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Abstract

Studies have shown that some electrolytes, including Na+ and K+, play important roles in

embryonic development. However, these studies evaluated these electrolytes by using inhib-

itors or knockout mice, with no mention on the changes in the intracellular electrolyte concen-

trations during embryogenesis. In this study, we used the electrolyte indicators CoroNa

Green AM and ION Potassium Green-2 AM to directly visualise intracellular concentrations

of Na+ and K+, respectively, at each embryonic developmental stage in mouse embryos. We

directly observed intracellular electrolyte concentrations at the morula, blastocyst, and hatch-

ing stages. Our results revealed dynamic changes in intracellular electrolyte concentrations;

we found that the intracellular Na+ concentration decreased, while K+ concentration

increased during blastocoel formation. The degree of change in intensity in response to oua-

bain, an inhibitor of Na+/K+ ATPase, was considered to correspond to the degree of Na+/K+

ATPase activity at each developmental stage. Additionally, after the blastocyst stage, tro-

phectoderm cells in direct contact with the blastocoel showed higher K+ concentrations than

in direct contact with inner cell mass, indicating that Na+/K+ ATPase activity differs depending

on the location in the trophectoderm. This is the first study to use CoroNa Green AM and ION

Potassium Green-2 AM in mouse embryos and visualise electrolytes during embryonic devel-

opment. The changes in electrolyte concentration observed in this study were consistent with

the activity of Na+/K+ ATPase reported previously, and it was possible to image more detailed

electrolyte behaviour in embryo cells. This method can be used to improve the understanding

of cell physiology and is useful for future embryonic development studies.

Introduction

Pre-implantation development in mouse embryo involves sequential division of a fertilised egg

into blastomeres. After the 8-cell stage, blastomeres undergo compaction leading to the forma-

tion of a morula, which is the earliest point of differential spatial positioning, where the cells
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are polarised along the apical-basal axis [1]. The embryo then forms the blastocyst, character-

ised by the presence of a fluid-filled cavity and inner cell mass (ICM) that are both surrounded

by the trophectoderm (TE) [2].

Many researchers have reported electrolyte involvement in embryo development [3]. For

example, at fertilisation, Ca2+ oscillation is required for the initiation of embryonic develop-

ment [4], and K+ is thought to be involved in cell cycle regulation [5]. Particularly, many stud-

ies examining blastocoel formation have reported that water movement, along with the Na+

concentration gradient, Na+/H+ exchangers, and Na+ channel, play key roles in Na+ influx at

the apical membrane [6]. Additionally, Na+/K+ ATPase plays a major role in Na+ efflux at the

blastocoel membrane [7–9]. Water channels, known as aquaporins, are essential to facilitate

water influx through the outer cell [7, 9].

These studies primarily used knockout mice to evaluate each channel or inhibitor. To date,

no studies have directly assessed intracellular ion concentrations after the morula stage.

Because blastocoel formation is the most dynamic process in embryo development, it is impor-

tant to elucidate electrolyte behaviours at these stages.

Furthermore, live visualisation of Na+ and K+ behaviour during embryonic development is

necessary to advance the development of reproductive medicine. As previously mentioned,

Na+ is the most important electrolyte in blastocoel formation. Typically, the intracellular Na+

concentration in mammals varies between 5–15 mM depending on the cell type, whereas the

extracellular Na+ concentration is much higher at approximately 120–150 mM [10]. This con-

centration gradient is established by the activity of ion channels/transporters and pumps and

is required to maintain the resting membrane potential [10]. Moreover, K+ plays an important

role in embryonic development. Alterations in K+ channel activity induce changes in mem-

brane potential, which may modulate physiological functions at the cellular level such as gam-

ete maturation, fertilisation, cell division, and early embryonic development [5]. K+ channels

are active in early mouse oocytes until at least the blastocyst stage, oscillating in phase with the

developmental cell cycle, and exhibit high and low activities in the M/G1 and S/G2 phases,

respectively [11]. Additionally, high expression of the K2P channel in the morula is likely to be

a key factor in blastocyst formation [5].

