10−3 4.56× 10−3 4.38× 10−2 3.32× 10−2 1.56× 10−1 5.19× 101 6.57× 101

Before Dreg 2.54× 10−2 1.30× 10−1 3.56× 10−1 2.03× 100 6.74× 100 5.89× 101 2.39× 102 2.41× 103

After Dreg 4.41× 10−2 1.57× 10−1 8.77× 10−1 3.84× 100 2.13× 101 1.21× 102 8.75× 102 5.97× 103

r = 1/10 Average 9.70× 10−2 3.34× 10−1 1.44× 100 6.54× 100 2.85× 101 1.63× 102 9.78× 102 6.65× 103

σ 8.94× 10−4 1.73× 10−3 6.32× 10−3 9.04× 10−2 1.42× 10−2 1.84× 100 9.16× 100 5.87× 101

Before Dreg 3.32× 10−2 1.73× 10−1 4.85× 10−1 3.19× 100 8.94× 100 7.07× 101 2.69× 102 2.52× 103

After Dreg 5.08× 10−2 1.44× 10−1 9.27× 10−1 3.32× 100 1.96× 101 9.22× 101 7.10× 102 4.13× 103

r = 1/15 Average 1.08× 10−1 3.84× 10−1 1.68× 100 7.02× 100 3.07× 101 1.56× 102 9.08× 102 5.71× 103

σ 6.00× 10−4 1.86× 10−3 7.40× 10−3 9.72× 10−2 2.96× 10−2 2.80× 10−1 1.67× 100 1.23× 101

Before Dreg 3.92× 10−2 2.10× 10−1 6.33× 10−1 3.97× 100 1.12× 101 7.22× 101 2.59× 102 2.25× 103

After Dreg 4.70× 10−2 1.51× 10−1 1.02× 100 3.01× 100 1.94× 101 8.39× 101 6.49× 102 3.46× 103

SD3+SD1 r = 1/15, |Ci| = 512
Average 1.36× 10−1 4.27× 10−1 1.56× 100 7.22× 100 3.12× 101 1.52× 102 7.52× 102 3.92× 103

σ 1.08× 10−3 1.64× 10−3 2.84× 10−2 5.30× 10−2 2.87× 10−2 9.05× 10−2 1.10× 100 1.23× 101

Before Dreg 3.90× 10−2 2.06× 10−1 6.19× 10−1 3.88× 100 1.09× 101 7.04× 101 2.55× 102 2.22× 103

After Dreg 8.08× 10−2 2.02× 10−1 9.11× 10−1 3.30× 100 2.03× 101 8.10× 101 4.96× 102 1.70× 103

SD4+SD1 |Ci| = 512
Average 1.03× 10−1 3.21× 10−1 1.26× 100 5.38× 100 2.73× 101 1.33× 102 7.11× 102 3.78× 103

σ 1.02× 10−3 8.00× 10−4 6.52× 10−2 2.76× 10−1 2.27× 10−2 1.56× 10−1 7.46× 100 5.81× 102

Before Dreg 1.73× 10−2 1.07× 10−1 3.20× 10−1 1.83× 100 6.08× 100 4.89× 101 1.95× 102 2.00× 103

After Dreg 8.19× 10−2 2.08× 10−1 9.38× 10−1 3.54× 100 2.12× 101 8.43× 101 5.16× 102 1.78× 103

SD5+SD1 |Ci| = 512
Average 8.34× 10−2 2.93× 10−1 1.22× 100 5.69× 100 2.63× 101 1.53× 102 8.09× 102 5.89× 103

σ 9.14× 10−4 1.10× 10−3 2.47× 10−2 2.03× 10−1 1.06× 10−2 2.30× 10−1 1.34× 100 5.16× 100

Before Dreg 1.79× 10−2 1.11× 10−1 3.20× 10−1 1.96× 100 6.60× 100 5.49× 101 2.27× 102 2.22× 103

After Dreg 6.22× 10−2 1.76× 10−1 8.95× 10−1 3.72× 100 1.97× 101 9.83× 101 5.81× 102 3.67× 103

σ stands for a standard deviation.

