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Abstract

Stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum Ca2+ sensor, has

been shown to control a Ca2+-dependent signal that promotes cardiac hypertrophy. How-

ever, whether STIM1 has adaptive role that helps to protect against cardiac overload stress

remains unknown. We hypothesized that STIM1 deficiency causes a maladaptive response

to pressure overload stress. We investigated STIM1 heterozygous KO (STIM1+/–) mice

hearts, in which STIM1 protein levels decreased to 27% of wild-type (WT) with no compen-

satory increase in STIM2. Under stress-free conditions, no significant differences were

observed in electrocardiographic and echocardiographic parameters or blood pressure

between STIM1+/–and WT mice. However, when STIM1+/–mice were subjected to trans-

verse aortic constriction (TAC), STIM1+/–mice had a higher mortality rate than WT mice.

The TAC-induced increase in the heart weight to body weight ratio (mean mg/g ± standard

error of the mean) was significantly inhibited in STIM1+/–mice (WT sham, 4.12 ± 0.14; WT

TAC, 6.23 ± 0.40; STIM1+/–sham, 4.53 ± 0.16; STIM1+/–TAC, 4.63 ± 0.08). Reverse tran-

scription-polymerase chain reaction analysis of the left ventricles of TAC-treated STIM1+/–

mice showed inhibited induction of cardiac fetal genes, including those encoding brain and

atrial natriuretic proteins. Western blot analysis showed upregulated expression of transient

receptor potential channel 1 (TRPC1) in TAC-treated WT mice, but suppressed expression

in TAC-treated STIM1+/–mice. Taken together, the hearts of STIM1 haploinsufficient mice

had a superficial resemblance to the WT phenotype under stress-free conditions; however,

STIM1 haploinsufficient mice showed a maladaptive response to cardiac pressure overload.

Introduction

The heart is capable of remodeling in response to environmental stressors. A variety of cardio-

vascular diseases can cause pathological hypertrophic growth, which entails the genetic
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reprogramming of fetal cardiac genes resulting in increased protein synthesis and cell size

within individual myocytes. Increased intracellular Ca2+ underlies cardiomyocyte hypertrophy

through Ca2+-dependent signals. Accumulating evidence suggests that the response to hyper-

trophic signals involves Ca2+ entry channels, including canonical transient receptor potential

channels (TRPCs) and Orai channels, as well as stromal interaction molecule 1 (STIM1), an

endo/sarcoplasmic reticulum Ca2+ sensor [1–10].

STIM1 is highly conserved and appears to be ubiquitous in all eukaryotic cells [11]. STIM1

was initially shown to act as a Ca2+ sensor in the endoplasmic reticulum (ER) and to mediate

store-operated Ca2+ entry (SOCE), a major mechanism of Ca2+ entry in nearly all non-excit-

able cells. Upon depletion of Ca2+ in the ER, STIM1 relocalizes within the ER to regions that

are in close vicinity to the cytoplasmic membrane, and then promotes the opening of ORAI1

in the plasma membrane to induce the entry of extracellular Ca2+, resulting in transcriptional

activation through nuclear factor of activated T cells (NFAT) [12]. In addition, STIM1 has also

been reported to interact with TRPC family in various cell types [9, 10, 13]. Indeed, our in
vitro study showed that STIM1 knockdown inhibited the upregulation of TRPC1 and led to

the abrogation of SOCE and a robust decrease in the activation of NFAT, which resulted in the

inhibition of cardiomyocyte hypertrophy [7]. Likewise, two other groups reported that STIM1

knockdown induced loss of SOCE and suppressed agonist-triggered cardiac hypertrophy in

primary cultured neonatal cardiomyocytes [8, 10]. In humans, STIM1 loss-of-function muta-

tions were identified in patients afflicted with an immunodeficiency and autoimmunity syn-

drome. The STIM1 loss-of-function mutation abrogates SOCE and impairs lymphocyte

activation, mainly due to a failure to activate the calcineurin/NFAT system [14]. STIM1 defi-