In recent years, some studies have employed an electrolyte indicator to clarify real-time

electrolyte behaviour in nerve fibres and cardiomyocytes [12, 13]. In the reproductive field,

some studies used Ca2+ indicators [14] but none have reported the use of Na+ and K+ electro-

lyte indicators. CoroNa Green AM and ION Potassium Green-2 AM, which are indicators for

Na+ and K+, respectively, exhibit increased fluorescence emission intensity upon binding of

Na+ and K+. These indicators possess cell-permeant acetoxymethyl (AM) esters. Once inside

the cell, the AM esters are hydrolysed by intracellular esterases to release the dye. Thus, the

electrolyte concentration in the cell can be quantified based on the fluorescence intensity.

In this study, we used these electrolyte indicators to visualise Na+ and K+ concentrations at

each developmental stage in mouse embryos, to gain insights into the cytophysiology of

embryonic development. Furthermore, immunostaining of Na+/K+ ATPase was performed to

elucidate the relationship between Na+/K+ ATPase expression and activity at each develop-

mental stage.

Materials and methods

Ethical approval

Approval for the animal studies was obtained from the Institutional Animal Care and Use

Committee of Akita University (permission number: 1090–2). This study was conducted

according to Akita University Animal Experimentation Regulations.
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Collection of mouse oocytes, zygotes, and embryos

All animal experiments were performed in accordance with the Guide for Care and Use of

Laboratory Animals of Akita University and carried out as previously described with some

modifications [15]. All mice were housed in cages at 23˚C with a 12-h light/dark photoperiod

and free access to food and water. In vitro fertilisation (IVF) was selected as the embryo acqui-

sition method to precisely determine the developmental stage and maintain a uniform devel-

opmental environment throughout the experimental period, starting from the time of

insemination. Briefly, female B6D2F1 mice (Charles River Laboratories, Kanagawa, Japan),

aged 9–14 weeks, were intraperitoneally injected with 5 IU of serum gonadotrophin (Serotro-

pin1; ASKA Animal Health Co., Tokyo, Japan), followed by injection of 5 IU of human chori-

onic gonadotrophin (Gonatropin1; ASKA Animal Health Co.) after 48 h to induce ovulation.

After an additional 14 h, female mice were euthanised through cervical dislocation. The

oocytes were collected from these unmated mice and fertilised via IVF with ICR mouse sperm

in HTF medium (Ark Resource, Kumamoto, Japan). Male mice were euthanised by cervical

dislocation 1 h before insemination, and their spermatozoa were retrieved from the cauda epi-

didymis by squeezing. The retrieved spermatozoa were suspended in HTF medium at 37˚C

and 5% CO2 for 1 h and then transferred to the IVF medium (at a final concentration of 200

sperm/μL).

Embryo culture

Five hours after insemination, IVF embryos were transferred into KSOM (Ark Resource) and

cultured in 200 μL of medium in a Primo Vision Embryo Culture Dish (Vitrolife, Gothenburg,

Sweden), which was then covered with mineral oil. Embryos were cultured under the following

conditions: 5% O2, 5% CO2, 90% N2, and a temperature of 37˚C. Culture medium was not

replaced during the experiments [15]. Embryos were imaged using the Primo Vision time-

lapse monitoring system (Vitrolife) at 5-min intervals from IVF to vitrification, from thawing

to experimental use, and from washing after experimental use with the electrolyte indicator for

at least 24 h.

Vitrification and thawing

Embryos were cultured in vitro until they reached the 2-cell stage, followed by vitrification

using a Cryotop Safety Kit (Kitazato, Shizuoka, Japan). The embryos were immersed in equili-

bration solution for 15 min and then transferred into vitrification solution within 90 s. Next,

they were placed on a Cryotop under a microscope. The Cryotop was frozen directly in liquid

nitrogen, with 2–4 embryos vitrified in each Cryotop. For thawing, the embryos were warmed

by submerging the Cryotop in thawing solution (1 mol/L sucrose) at 37˚C for <60 s and then

in dilution solution (0.5 mol/L sucrose) for 3 min. The embryos were immersed in washing

solution twice, for 5 and 1 min, respectively, washed three times in KSOM, and cultured.

Na+/K+ ATPase functional assay using ouabain

Ouabain, a plant-derived cardiotonic steroid, binds to Na+/K+ ATPase and inhibits its ion

transport function [16]. Ouabain octahydrate (Abcam, Cambridge, UK) was used to assess the

function of Na+/K+ ATPase. Briefly, embryos were placed in 10−3 M ouabain for 1 h, the con-

centration previously reported to block the ion transport functions of Na+/K+ ATPase in mice

[16, 17]. Subsequently, the embryos were loaded with electrolyte indicators.