Akita University

38 CHAPTER 3. CONTRIBUTIONS

Table 3.3: Experimental Results of Minimum Number of Critical Pairs for a
Reduction to Zero in the First Half for m = n+ 1 over F256 and F31

(n,m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17) (17, 18)† (18, 19)†

d = 2
Min 9 10 11 12 13 14 15 16 17 18
Total 9 10 11 12 13 14 15 16 17 18

d = 3
Min 20 24 28 32 36 40 45 50 55 60
Total 20 24 28 32 36 40 45 50 55 60

d = 4
Min 39 50 60 76 91 106 126 146 165 189
Total 99 126 153 187 221 256 301 347 393 445

d = 5
Min 63 88 120 156 204 248 318 378 462 550
Total 259 354 456 604 764 927 1158 1386 1638 1942

d = 6
Min

–
132 187 286 364 532 664 901 1089 1424

Total 737 1059 1432 2004 2612 3449 4331 5443 6780

d = 7
Min

– – –
429 572 936 1300 1768 2448 3078

Total 3003 4004 6216 8164 11492 14616 19614

d = 8
Min

– – – – –
1430 2002 3094 4590 5814

Total 11804 17108 24480 35496 45999

d = 9
Min

– – – – – – –
4862 7072 10336

Total 45526 70176 93024

d = 10
Min

– – – – – – – – –
16796

Total 173774
Min stands for a minimum number of critical pairs for a reduction to zero.
Total stands for the total number of critical pairs appearing before a reduction.
† : Another NUMA machine that has 3TB RAM was used.

of the experiments we conducted. It was not possible to estimate the number
of critical pairs that generate a reduction to zero for the first time under the
condition where n > 15 over F256 or n > 16 over F31 due to the limitations of
our machine and the OpenF4 library. Further research is required to investigate
the number of critical pairs that generate a reduction to zero. Instead, we
developed SD5 in the first half of the computation by approximating the ratio
Min to Total specified in Table 3.3. It is possible to apply SD5 to the condition
where n > 15 over F256 or n > 16 over F31. It should be noted that SD4 can
be applied once a phenomenon like Table 3.3 is identified in a given condition.
Future work will mainly cover the investigation of the mechanism to generate a
reduction to zero.

Akita University

3.2. SECURITY OF THE PATCHED CBC MODE 39

3.2 Security of the Patched CBC Mode

3.2.1 Patched CBC

To fix security flaws of the CBC mode, some software patches for the Weak-
TLS1.0 described in Section 2.10.2 have been released by browser vendors. For
example, a countermeasure to prepend an empty plaintext record before send-
ing the actual plaintext records It is no longer used since it is insufficient for
practical use because of the lack of interconnectivity [48]. Currently, the soft-
ware patch named 1/n − 1 record splitting patch[67] is widely used, which is
implemented as described in Table 3.4 and Figure 3.5.

We name the authenticated encryption scheme described in Table 3.4 as
SplTLS1.0. For decryption, the algorithm outputs plaintexts using DWeakTLS1.0

multiple times.

Algorithm KSplTLS1.0 Algorithm ESplTLS1.0(K,M ; st)

K
$← KWeakTLS (C0, st)← EWeakTLS1.0(K,M [0][0]; st)

Output K If M is one byte then output (C0, st)
else (C1, st)← EWeakTLS1.0(K,M [0][1..]; st)
and output (C0, C1) and st

Table 3.4: Patched CBC (SplTLS1.0)

Figure 3.5: Patched CBC: 1/n−1 Record Splitting Patch Applied WeakTLS1.0
(SplTLS1.0)

In SplTLS1.0, the encryption algorithm for WeakTLS1.0 is invoked two times
to encrypt the message M . For the first time, the first byte of the message
M [0][0] is encrypted, and for the second time, the remaining message M [0][1..]
is encrypted. The security proof of SplTLS1.0 is given as follows.