ciency has been reported in ~20 patients [15–19]; interestingly, almost every patient manifests

myopathy as well as immunodeficiency. Therefore, it is reasonable to speculate that STIM1

deficiency might lead to heart disease in humans. However, the STIM1-deficient patients had

no clinical features of heart disease. One possible explanation is that STIM1-deficient patients

have early mortality without clinically important cardiac hypertrophy that developed over an

extended period of time. We hypothesized that STIM1 deficiency may cause a maladaptive

response to increased load. Ubiquitous germ-line deletion of STIM1 is embryonically lethal

[20], and therefore we used STIM1 haploinsufficiency (STIM1+/–) mice to address this issue.

In the present study, the cardiac phenotype of STIM1+/–mice was examined, and the mice

were subjected to transverse aortic constriction (TAC) to determine the adaptive role of

STIM1 under pressure-overload conditions.

Materials and methods

1. STIM1 hetero-knockout (KO) (STIM1+/–) mice

The generation of STIM1+/–mice using the Cre/loxP system has been described previously

[20]. This study conformed to the Akita University Graduate School of Medicine principles for

animal care and with the US National Institutes of Health Guide for the Care and Use of Labo-

ratory Animals (NIH Publication No. 85–23, revised 1996). Although we considered humane

endpoints, we could not use them because of unexpected deaths. 14 mice died without eutha-

nasia, which exhibited no clinical symptoms prior to their death. The Animal Ethics Commit-

tee of the Akita University School of Medicine has approved all animal care, experiments, and

methods including survival study with any unexpected deaths. For the survival study, humane

endpoints criteria is rapid or progressive weight loss of more than 20% of the body weight,

dehydration determined by an increase in skin tenting, sunken eyes, respiratory symptoms

such as labored breathing, nasal discharge, coughing, or cyanosis. The animals were carefully

monitored three times a day.
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2. Blood pressure (BP) measurements

BP and heart rate (HR) were measured in mice at 10 weeks of age using a tail-cuff system (BP-

98A; Softron, Tokyo, Japan) without anesthetic.

3. Echocardiography

Echocardiography (echo) with concurrent electrocardiogram (ECG) was performed as

described previously [21]. Briefly, mice were anesthetized with isoflurane (1%) in O2, and an

echo was performed using a Vevo770 equipped with a 20–60 MHz mechanical transducer.

Three to 5 beats were averaged for each measurement. The heart was first imaged in two-

dimensional (2D) mode in the parasternal short-axis view. From this view, an M-mode cursor

was positioned perpendicular to the interventricular septum and posterior wall of the left ven-

tricle (LV) at the level of the chordae tendineae. From this position, M-mode images were

obtained to measure wall thickness and chamber dimensions using the leading-edge conven-

tion adapted by the American Society of Echocardiography.

4. Minimally invasive TAC procedure

Minimally invasive aortic constriction is a modification of 4 techniques described previously

[22–25]. For the banding procedure, 10-week-old male mice were anesthetized with a mixture

of ketamine (90 mg/kg body weight [BW] administered intraperitoneally) and xylazine (10

mg/kg BW intraperitoneally), and TAC was performed through an upper partial sternotomy

(0.2–0.3 cm) in spontaneously breathing nonintubated mice. Particular care was taken not to

touch or damage the parietal pleura, preventing pneumothorax development. The aortic arch

was carefully exposed, and a 7–0 silk suture was used to tightly constrict the aorta between the

brachiocephalic trunk and the left carotid artery over a 0.3 mm wire. Once the suture was tied,

the wire was removed. Sham-operated animals were subjected to the same procedure without

aortic banding. The animals were sacrificed and the hearts were isolated 4 weeks after the

operation. The constriction rate of the aorta was calculated, and a rate greater than 94% was

considered a success. For histological analysis, 5-μm-thick sections were cut and stained with

hematoxylin and eosin (H&E). The survival rate of STIM1+/–and wild-type (WT) mice after

the TAC or sham surgery was analyzed by the Kaplan-Meier method and the log-rank test.

5. Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated from the LV of mice using ISOGEN II reagent (Nippon Gene, Tokyo,

Japan). The RT reaction was performed using standard methods. For RT-PCR analysis, 2 μg of

template was reverse-transcribed using oligo dT primer in a final volume of 20 μL. Primer

sequences are provided in the S1 Table. Comparative RT-PCR was performed under the same

conditions with 30 cycles; however, 25 cycles were used for reactions involving brain natri-

uretic protein (BNP), atrial natriuretic protein (ANF), and β-actin.

6. Western blotting

All protein samples were extracted from mice hearts. Protein concentrations were determined

using a Bradford assay with bovine serum albumin (BSA) as a standard. To determine the pro-

tein expression of STIM1 (BD Biosciences, CA, USA), STIM2 (Cell Signaling Technology,

MA, USA), TRPC1, TRPC3, TRPC4, and TRPC6 (Alomone Labs, Jerusalem, Israel), pNFATc4

(rabbit anti-mouse polyclonal antibody raised against short amino acid sequence containing

Ser 168 and 170 dually phosphorylated NFATc4 of human origin, Santa Cruz Biotechnology,

TX, USA), NFATc4 (rabbit anti-mouse polyclonal antibody raised against amino acids 125–
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198 of NFATc4 human origin, Santa Cruz Biotechnology, TX, USA), samples (50 μg) were run

on 6% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to

polyvinylidene fluoride (PVDF) membranes, and rocked at 4˚C for 1 h in blocking buffer

(0.1% Tween 20 and 1% BSA in Tris-buffered saline). An enhanced chemiluminescence

(ECL)-detection system was used to detect the bound antibodies. An anti-glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) monoclonal antibody (Santa Cruz Biotechnology, TX,

USA) was used as an internal loading control.

7. Immunostaining

Heart tissues were fixed in 4% (v/v) paraformaldehyde in 0.1 M sodium phosphate buffer (pH

7.2) overnight at 4˚C, embedded in paraffin wax, and cut into 3-μm-thick sections. For histo-

logical detection of NFATc4, the sections were incubated with the primary antibody against

NFATc4 (rabbit anti-mouse polyclonal antibody raised against amino acids 125–198 of

NFATc4 of human origin, Santa Cruz Biotechnology, TX, USA) at a 1:100 dilution at 4˚C

overnight. Then the slices were incubated with secondary antibody (Sigma-Aldrich, MO,

USA) at a 1:160 dilution for 60 min, followed by incubation with DAPI for 30 min before

observation. The nuclei appeared blue and the NFAT proteins appeared green under an

inverted Zeiss LSM510META (Carl Zeiss, Oberkochen, Germany) confocal laser scanning

microscope.

8. Statistical analysis

The data are presented as mean ± standard error of the mean (SEM). Differences were evaluated

using unpaired Student’s t-tests for 2 groups. The quantitative data for 4groups were analyzed

using a 2-way analysis of variance (ANOVA) followed by a Bonferroni post hoc test. Densitom-

etry of Western blots and quantification of cross sectional area were performed by using NIH

ImageJ software. A p-value< 0.05 was considered to indicate statistical significance.

Results

1. Expression of STIM subtypes

STIM1+/–male mice at 10 weeks of age were used in this study because the homozygous STIM1

global KO is neonatal lethal. STIM1+/+ WT littermates were used as controls. The levels of

STIM1 and STIM2 are shown in Fig 1. The mRNA (Fig 1A) and protein levels (Fig 1B) of

STIM1 in the LV of STIM1+/–mice decreased to approximately 42% and 27% of that of the

WT, respectively, indicating STIM1 haploinsufficiency in the hearts of STIM1+/–mice. On the

other hand, there were no significant differences in STIM2 subtypes expression between

STIM1+/–and WT mice (Fig 1A and 1B), suggesting no compensatory increase in STIM2 in

STIM1+/–hearts.