PLOS ONE Live electrolyte tracking in mouse embryonic development

PLOS ONE | https://doi.org/10.1371/journal.pone.0246337 January 29, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0246337


Electrolyte indicator

Na+ imaging. Embryos (from morula to hatching stage) were loaded with 0.5 μM CoroNa

Green AM (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s

instructions and a previous report [12] with slight modifications, at 37˚C for 30 min. Subse-

quently, intracellular and/or blastocoel fluorescence intensity was measured using an LSM780

confocal laser-scanning microscope (Carl Zeiss AG, Jena, Germany). The excitation and emis-

sion wavelengths were 488 and 510–520 nm, respectively (Fig 1A). The same experiments

were repeated at least three times.

K+ imaging. Briefly, the embryos were loaded with 5 μM ION Potassium Green-2 AM

(Abcam) at 37˚C for 30 min according to a previous report [18]. The embryos were washed

three times with KSOM, and the intracellular fluorescence intensity was measured. The excita-

tion wavelength was set to 526 nm (6-JOE), and emission was detected at 540–560 nm (Fig

2A). The same experiments were repeated at least three times.

In total, 180 mouse embryos were observed in this study. For Na+ imaging, 96 embryos

were studied, including 55 in the control group [morula (n = 20), blastocyst (n = 18), and

hatching (n = 17)] and 41 in the ouabain group [morula (n = 17), blastocyst (n = 12), and

hatching (n = 12)]. For K+ imaging, 84 embryos were used, including 50 in the control group

[morula (n = 22), blastocyst (n = 11), and hatching (n = 17)] and 34 in the ouabain group

[morula (n = 16), blastocyst (n = 9), and hatching (n = 9)].

Intensity measurement

As these indicators have not been used for thick samples such as mouse embryos (height = 75–

100 μm), we repeated these experiments to set optimal measurement conditions. The intensity

was highest at the cross-section near the dish contact surface closest to the laser firing point

and gradually decreased as the distance from the laser emission point increased. To compare

the intensity of each embryo, measurement at almost the same height was conducted for all

embryos. Images were taken at 5-μm intervals, and a slice containing the target cell or blasto-

coel was observed within 30 μm from the lowest plane of the embryo (near the equatorial

plane of the embryo) (Fig 3A).

When measuring intracellular intensity, the outer cells were targeted at the morula stage,

and the TE cells inside the zona pellucida were targeted after the blastocyst stage. The circum-

ference of the all target cells was manually plotted in the same Z section (Fig 3B). In addition,

polar body and degenerated cells showed high intensities; therefore, these cells were excluded

from the target. Next, the mean intensity of the selected region was calculated using ZEN Soft-

ware 2012 black edition (Carl Zeiss AG). The software measures intensity on a pixel-by-pixel

basis, and automatically calculates the mean intensity (Fig 3C).

Antibodies. Embryos were stained with the following antibodies: goat polyclonal anti-

Oct3/4 (Cat. Sc-8628, Lot #K0615; Santa Cruz Biotechnology, Dallas TX, USA) [15, 19], mouse

monoclonal anti-Na+/K+-ATPase α-1 (Cat. #05–369, Lot 3170808; C464.6; Merck Millipore,

Billerica, MA, USA) [15, 20], and Hoechst 33342 (Cat. 346–07951, Lot DH039, Dojindo

Molecular Technologies, Kumamoto, Japan) [15].

Immunofluorescence and confocal microscopy

For Oct3/4 and Na+/K+-ATPase staining, the embryos were fixed in methanol as previously

recommended [21] with slight modification. The embryos were fixed for 3 min each in 2:1

PBS:methanol, 1:1 PBS:methanol, 1:2 PBS:methanol, and 100% methanol. They were then

rehydrated using the same series in reverse. Prior to immunostaining, permeabilisation and

blocking were performed using PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA,
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Fig 1. Live visualisation of Na+ and intensity analysis using CoroNa Green AM. (a) Protocol for CoroNa Green AM. (b) Images of embryos at

morula, blastocyst, and hatching stages. Scale bar, 50 μm. (c) Comparison of CoroNa Green AM fluorescence intensity at each stage without ouabain.