Akita University

40 CHAPTER 3. CONTRIBUTIONS

Theorem 3.2.1 ([42]). If P is PRP, andMA is (complete) PRF, then SplTLS1.0
satisfies (ϵIND, q) IND-CPA security, where

ϵIND = 2ϵPRF + 2ϵPRP +
q′(q′ − 1)

28λ
+ ϵG4 +

q′2

28λ
.

And 8λq′ is the bit-length of all the ciphertexts generated by LR oracle. For ϵG4,

• if λ− 1 ≤ τ then, ϵG4 = q(q−1)
28λ−7 ;

• else ϵG4 = q(q−1)
28τ−1 .

The theorem says that the indistinguishability of the patched CBC mode
depends on the tag length. For example, if AES and HMAC-SHA1 are used as
P andMA respectively then λ = 16, τ = 20 and hence ϵG4 = q(q − 1)/2121. If
the truncated HMAC defined in RFC 6066 [26] is used instead then τ = 10 and
hence ϵG4 = q(q − 1)/279. AdvIND of SplTLS1.0 may increase in this case.

SEWeakTLS1.0 is not secure against BEAST attacks, as stated in Section 1.5.
Now, we pose the question, can we apply BEAST type of attack to the patched
CBC mode? We will take a look at a simple example as follows. We will encrypt
a plaintext

P = r1||r2||m where |r1| = |m| = 1, |r2| = λ− 2

by SplTLS1.0 (Figure 3.6).

Figure 3.6: An Simple Example of the Record Splitting

At the first block of the second record in the chosen boundary phase, we
have

C[1]⊕F−1
K (C[2]) = P [2] = r2||m||(a leftmost byte of a tag in P[2]).

Akita University

3.2. SECURITY OF THE PATCHED CBC MODE 41

Let us suppose that an attacker makes a target encrypt forged blocks r1||r2||i (where i =
0, . . . , 255) in the blockwise phase. So, at the first block of the second record in
the blockwise phase, we have

C[6]⊕F−1
K (C[7]) = P [7] = r2||i||(a leftmost byte of a tag in P[7]).

In this example, we will find the following observations because of the counter
c in the tag.

O1. C[6] varies whenever C[7] is computed in the blockwise phase.

O2. Both P [2] and P [7] contain leftmost bytes of different tags respectively.

Because the comparison between C[2] and C[7] is not useful, the patched CBC
mode completely defeats all attacker’s attempts in the blockwise phase, as was
presented in Section 1.5. Therefore, they indicate that it is hard to apply
BEAST type of attack to the patched CBC mode without enough oracle ac-
cess for both P and MA and then we can not distinguish plaintexts by these
ciphertexts.

3.2.2 Security Proof of Theorem 3.2.1

We define a sequence of games and prove its IND-CPA security. In game Gi,
the probability of the adversary A outputting a bit 1 is described by

Pr[A⇒ 1 | Gi].

Game G0: In this game, we set b = 0 in the definition of IND-CPA. Therefore,

Pr[A⇒ 1 | G0].

Game G1: This is the same as game G0 except that the PRP F is replaced with
a random permutation. By the definition of PRP,

|Pr[A⇒ 1 | G0]− Pr[A⇒ 1 | G1]| ≤ ϵPRP.

Game G2: This game is the same as game G1 except that we replace the random
permutation P with a random function. By the PRP/PRF switching lemma
(Lemma 2.6.2),

|Pr[A⇒ 1 | G1]− Pr[A⇒ 1 | G2]| ≤
q′(q′ − 1)

28λ+1
,

where q′ is the number of queries to the random permutation. Therefore, this
is the total block length of the ciphertexts.

Game G3: This is the same as game G2 except that we replace MA modeled
as the PRF with a random function. Since the difference is bounded by the
definition of the PRF,

|Pr[A⇒ 1 | G2]− Pr[A⇒ 1 | G3]| ≤ ϵPRF.