2. Phenotypes of STIM1-deficient mice

To investigate the cardiac phenotypes of STIM1+/–mice, heart weight (HW), BW, BP, and HR

of STIM1+/–(n = 23) and littermate STIM1+/+ WT (n = 19) male mice were examined at 10

weeks of age. Although there were no differences in HW, a slight reduction was seen in the

BW of STIM1+/–mice, consistent with previous studies [26, 27]. STIM1-deficient mice were

smaller than WT mice due to a disorder of skeletal muscle development. The HW/BW ratio

(mg/g) of STIM1+/–mice was increased slightly but not significantly. Systolic BP, diastolic BP,

and HR were measured using a tail-cuff system without anesthetic agents. Systolic and dia-

stolic BPs were reduced slightly in STIM1+/–mice compared with WT mice, but the differences

STIM1 and cardiac hypertrophy
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were not significant (Table 1). Fig 1C, Table 2 and Table 3 contain representative ECG and M-

mode echo data from 10-week-old STIM1+/–and WT mice anesthetized with isoflurane (1%).

The ECG demonstrated no arrhythmias and no differences in ECG parameters between

Fig 1. Analysis of the mice hearts. Analysis of the hearts of male mice heterozygous for stromal interaction

molecule (STIM)1 and wild-type (WT) littermates (STIM1+/–versus STIM1+/+) at 10 weeks of age. (A)

Comparative reverse transcription-polymerase chain reaction (RT-PCR) analysis of STIM1 and STIM2 gene

expression. Each experiment was repeated 4 or more times with the same result. (B) Immunoblotting for

STIM1 and STIM2. Each experiment was repeated 5 or more times with the same result. All values are

means ± standard error of the mean (SEM). (C) Representative M-mode echocardiography with concurrent

electrocardiogram in STIM1+/–and WT mice anesthetized with isoflurane (1%).

https://doi.org/10.1371/journal.pone.0187950.g001

Table 1. Mice data at 10 weeks of age.

n HW (mg) BW (mg) HW/BW (mg/g) Systolic BP (mmHg) Diastolic BP (mmHg) HR (bpm)

WT 23 122.9 ± 3.2 29.6 ± 3.4 4.17 ± 0.13 115.3 ± 4.0 76.5 ± 1.7 522.9 ± 10.3

STIM+/- 19 120.7 ± 2.4 26.6 ± 3.7 4.57 ± 0.13 113.2 ± 0.13 68.4 ± 8.5 528.5 ± 29.5

p 0.65 0.17 0.073 0.99 0.62 0.60

Heart weight (HW; mg), body weight (BW; g), systolic blood pressure (BP), diastolic BP, and heart rate (HR) are shown. BP and HR were measured using a

tail-cuff system (BP-98A; Softron, Tokyo, Japan) without anesthetic. Statistical data are presented as means ± SEM.

https://doi.org/10.1371/journal.pone.0187950.t001
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STIM1+/–and WT mice. The LV ejection fraction (EF), LV wall thickness, end diastolic vol-

ume, and LV mass determined by echo were unaffected, suggesting normal heart development

and preserved cardiac contractile function in STIM1+/–mice at 10 weeks of age.

3. Cardiac hypertrophy in response to aortic constriction

To elucidate the role of STIM1 in cardiac hypertrophy, STIM1+/–mice were subjected to pres-

sure overload with a TAC procedure at 10 weeks of age. STIM1+/–and WT littermates were

divided into 4 groups: WT sham (n = 18), WT TAC (n = 13), STIM1+/–sham (n = 16), and

STIM1+/–TAC (n = 20). To investigate mortality, the survival rates after TAC surgery were

analyzed using the Kaplan-Meier method and log-rank test. Surprisingly, more than 40% of

STIM1+/–TAC mice died within 48 h of surgery (Fig 2). The autopsies of STIM1+/–TAC mice

that died shortly after surgery showed no remarkable perivascular edema in the lungs or ven-

tricular dilation indicative of heart failure. The survival rate after 30 days was ~35%. These

findings imply that the cause of acute death was lethal arrhythmia.