Wilcoxon rank sum test: ��p< 0.01, ���p< 0.001. (d) Effect of ouabain at each stage. Wilcoxon rank sum test: ��p< 0.01, ���p< 0.001. (e)

Comparison of intracellular and blastocoel fluorescence intensity. Wilcoxon rank sum test: ���p< 0.001.

https://doi.org/10.1371/journal.pone.0246337.g001
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2 mM MgCl2 at pH 6.9) containing 0.01% Triton X-100 and 3% bovine serum albumin (BSA)

for 45 min at room temperature. The embryos were washed three times in PBS containing

0.1% BSA, followed by incubation with a mixed solution of anti-Oct3/4 (1:50) and anti-Na+/K

+-ATPase α-1 (1:200) primary antibodies overnight at 4˚C. The embryos were washed three

times in wash buffer (PBS; Gibco1 DPBS, Thermo Fisher Scientific, containing 0.1% BSA;

Sigma-Aldrich, St. Louis, MO, USA) and incubated with secondary antibodies (1:200; Alexa

Fluor 647-conjugated donkey anti-goat IgG, Abcam) for 1 h at room temperature. The

embryos were again washed three times in wash buffer and incubated with secondary antibod-

ies (1:200; Alexa Fluor 488-conjugated goat anti-mouse IgG, Abcam) for 1 h at room tempera-

ture. Following another three washes in wash buffer, chromatin was stained with Hoechst

Fig 2. Live visualisation of K+ and intensity analysis using ION Potassium Green-2 AM. (a) Protocol for ION Potassium Green-2 AM. (b) Images at

morula, blastocyst, and hatching stages. Scale bar, 50 μm. (c) Comparison of ION Potassium Green-2 AM fluorescence intensity at each stage without

ouabain. Wilcoxon rank sum test: ��p< 0.01. (d) Effect of ouabain at each stage.

https://doi.org/10.1371/journal.pone.0246337.g002
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33342 (1:1000) for 20 min at room temperature. After washing three times in wash buffer, the

stained embryos were examined under an LSM780 confocal laser-scanning microscope (Carl

Zeiss AG).

Statistical analyses

All statistical analyses were performed using The R Project for Statistical Computing (R Ver-

sion 4.0.3, Vienna, Austria). The percentages of normal growth in the control group and test

groups after using electrolyte indicators with/without ouabain were compared using Fisher’s

exact test and post-hoc pairwise comparisons adjusted by Holm’s method. Wilcoxon rank sum

test was used to compare fluorescence intensities between the control and ouabain groups at

each stage. Wilcoxon signed rank exact test was used to compare fluorescence intensities

between cells and blastocoels at the blastocyst and hatching stages, and intensities between TE-

blastocoel and TE-ICM. Fluorescence intensities between the embryo stages were compared

using a nonparametric, pairwise, multiple-comparison procedure, followed by Kruskal–Wallis

or Dunn’s tests [22]. p< 0.05 was considered to indicate statistical significance.

Results

Effect of electrolyte indicator on the mouse embryo

After loading the electrolyte indicator, the growth of the embryos was examined using the

Primo Vision time-lapse monitoring system for at least 24 h after washing three times. Briefly,

94.9% (37/39) of the embryos in the control group, without the indicator and ouabain, 92.0%

(23/25) in the CoroNa Green AM group, 91.9% (34/37) in the ouabain + CoroNa Green AM

Fig 3. Intensity measurement procedure. (a) The image was taken at a slice thickness of 5 μm, and the optimum slice was selected within a

range of 30 μm from the bottom. (b) The circumference of the target cells or the blastocoel was manually plotted to determine the measurement

region. (c) The ZEN Software measured the intensity on a pixel-by-pixel basis and automatically calculated the mean intensity.

https://doi.org/10.1371/journal.pone.0246337.g003
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group, 74.2% (23/31) in the ION Potassium Green-2 AM group, and 42.1% (16/38) in the oua-

bain + ION Potassium Green-2 AM group showed normal growth. Therefore, the ouabain +

ION Potassium Green-2 AM group was significantly affected compared to the control

(p = 0.0040), CoroNa Green AM (p = 0.041), and ouabain + CoroNa Green AM (p = 0.0192)

groups (Fig 4), indicating that ION Potassium Green-2 AM was more cytotoxic than CoroNa

Green AM, particularly in the ouabain combination group. (p = 1.000, control vs. CoroNa

Green and ouabain + CoroNa Green groups; p = 0.129, control vs. ION Potassium Green)

(Fig 4)

Na+ imaging

In all embryonic developmental stages, the cytoplasm exhibited almost uniform fluorescence

(Fig 1B). The change in intensity over time after addition of CoroNa Green AM gradually

increased and reached a plateau after 20 min, indicating that the indicator was well dispersed

and de-esterified in the embryo after reaching a plateau. During time-lapse imaging of the

embryo after the blastocyst stage, the outer cells initially showed fluorescence, followed imme-

diately by the blastocoel (S1 Movie). This result indicates that CoroNa Green AM is excreted

into the blastocoel after entering the cell.