Akita University

42 CHAPTER 3. CONTRIBUTIONS

Game G4: This game is the same as game G3 except for the following. Let Mi

be the i-th message to be encrypted in LR oracle, and let ci be its counter. We
also define

Ii = Pad(Mi[0][0]∥T (ci∥|Mi[0][0]|∥Mi[0][0])).

In this game, if there exists a pair (i, j) (i ̸= j) such that Ii[0] = Ij [0], then
LR oracle stops. Let Colli,j be the event that there exists a pair (i, j) (i ̸= j)
such that Ii[0] = Ij [0]. Then, if for every i, j (i ̸= j), Colli,j does not occur;
then, the probabilities that A outputs 1 in games G3 and G4 are the same.

Let us estimate the amount of Pr[Colli,j]. Depending on the length of the
tag τ , we consider two cases λ− 1 ≤ τ , and λ− 1 > τ .

Case λ− 1 ≤ τ in game G4: Since M [0][0] is 1 byte which can be controlled by
the adversary, and λ− 1 ≤ τ , the input to FK is

X = IV⊕M [0][0]∥t[0][0]∥ · · · ∥t[0][λ− 2],

where t = T (ci∥|Mi[0][0]|∥Mi[0][0]).

Further, since ci is a counter, the input ci∥|Mi[0][0]|∥Mi[0][0] to T is not
duplicate. Hence, X[0][1..] is random since T is a random function. Therefore,
for every i, j (i ̸= j), Pr[Colli,j] ≤ 1/28λ−8. Taking the union bound, we have

|Pr[A⇒ 1 | G3]− Pr[A⇒ 1 | G4]| ≤ ϵG4,

where ϵG4 = q(q−1)
28λ−7 , and q is the number of queries to LR oracle.

Case λ− 1 > τ in game G4: By a similar discussion as above, we can estimate
the difference as

|Pr[A⇒ 1 | G3]− Pr[A⇒ 1 | G4]| ≤ ϵG4,

where ϵG4 = q(q−1)
28τ−1 .

Game G5: This game is the same as game G4 except that b = 1. We prove that
the difference in the probability that A outputs 1 in games G4 and G5 is

|Pr[A⇒ 1 | G4]− Pr[A⇒ 1 | G5]| ≤
q′2

28λ
. (3.1)

If the input to the random function FK is not duplicate, then a bit b is
information-theoretically hidden. Therefore, we estimate the probability that
the input to FK is duplicate. Let Bad be the event that input to the random
function is duplicate. Then, the left-hand side of inequality (3.1) is bounded by
Pr[Bad].

The oracle LR encrypts M0 or M1. From the previous game, we know that
the first query Ii[0] to FK is not duplicated. Hence, we can estimate the prob-
ability that Bad occurs as

Pr[Bad] ≤ q + 1

28λ
+

q + 2

28λ
+ · · ·+ q′

28λ
≤ q′2

28λ

Akita University

3.2. SECURITY OF THE PATCHED CBC MODE 43

Game G6: This game is the same as game G5 except for the following. Firstly,
we replace the random function T in MA with a PRF; then, we replace a
random function FK with a PRP. Since this modification implies reversing the
the direction of the game sequence, we have

|Pr[A⇒ 1 | G5]− Pr[A⇒ 1 | G6]|

≤ ϵPRF + ϵPRP +
q′(q′ − 1)

28λ+1
.

Since game G0 is b = 0 in the game IND-CPA and game G6 is b = 1 in the
game IND-CPA, we have

|Pr[K $← KSplTLS1.0, b
$← {0, 1}, b′ $← ALRK,b(·,·) | b = b′]− 1

2
|

≤ 2ϵPRF + 2ϵPRP +
q′(q′ − 1)

28λ
+ ϵG4 +

q′2

28λ
,

where if λ − 1 ≤ τ , then ϵG4 = q(q−1)
28λ−7 ; ϵG4 = q(q−1)

28τ−1 otherwise. This concludes
the proof.