Four weeks after the TAC or sham operation, mice were sacrificed and their hearts were

isolated. The banded portion of the aorta was observed via stereomicroscope and the constric-

tion rate was calculated. Greater than 94% constriction was considered a successful TAC oper-

ation. The hearts of WT TAC mice had remarkable cardiac hypertrophy, while hearts from

STIM1+/–TAC mice showed no marked changes (Fig 3A). A greater than 1.5-fold increase in

the HW/BW ratio and cross-sectional area of myocytes within the LV wall was observed in

WT TAC mice compared with WT sham mice (Fig 3B and 3C). STIM1+/–mice had signifi-

cantly less cardiac hypertrophy than WT TAC mice. These results suggest that STIM1+/–mice

failed to manifest the appearance of cardiac hypertrophy.

Comparative RT-PCR analyses were performed on the LVs of STIM1+/–and WT mice 4

weeks after TAC or sham surgery. We examined the expression of BNP and ANF, cardiac fetal

genes used as markers of cardiac hypertrophy. The RT-PCR analysis revealed increased levels

of BNP and ANF in the WT TAC group compared with those in the WT sham group (Fig 3D,

Table 2. Electrocardiogram with concurrent echocardiography data.

HR (bpm) PQ (ms) QRS (ms)

WT 445.5 17.40 8.59

STIM+/- 454.7 17.84 8.55

p 0.88 0.91 0.54

Electrocardiogram with concurrent M-mode echocardiography were done in STIM1+/–and WT mice at 10

weeks of age anesthetized with isoflurane (1%). Electrocardiogram including HR, PQ interval, QRS interval

are shown. Statistical data are presented as means ± SEM.

https://doi.org/10.1371/journal.pone.0187950.t002

Table 3. Echocardiography data.

ivs (mm) pw (mm) Dd (mm) Ds (mm) EF (%) FS (%) LVVd (μl) LVVs (μl) SV (μl) LV Mass (mg)

WT 0.8 0.81 3.52 2.35 64.1 35 54.9 21.6 31.4 103.9

STIM+/- 0.81 0.81 3.52 2.36 63.6 34.6 55.2 23.7 32.6 105.1

p 0.82 0.91 0.96 0.94 0.88 0.88 0.96 0.63 0.67 0.9

Echocardiographic characterizations including interventricular septum wall thickness (ivs), posterior wall thickness (pw), end-diastolic left ventricular

diameter (Dd), end-systolic left ventricular diameter (Ds), ejection fraction (EF), fractional shortening percentage (FS), end-diastolic left ventricular volume

(LVVd), end-systolic left ventricular volume (LVVs), stroke volume (SV), and estimated left ventricular mass (LV Mass) are shown. Statistical data are

presented as means ± SEM

https://doi.org/10.1371/journal.pone.0187950.t003
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lane 2). In contrast, increases in BNP and ANF in STIM1+/–TAC mice were attenuated (Fig

3D, lane 4) compared with those in WT TAC mice. The RT-PCR analysis revealed comparable

amplification of β-actin, suggesting equivalent experimental conditions. The experiment was

repeated in 5 independent hearts with similar results; the statistical data are presented. These

data suggest that STIM1+/–TAC mice have a maladaptive response to pressure overload.

4. Expression of TRPC subtypes in STIM1+/–hearts

Upregulation of TRPCs was implicated in the development of cardiac hypertrophy [1–6].