Comparison of CoroNa Green AM fluorescence intracellular intensities at

each stage

The blastocyst stage and the hatching stage showed significantly lower fluorescence intensities

than the morula stage (p = 0.0062, morula vs. blastocyst; p< 0.001, morula vs. hatching

group). The difference between the blastocyst stage and the hatching stage was not significant

(p = 0.3700) (Fig 1C). Imaging was performed by loading the embryos with the Na+/K+

ATPase inhibitor ouabain, which induced a significant increase in fluorescence intensity in the

blastocyst group (p< 0.001) and in the hatching stage (p = 0.0043). Ouabain loading did not

induce a significant difference in fluorescence in the morula group (p = 0.1373) (Fig 1D).

Fig 4. Comparison of normal growth after using electrolyte indicators with/without ouabain. (A) CoroNa Green AM (B)

ouabain + CoroNa Green AM (C) ION Potassium Green-2 AM (D) ouabain + ION Potassium Green-2 AM. Normal growth

was 94.9% (37/39) in control, 92.0% (23/25) in (A), 91.9% (34/37) in (B), 74.2% (23/31) in (C), and 42.1% (16/38) in (D).

Fisher’s exact test and post-hoc pairwise comparisons adjusted using Holm’s method: �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0246337.g004
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Comparison of intracellular and blastocoel CoroNa Green AM fluorescence

intensities

After the blastocyst stage, the fluorescence intensity of the blastocoel cavity was significantly

higher than that of the intracellular environment at both the blastocyst and hatching stages

(p< 0.001) (Fig 1E).

K+ imaging

The results of K+ and Na+ imaging differed. Time-lapse imaging after addition of ION Potas-

sium Green-2 AM revealed an immediate gradual increase in intensity (S2 Movie), which did

not reach a plateau thereafter. Cells that were not in direct contact with the reagent, such as

inner cells of the morula and ICM, showed no or very weak fluorescence (Fig 2B and S2

Movie).

Comparison of ION Potassium Green-2 AM fluorescence intracellular

intensities at each stage

The hatching group showed significantly higher fluorescence intensity than that of the morula

group (p = 0.0072). The fluorescence intensity did not differ significantly between the blasto-

cyst group and the preceding and following stages (p = 0.9269, morula vs. blastocyst;

p = 0.0684, blastocyst vs. hatching group). However, intracellular fluorescence intensity

increased as development progressed in the morula, blastocyst, and hatching groups (Fig 2C).

Loading embryos with ouabain did not induce a significant difference in any group (control

vs. ouabain, p = 0.9374 at the morula stage; p = 0.1479 at the blastocyst stage; p = 0.5225 at the

hatching stage) (Fig 2D).

Comparison of fluorescence intensities of ION Potassium Green-2 AM

between TE-blastocoel and TE-ICM

After blastocoel formation, TE cells were divided into cells directly in contact with the blasto-

coel (TE-blastocoel) and ICM (TE-ICM) (Fig 5B). The fluorescence intensities in the TE-blas-

tocoel revealed significantly higher intensity than in TE-ICM (p< 0.001) (Fig 5A and 5C).

Additionally, immunostaining confirmed that Na+/K+ ATPase was localised and expressed on

the basolateral cell membranes of TE-ICM, similar to that in the TE-blastocoel (Fig 5D).

Discussion

To our knowledge, this is the first study using CoroNa Green AM and ION Potassium Green-

2 AM indicators to visualise intracellular electrolytes during embryonic development of the

mouse embryo.