Akita University

44 CHAPTER 3. CONTRIBUTIONS

Akita University

Bibliography

[1] The Certicom ECC Challenge. https://www.certicom.com/content/

dam/certicom/images/pdfs/challenge-2009.pdf.

[2] The RSA Challenge Numbers. https://web.archive.org/

web/20010805210445/http://www.rsa.com/rsalabs/challenges/

factoring/numbers.html.

[3] TU Darmstadt Lattice Challenge. https://www.latticechallenge.org.

[4] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram
Poettering, and Jacob C. N. Schuldt. On the Security of RC4 in TLS. In
Proceedings of the 22th USENIX Security Symposium, Washington, DC,
USA, August 14-16, 2013, pages 305–320, 2013.

[5] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Secu-
rity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
526–540, 2013.

[6] Richard Barnes. The POODLE Attack and the End of
SSL 3.0. https://blog.mozilla.org/security/2014/10/14/

the-poodle-attack-and-the-end-of-ssl-3-0/, October 2014.

[7] Richard Barnes, Martin Thomson, , Alfredo Pironti, and Adam Langley.
Deprecating Secure Sockets Layer Version 3.0. https://tools.ietf.org/
html/rfc7568/, June 2015.

[8] Adam Barth. HTTP State Management Mechanism. RFC6265, https:
//www.rfc-editor.org/rfc/rfc6265, April 2011.

[9] Adam Barth. The Web Origin Concept. https://tools.ietf.org/html/
rfc6454/, December 2011.

[10] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs
and the security of triple encryption. Cryptology ePrint Archive, Paper
2004/331, 2004. https://eprint.iacr.org/2004/331.

[11] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. Journal of Mathematical
Cryptology, 3(3):177–197, 2009.

45

Akita University

https://www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf
https://www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf
https://web.archive.org/web/20010805210445/http://www.rsa.com/rsalabs/challenges/factoring/numbers.html
https://web.archive.org/web/20010805210445/http://www.rsa.com/rsalabs/challenges/factoring/numbers.html
https://web.archive.org/web/20010805210445/http://www.rsa.com/rsalabs/challenges/factoring/numbers.html
https://www.latticechallenge.org
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://tools.ietf.org/html/rfc7568/
https://tools.ietf.org/html/rfc7568/
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265
https://tools.ietf.org/html/rfc6454/
https://tools.ietf.org/html/rfc6454/
https://eprint.iacr.org/2004/331

46 BIBLIOGRAPHY

[12] Ward Beullens and Bart Preneel. Field lifting for smaller UOV public
keys. In Progress in Cryptology - INDOCRYPT 2017 - 18th International
Conference on Cryptology in India, Chennai, India, December 10-13, 2017,
Proceedings, pages 227–246, 2017.

[13] Bruno Buchberger. A criterion for detecting unnecessary reductions in the
construction of Gröbner bases. In Edward W. Ng, editor, Symbolic and
Algebraic Computation, EUROSAM ’79, An International Symposiumon
Symbolic and Algebraic Computation, Marseille, France, June 1979, Pro-
ceedings, volume 72 of Lecture Notes in Computer Science, pages 3–21.
Springer, 1979.

[14] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux.
Password Interception in a SSL/TLS Channel. In Advances in Cryptology
- CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, pages 583–599,
2003.

[15] A. Casanova, Jean-Charles Faugère, G. Macario-Rat, J. Patarin, L. Perret,
and J. Ryckeghem. GeMSS: A great multivariate short signature. https:
//www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf.

[16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. From 5-pass MQ-based identification to MQ-based
signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 135–165, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[17] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate poly-
nomial equations. In Advances in Cryptology - EUROCRYPT 2000, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages 392–
407, 2000.