TRPC1, TRPC3, and TRPC6 have conserved NFAT consensus sequences in their promoters [2,

6, 10, 28]. Once activated, TRPC-mediated Ca2+ entry presumably activates NFAT and facili-

tates the expression of other TRPCs. In the present study, Western blot analysis revealed consti-

tutive expression of TRPCs in the hearts of adult mice (Fig 4). Consistent with our previous

studies [4–7], TRPC1 expression was significantly increased in the hearts of WT TAC mice

compared with WT sham mice (151 ± 11%, n = 5). As for TRPC3 and TRPC6, their expression

tended to be increased in WT TAC mice, as previously reported [1, 2, 29], though it was not sta-

tistically significant. On the other hand, STIM1+/–mice had very low levels of TRPCs (TRPC1,

TRPC3, TRPC4 and TRPC6) in the sham group, and upregulation of TRPCs was not observed

in TAC-operated hearts. When compared between STIM1+/–and WT TAC mice, the expression

level of TRPC1, TRPC3, TRPC4 and TRPC6 was significantly lower in STIM1+/–than WT TAC

mice hearts. Anti-GAPDH antibodies were used to verify that comparable amounts of protein

were loaded in each lane of the gel; each experiment was repeated 5 times with the same results.

These data suggest that STIM1 deficiency attenuates upregulation of TRPCs.

5. NFATc4 in STIM1+/–hearts

To examine subsequent NFAT signaling as a downstream event of Ca2+ related pathway in

cardiac hypertrophy, we evaluated the NFAT activity by using Western blot and immunostain-

ing (Fig 5). The relative pNFAT level was significantly decreased in the hearts of WT TAC

compared with WT sham (88 ± 3.3%, n = 5). However, STIM1+/–mice had stationary level of

relative pNFAT in both sham and TAC compared with WT. In Fig 5B, the NFAT proteins

appeared green under confocal laser scanning microscope. Almost NFAT was accumulated in

the nucleus of cardiomyocytes of WT TAC. These results suggest that NFAT activity is related

to the development of cardiac hypertrophy and the up-regulation of TRPC1.

Fig 2. Survival rate of mice. Survival rate of STIM1+/–and WT mice after transverse aortic constriction (TAC)

or sham surgery, as analyzed by the Kaplan-Meier method and log-rank test.

https://doi.org/10.1371/journal.pone.0187950.g002
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Discussion

This study provides novel insights into the role of STIM1 in the heart. First, the morphological

and functional examinations showed that STIM1 haploinsufficiency (STIM1 protein levels

decreased to 27% of WT) exerted no influence on the basal cardiac phenotype in mice up to at

least 10 weeks of age. Second, TAC-treated STIM1+/–mice failed to manifest evidence of car-

diac hypertrophy. Third, STIM1+/–mice were more susceptible to TAC-induced mortality. Col-

lectively, these data suggest that STIM1 haploinsufficiency does not influence the basal cardiac

phenotype up to 10 weeks of age, but confers a maladaptation, which renders it incapable of

hypertrophic growth under pressure-overload conditions.

Basal cardiac phenotype of STIM1+/–mice

In skeletal muscle, Ca2+ signaling governed by STIM1 has been reported to play a central role

in muscle growth and differentiation [30]. In fact, patients with STIM1 deficiency suffered

Fig 3. Cardiac hypertrophy in response to TAC. (A) Photographs and histology of hearts from STIM1+/–

and WT male mice 4 weeks after TAC or sham surgery. Hearts were sectioned horizontally and hematoxylin &

eosin (H&E) staining was performed. Cardiac hypertrophy was present in the hearts of WT TAC mice. (B)

Heart weight (HW) to body weight (BW) ratio (mg/g). (C) Cross sectional area (μm2). (D) Comparative

RT-PCR analysis of gene expression for brain natriuretic protein (BNP), atrial natriuretic protein (ANF), and

β-actin. Each experiment was repeated 5 times with the same result. All values are means ± SEM.

https://doi.org/10.1371/journal.pone.0187950.g003
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from nonprogressive myopathy and immunodeficiency [15], and those with constitutive acti-

vation of STIM1 exhibited tubular-aggregate myopathy [16]. On the other hand, functional

role of STIM1 seems minimal in the normal heart during development. In the present study,

the protein level of STIM1 was reduced to 27% in STIM1+/–mice, and there were no apparent

morphologic or histological differences between the heart of STIM1+/–and WT mice at 10

weeks of age. Furthermore, hemodynamic echo and ECG parameters were also unremarkable

in STIM1+/–. These findings are in good agreement with a previous study using heart-specific