We observed the behaviour of electrolytes in blastocoel formation. Our results support the

previously reported function of Na+/K+ ATPase; we additionally observed changes in the intra-

cellular electrolyte concentration. Changes in the intensities of Na+ and K+ from morula to

hatching demonstrated that the intracellular Na+ concentration decreased while K+ concentra-

tion increased during blastocoel formation. This result supports the function of Na+/K+

ATPase shown in many previous studies [7–9]. When ouabain was used in combination with

Na+ imaging, the intensity increased significantly in the blastocyst and hatching groups. These

results demonstrate the increase in Na+ concentration due to Na+/K+ ATPase inhibition, and

we considered CoroNa Green AM imaging to correlate with the intracellular Na+ concentra-

tion. In contrast, at the morula stage, the intensity was not affected by ouabain, because the

activity of Na+/K+ ATPase was lower than that at the blastocyst stage [23]. Additionally, we

PLOS ONE Live electrolyte tracking in mouse embryonic development

PLOS ONE | https://doi.org/10.1371/journal.pone.0246337 January 29, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0246337


thought that the activity of Na+/K+ ATPase was originally suppressed at the morula stage,

which may have contributed to Na+ storage in TE cells for blastocoel formation. We found

that a greater change in intensity after using ouabain was associated with higher activity of

Na+/K+ ATPase, which is consistent with a study that reported the highest Na+/K+ ATPase

activity in the blastocyst [23]. Notably, K+ fluorescence intensity did not change with ouabain

loading. This may be attributed to the strong cytotoxicity observed in the ION Potassium

Green-2 and ouabain combination group, and thus accurate measurements could not be

performed.

Intensity in the blastocoel was higher than that in the cell, indicating that the blastocoel had

a high Na+ concentration, as previously suggested [7–9]. This is the first study to visualise high

Fig 5. Comparison of ION Potassium Green-2 AM fluorescence intensity between TE-blastocoel and TE-ICM. (a) Imaging of ION

Potassium Green-2 AM at the blastocyst stage. Scale bar, 50 μm. (b) Schematic illustration of TE-blastocoel and TE-ICM. TE is divided into

cells directly in contact with the blastocoel (TE-blastocoel) and ICM (TE-ICM). (c) Comparison of fluorescence intensity between TE-

blastocoel and TE-ICM. Wilcoxon signed rank exact test: ���p< 0.001. (d) Immunofluorescence images (Oct3/4, Na+/K+ ATPase, Hoechst,

Merged) at the hatching stage. Scale bar, 50 μm.

https://doi.org/10.1371/journal.pone.0246337.g005
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Na+ inside the blastocoel. However, it is unclear whether this was due to a difference in the

indicator concentration between cells and the blastocoel and requires further analysis.

K+ intensity was higher in the TE-blastocoel than in the TE-ICM, indicating that the activ-

ity of Na+/K+ ATPase differed depending on its location in the TE (Fig 5A and 5C). When

Na+/K+ ATPase expression was confirmed by immunostaining, it was similarly localized to the

basolateral cell membrane of TE-blastocoel and TE-ICM (Fig 5D). This indicates that the elec-

trolyte indicator can reveal differences in pump activity that cannot be visualised by immunos-

taining. Low Na+/K+ ATPase activity in the TE-ICM corresponded with embryonic behaviour

during blastocoel formation, supporting that changes in electrolyte concentrations were

visualised.

Unlike time-lapse K+ imaging, fluorescence intensity reached a plateau in time-lapse Na+

imaging because CoroNa Green AM was more easily excreted from the cells than was ION

Potassium Green-2 AM. It has been reported that CoroNa Green AM leaks out of cells more

easily than other Na+ indicators [13]. Although a multidrug resistance protein is reportedly

involved in the extracellular emission of fluorescent cellular indicators [24, 25], details regard-

ing the two indicators used in this study are unclear. In addition, the lower percentage of

embryos showing normal development in the ION Potassium Green-2 AM group compared

to in the CoroNa Green AM group may be related to the low degree of excretion of ION Potas-

sium Green-2 AM indicator from the cells.

In this study, CoroNa Green AM and ION Potassium Green-2 AM were successfully used

for the first time in mouse embryos to visualise the electrolyte concentration in real-time.

Based on these results, new findings were revealed regarding the transition of Na+/K+ ATPase

activity at each stage in blastocoel formation and differences in Na+/K+ ATPase activity

depending on the location of TE. This method will enable observation of the effects of electro-

lyte concentrations of various culture solutions within embryos which could not be clarified

until now. We hope that this will lead to the development of improved culture solutions and

refinements to culture environments in the future, which will greatly contribute to develop-

ments in reproductive medicine.
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