[18] Nicolas T. Courtois. The security of hidden field equations (hfe). In David
Naccache, editor, Topics in Cryptology — CT-RSA 2001, pages 266–281,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[19] Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0.
RFC2246, https://www.rfc-editor.org/info/rfc2246, January 1999.

[20] Tim Dierks and Eric Rescorla. The TLS Protocol Version 1.1. RFC4346,
https://www.rfc-editor.org/info/rfc4346, April 2006.

[21] Tim Dierks and Eric Rescorla. The TLS Protocol Version 1.2. RFC5246,
https://www.rfc-editor.org/info/rfc5246, August 2008.

[22] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[23] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In Applied Cryptography and Network Security, Third
International Conference, ACNS 2005, New York, NY, USA, June 7-10,
2005, Proceedings, pages 164–175, 2005.

Akita University

https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc5246

BIBLIOGRAPHY 47

[24] Thai Duong and Juliano Rizzo. Here Come The ⊕ Ninjas. http:

//netifera.com/research/beast/beast_DRAFT_0621.pdf, May 2011.

[25] Morris Dworkin. NIST Special Publication 800-38A, Recommendation for
Block Cipher Modes of Operation, Methods and Techniques. http://csrc.
nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf, December
2001.

[26] Donald Eastlake. Transport Layer Security (TLS) Extensions: Extension
Definitions. http://tools.ietf.org/html/rfc6066, January 2011.

[27] Jean-Charles Faugère. A new efficient algorithm for computing gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[28] Jean Charles Faugère. A new efficient algorithm for computing gröbner
bases without reduction to zero (f5). In Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’02,
pages 75–83, New York, NY, USA, 2002. Association for Computing Ma-
chinery.

[29] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
Efficient computation of zero-dimensional gröbner bases by change of or-
dering. J. Symb. Comput., 16(4):329–344, 1993.

[30] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hid-
den field equation (hfe) cryptosystems using gröbner bases. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, pages 44–60, Berlin, Hei-
delberg, 2003. Springer Berlin Heidelberg.

[31] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets
Layer (SSL) Protocol Version 3.0. RFC6101, https://www.rfc-editor.
org/rfc/rfc6101, August 2011.

[32] Rüdiger Gebauer and H. Michael Möller. On an installation of buchberger’s
algorithm. Journal of Symbolic Computation, 6(2):275–286, 1988.

[33] Peter Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS). https://tools.ietf.

org/html/rfc7366/, September 2014.

[34] Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii.
Full Plaintext Recovery Attack on Broadcast RC4. In Fast Software En-
cryption - 20th International Workshop, FSE 2013, Singapore, March 11-
13, 2013. Revised Selected Papers, pages 179–202, 2013.

[35] Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii.
Comprehensive Analysis of Initial Keystream Biases of RC4. IEICE Trans-
actions, 97-A(1):139–151, 2014.

[36] Takuma Ito, Naoyuki Shinohara, and Shigenori Uchiyama. Solving the
mq problem using gröbner basis techniques. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
E104.A(1):135–142, 01 2021.

Akita University

http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://tools.ietf.org/html/rfc6066
https://www.rfc-editor.org/rfc/rfc6101
https://www.rfc-editor.org/rfc/rfc6101
https://tools.ietf.org/html/rfc7366/
https://tools.ietf.org/html/rfc7366/

48 BIBLIOGRAPHY

[37] Antoine Joux, Vanessa Vitse, and Titouan Coladon. Openf4: F4 algo-
rithm c++ library (gröbner basis computations over finite fields). https:
//github.com/nauotit/openf4, 2015.

[38] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Jacques Stern, editor, Advances in Cryptology
— EUROCRYPT ’99, pages 206–222, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[39] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar sig-
nature scheme. In Hugo Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, pages 257–266, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[40] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryp-
tosystem by relinearization. In Michael Wiener, editor, Advances in Cryp-
tology — CRYPTO’ 99, pages 19–30, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[41] Takashi Kurokawa, Takuma Ito, Naoyuki Shinohara, Akihiro Yamamura,
and Shigenori Uchiyama. Selection Strategy of F4-Style Algorithm to Solve
MQ Problems Related to MPKC. Cryptography, 7(1):10, Feb 2023.