STIM1-KO mice in which STIM1 expression was reduced by 92% [31]. There were no gross

morphological or functional differences between heart-specific STIM1-KO and control hearts

up to 20 weeks of age, and thereafter cardiac function started to decline and progressively

worsened by 36 weeks, accompanied by significant alterations in mitochondrial morphology.

These authors suggested that STIM1 is likely unnecessary for normal cardiac development and

function, but it plays an essential role in normal cardiac function in the adult heart. In humans,

autosomal-recessive mutations in the STIM1 result in combined immunodeficiency, immuno-

dysregulation, ectodermal dysplasia, and nonprogressive myopathy [15]. The prognosis of

these patients is poor and most of the patients died in childhood with fatal consequences

mainly due to immune response failure. Thus, it is not yet fully examined whether or not the

cardiac function is impaired in the adult patients. Nevertheless, all these findings support a

Fig 4. Immunoblotting for TRPCs, STIM1 and STIM2. Immunoblotting for transient receptor potential

channels (TRPCs), STIM1 and STIM2 subtype in hearts from STIM1+/–and WT mice after TAC. Each

experiment was repeated 5 or more times with the same results. All values are means ± SEM.

https://doi.org/10.1371/journal.pone.0187950.g004
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view that STIM1 has little effect on normal cardiac contraction and electrical conduction sys-

tem in mice up to at least 10 weeks of age.

Maladaptive response to pressure overload in STIM1+/–mice

In contrast to WT, STIM1+/–mice showed no evidence of cardiac hypertrophy, such as growth

of cardiomyocytes and fetal gene expression, when subjected to TAC-induced hemodynamic

stress. In addition, the upregulation of TRPC1 was inhibited in the hearts of STIM1+/–mice, and

the expression of TRPC1, TRPC3, TRPC4 and TRPC6 was significantly lower in STIM1+/–than

in WT TAC mice. Several studies have shown interaction between STIM1 and TRPCs. In par-

ticular, TRPC1, TRPC3 and TRPC6 have been found to be upregulated in response to pressure

overload and a model of calcineurin-mediated cardiomyopathy [1–7]. Furthermore, endothe-

lin-1 treatment of cultured rat myocytes enhanced TRPC1 expression, SOCE, and NFAT activa-

tion, and the knockdown of STIM1 suppressed these effects, thereby preventing a hypertrophic

response [7]. Taken together, we may safely conclude that STIM1 haploinsufficiency decreases

Fig 5. NFAT activation. Immunoblotting (A) and immunostaining (B) for the NFAT and the phosphorylated

NFATc4 (pNFAT) in hearts from STIM1+/–and WT mice after TAC. Each experiment was repeated 5 or more

times with the same results. All values are means ± SEM.

https://doi.org/10.1371/journal.pone.0187950.g005
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TRPCs expression, and that the expression of TRPCs does not reach the necessary level for car-

diac hypertrophy during pressure overload.

In lymphocyte SOCE signaling, STIM2 compensation for STIM1 has been reported. How-

ever, STIM2 did not compensate for STIM1 haploinsufficiency in our pressure-overload

model. These results suggest that the constitutive expression level of STIM1 is a critical factor

in the development of cardiac hypertrophy, and raise the possibility that STIM1-deficient

patients have an anti-hypertrophic phenotype. The cardiac hypertrophic response is a com-

pensatory reaction against an increased load, but if the adaptive response progresses beyond a

certain point, various cardiovascular events, such as heart failure, can accompany cardiac

hypertrophy. Therefore, these data suggest that STIM1 inhibition might be a promising

approach for cardioprotection in hypertrophied hearts.