[42] Takashi Kurokawa, Ryo Nojima, and Shiho Moriai. On the security of CBC
mode in SSL3.0 and TLS1.0. J. Internet Serv. Inf. Secur., 6(1):2–19, 2016.

[43] Adam Langley. An update on SSLv3 in Chrome. https://groups.google.
com/a/chromium.org/forum/#!topic/security-dev/Vnhy9aKM_l4, Oc-
tober 2014.

[44] Adam Langley. The POODLE bites again (08 Dec 2014). https://www.

imperialviolet.org/2014/12/08/poodleagain.html, December 2014.

[45] Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In Fast
Software Encryption, 8th International Workshop, FSE 2001 Yokohama,
Japan, April 2-4, 2001, Revised Papers, pages 152–164, 2001.

[46] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples
for efficient signature-verification and message-encryption. In D. Barstow,
W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,
G. Seegmüller, J. Stoer, N. Wirth, and Christoph G. Günther, editors,
Advances in Cryptology — EUROCRYPT ’88, pages 419–453, Berlin, Hei-
delberg, 1988. Springer Berlin Heidelberg.

[47] Microsoft Security Response Center (MSRC). Security Advisory 3009008
updated. http://blogs.technet.com/b/msrc/archive/2014/10/29/

security-advisory-3009008-released.aspx, October 2014.

[48] Bodo Möller. Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures. http://www.openssl.org/~bodo/tls-cbc.txt, May
2004.

[49] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE Bites:
Exploiting The SSL 3.0 Fallback. https://www.openssl.org/~bodo/

ssl-poodle.pdf, September 2014.

Akita University

https://github.com/nauotit/openf4
https://github.com/nauotit/openf4
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/Vnhy9aKM_l4
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/Vnhy9aKM_l4
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
http://blogs.technet.com/b/msrc/archive/2014/10/29/security-advisory-3009008-released.aspx
http://blogs.technet.com/b/msrc/archive/2014/10/29/security-advisory-3009008-released.aspx
http://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf

BIBLIOGRAPHY 49

[50] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch.
PKCS #1: RSA Cryptography Specifications Version 2.2. RFC 8017,
https://www.rfc-editor.org/info/rfc8017, November 2016.

[51] National Institute of Standards and Technology. Post-quantum cryptogra-
phy. https://csrc.nist.gov/projects/post-quantum-cryptography.

[52] National Institute of Standards and Technology. Federal Informa-
tion Processing Standards Publication 197, Specification for the AD-
VANCED ENCRYPTION STANDARD (AES). http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf, November 2001.

[53] National Institute of Standards and Technology. Federal Information Pro-
cessing Standards Publication 198-1, The Keyed-Hash Message Authen-
tication Code (HMAC). http://csrc.nist.gov/publications/fips/

fips198-1/FIPS-198-1_final.pdf, July 2008.

[54] National Institute of Standards and Technology. New call for proposals:
Call for additional: Digital signature schemes for the post-quantum cryp-
tography standardization process. https://csrc.nist.gov/projects/

pqc-dig-sig/standardization/call-for-proposals, August 2022.

[55] J. Patarin. The oil and vinegar signature scheme. Presented at the Dagstuhl
Workshop on Cryptography, September 1997. transparencies.

[56] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key
scheme of eurocrypt’88. In Don Coppersmith, editor, Advances in Cryp-
tology — CRYPT0’ 95, pages 248–261, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg.

[57] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of poly-
nomials (ip): Two new families of asymmetric algorithms. In Ueli Maurer,
editor, Advances in Cryptology — EUROCRYPT ’96, pages 33–48, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[58] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved algorithms
for isomorphisms of polynomials. In Kaisa Nyberg, editor, Advances in
Cryptology — EUROCRYPT’98, pages 184–200, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[59] Andrei Popov. Prohibiting RC4 Cipher Suites. RFC7465, https://www.
rfc-editor.org/rfc/rfc7465, February 2015.