Indeed, Hulot et al. showed that Stim-1 gene silencing by viral gene transfer protected rats

from pressure overload-induced cardiac hypertrophy [9]. Latest report showed that Stim1
silencing prevents the development of pressure overload–induced hypertrophy in mice by

using in vivo gene delivery of specific short hairpin RNAs [32]. They showed that mice started

to present a progressive cardiac dilation and dysfunction with reduced cardiac STIM1 expres-

sion. On the other hand, Correll et al. showed that transgenic mice with STIM1 overexpression

exhibited sudden cardiac death as early as 6 weeks of age, while mice surviving past 12 weeks

of age developed heart failure with hypertrophy, induction of the fetal gene program, histopa-

thology and mitochondrial structural alterations, loss of ventricular functional performance

and pulmonary edema [33]. These reports provided evidences that reduced STIM1 leaded to

the protection against cardiac hypertrophy, though the overexpression of STIM1exerted an

adverse effect. However, in this study, STIM1+/–mice were less tolerant of increased afterload,

as>30% of STIM1+/–TAC mice died within 48 h of surgery (Fig 3A). Considering the low

mortality of WT TAC and STIM1+/–sham mice, it is likely that the high mortality after TAC

can be attributed to the inability of STIM1+/–mice to adapt to pressure overload. This view is

supported by a previous study in which STIM1 KO mice had a limited life expectancy even in

the absence of cardiac stress [28]. Collins et al. showed there was no effect of STIM1 loss on

cardiac function up to 20 weeks though after 20 weeks there were significant impairments in

function, with signs of ER stress as early as 12 weeks. At present, it is consistent in that STIM1

is a multifunctional regulator of cardiac myocytes. Moreover, STIM1 was identified as a strong

candidate gene responsible for the exaggerated sympathetic response to stress [34]. Hence,

STIM1 haploinsufficiency might exhibit a maladaptive response to environmental stressors

including pressure overload. These findings may limit a STIM1-repression treatment approach

for heart disease. Although modifying the expression of STIM1 may be a promising therapeu-

tic approach for cardiac hypertrophy and heart failure, identifying the point of transition from

an adaptive state to a decompensated response and making a timely inhibition of STIM1

might also be of great importance.

The early death observed in STIM1+/–TAC is striking in the present study. Although we

were technically correct in attributing this to an inability to adapt to pressure overload, possi-

ble causes of the early death could not be clarified in the present study. The impairment of

hypertrophy in the surviving mice is noteworthy, but it is impossible to conclude that such

impairment contributed to the early death, since it was too rapid for hypertrophy to be a sig-

nificant factor. Furthermore, the autopsies of STIM1+/–TAC mice that died shortly after sur-

gery showed no remarkable perivascular edema in the lungs or ventricular dilation indicative

of heart failure. We speculate that these animals might have died acutely due to lethal arrhyth-

mias, which would fit to the role of STIM1 as a Ca2+ sensor, but this was not examined, and no

ECG or echo data were obtained within 48 hours after TAC. Further experiments are clearly

necessary to elucidate this point. On the other hand, the slope of the Kaplan-Meier curve after
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the initial 48 hours post-TAC was similar between STIM1+/–and WT TAC group. This suggests

that the inability to undergo hypertrophy is not a key factor in the subsequent death of STIM1+/–-

TAC mice. Also, the rapid death followed by modest rate of death after TAC may imply that

there is an incomplete penetrance of phenotype in the STIM1 heterozygotes. Namely, the sickest

animals in which the STIM1 expression might have been more suppressed markedly died in the

initial 48 hours, while hardier animals with modest suppression of STIM1 expression survived to

the study endpoint. At present, we have no clear answer regarding this important issue. In any

case, however, it seems difficult to associate the impairment of hypertrophy with the early death

observed.

Conclusions

The hearts of STIM1 haploinsufficient mice had a superficial resemblance to the WT phenotype.

However, STIM1 haploinsufficient mice displayed a maladaptive response to cardiac overload.
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