[60] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, https://www.rfc-editor.org/info/rfc8446, August 2018.

[61] Juliano Rizzo and Thai Duong. The CRIME attack. Ekoparty 2012, https:
//docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_

-lCa2GizeuOfaLU2HOU/, September 2012.

[62] Phillip Rogaway. Problems with Proposed IP Cryptog-
raphy. http://www.cs.ucdavis.edu/~rogaway/papers/

draft-rogaway-ipsec-comments-00.txt, April 1995.

Akita University

https://www.rfc-editor.org/info/rfc8017
https://csrc.nist.gov/projects/post-quantum-cryptography
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://www.rfc-editor.org/rfc/rfc7465
https://www.rfc-editor.org/rfc/rfc7465
https://www.rfc-editor.org/info/rfc8446
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt

50 BIBLIOGRAPHY

[63] Pratik G. Sarkar and Shawn Fitzgerald. ATTACKS ON SSL - A Compre-
hensive Study of BEAST, CRIME, TIME, BREACH, LUCKY 13 & RC4
BIASES. https://www.nccgroup.trust/globalassets/our-research/

us/whitepapers/ssl_attacks_survey.pdf, August 2013.

[64] Bruce Schneier. Applied Cryptography - Protocols, Algorithms, and Source
Code in C (2nd. edition). Wiley, 1996.

[65] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332,
1999.

[66] Victor Shoup. Sequences of games: a tool for taming complexity in se-
curity proofs. Cryptology ePrint Archive, Paper 2004/332, 2004. https:

//eprint.iacr.org/2004/332.

[67] Xuelei Su. Bugzilla Bug 665814 Comment 59. https://bugzilla.

mozilla.org/show_bug.cgi?id=665814#c59, July 2011.

[68] Trustworthy Internet Movement. SSL Pulse - Survey of the SSL
Implementation of the Most Popular Web Sites. https://www.

trustworthyinternet.org/ssl-pulse/.

[69] Serge Vaudenay. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ... In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings, pages 534–546, 2002.

[70] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and
Kouichi Sakurai. MQ challenge: Hardness evaluation of solving multivari-
ate quadratic problems. IACR Cryptology ePrint Archive, 2015:275, 2015.

[71] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and
Kouichi Sakurai. A multivariate quadratic challenge toward post-quantum
generation cryptography. ACM Commun. Comput. Algebra, 49(3):105–107,
2015.

Akita University

https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/

	Introduction and Background
	Post-quantum cryptography and NIST PQC Standardization
	MPKC
	MQ problems
	The Fukuoka MQ Challenges

	SSL 1.0 and TLS 1.0
	Overview of the Record Layer
	The CBC Mode in SSL 3.0 and TLS 1.0

	Attacks against SSL 3.0 and TLS 1.0

	Preliminaries and Notations
	Monomials and Terms
	Gröbner bases
	Targeted MQ problems
	Gröbner bases Computation Algorithms
	Buchberger's algorithm
	The F4 algorithm
	The algorithm proposed by Ito et al.

	Proposed methods
	Subdividing Methods
	Removal method

	The Game-Playing Approach
	The Difference Lemma
	The pseudorandom permutation/pseudorandom function (PRP/PRF) Switching Lemma

	PRFs and PRPs
	Symmetric Key Encryptionss and Message Authentication Codes
	Indistinguishability under Chosen-Plaintext Attack
	The CBC Mode in the TLS 1.0
	Weak CBC Mode in TLS1.0
	Unpatched CBC

	Contributions
	Selection Strategy of F4-style Algorithm
	Software performance comparisons
	The performance behavior of the proposed method in the first half
	Conclusions and future work

	Security of the Patched CBC Mode
	Patched CBC
	Security Proof of Theorem 3.2.1

