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ABSTRACT
The hormonal factors implicated as transmitters of signals from the gut to pancreatic b-
cells are referred to as incretins. Gastric inhibitory polypeptide (GIP) and glucagon-like pep-
tide-1 (GLP-1) are incretins. In addition to the insulinotropic effects, we have shown, using
the GIP receptor and GLP-1 receptor-deficient mice, that GIP and GLP-1 have direct
actions on adipocytes and the kidney, respectively. Because GIP receptors and GLP-1
receptors are differentially expressed in a tissue-specific manner, GIP and GLP-1 have speci-
fic physiological activities, and further comprehensive characterization of the extrapancre-
atic actions of GIP and GLP-1 is anticipated, as dipeptidyl peptidase IV inhibitors activate
both GIP and GLP-1 signaling.

INTRODUCTION
Incretins are hormones that stimulate insulin secretion from
pancreatic b-cells, which are responsive to the difference of
insulin levels after oral and intravenous ingestion of glucose.
Gastric inhibitory polypeptide (GIP) was originally isolated as a
42-amino-acid hormone from the duodenum, inhibiting gastric
acid secretion and gastric motility1,2. Subsequently, GIP was
shown to be released from intestinal K cells and to stimulate
insulin secretion from pancreatic b-cells directly, and was
renamed glucose-dependent insulinotropic polypeptide3,4. Glu-
cagon-like peptide-1 (GLP-1) was originally identified as a glu-
cagon-like polypepetide from the glucagon precursor5. GLP-1
(7-37) and GLP-1(7-36) amide were shown to be released from
intestinal L cells, and stimulate insulin secretion from pancre-
atic b-cells directly6. Amino acid sequences of human GIP and
GLP-17,8 were shown to be highly homologous, belonging to
the glucagon/secretin family.

GLP-1 AND GIP HAVE PANCREATIC EFFECTS
Receptors for GLP-1 and GIP were cloned and shown to be
coupled with the stimulatory G protein, belonging to the gluca-
gon/secretin receptor family9,10. Genetic deficiency of GLP-1
receptor (GLP1R) and GIP receptor (GIPR) in mice was devel-
oped11–13. As shown in Figure 1, GLP1R-deficent mice and
GIPR-deficient mice showed higher blood glucose levels with
impaired initial insulin response after oral glucose loading.

These results confirm that GLP-1 and GIP act as incretin.
Simultaneous ablation of GLP1R and GIPR further increased
the blood glucose levels and decreased initial insulin response
after glucose loading, showing that GLP-1 and GIP cannot
compensate adequately for each other.

GLP-1 AND GIP HAVE EXTRA-PANCREATIC EFFECTS
Receptors for GLP-1 and GIP are expressed not only in pancre-
atic b-cells, but also in several extrapancreatic tissues. Figure 2
shows the tissue-specific expression patterns of GLP-1 and GIP
receptors in mice. GLP1R is highly expressed in the lung and
duodenum of mice, and GIPR is highly expressed in the testis
of mice. The expression patterns of GLP1R and GIPR are quite
different, suggesting that GLP-1 and GIP have their own physi-
ological activities.
The second amino acid from the NH3-terminal of GLP-1

and GIP is the alanine residue, and in vitro and in vivo studies
showed that both GLP-1 and GIP are substrates of dipeptidyl
peptidase IV (DPP-4), and that active peptides are degraded to
inactive peptides14,15. Mice separately deficient in GLP1R or
GIPR could augment insulin secretion after treatment with
DPP-4 inhibitors, one class of antihyperglycemic agents widely
used for treatment of diabetes, but the mice simultaneously
deficient in GLP1R and GIPR could not respond to the treat-
ment, showing that both GLP-1 and GIP signaling can be aug-
mented by treatment with DPP-4 inhibitors. These results
suggest that the extrapancreatic effects of GLP-1 and GIP might
be stimulated by treatment with DPP-4 inhibitors, in addition
to the increased pancreatic effects. Furthermore, DPP-4-resis-
tant GLP1R agonists, another class of antihyperglycemic agents,
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Figure 1 | Incretin deficiency and glucose intolerance. Glucagon-like peptide-1 (GLP-1) receptor-deficient (left, blue), gastric inhibitory polypeptide
(GIP) receptor-deficient (middle, red) and double receptor-deficient mice (right, green) in the C57BL/7 background were challenged with oral
glucose, and levels of glucose and insulin levels were measured. *P = 0.05 versus wild-type mice. Original mice are described in references11–13.
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Figure 2 | Expression patterns of incretin receptor. Gene expression of (a) glucagon-like peptide-1 receptor and (b) gastric inhibitory polypeptide
receptor was examined using reverse transcription polymerase chain reaction. Complementary deoxyribonucleic acid templates from various mouse
tissues (Genostaff, Tokyo, Japan) were amplified 25 cycles (lane 1), 30 cycles (lane 2) and 35 cycles, and fractionated on 1.5% agarose gels with
polymerase chain reaction products of glyceraldehyde-3-phosphate dehydrogenase as controls. Heart, lung, liver, stomach, small intestine (S.Int.),
large intestine (L.Int.), pancreas, skin, skeletal muscle, kidney, spleen, testis, placenta, ovary, uterus, duodenum, ileum, jejunum, brown adipose (B.A),
white adipose (W.A), eye, spinal cord (S.C), bone marrow (B.M), prostate, thymus, adrenal gland (A.G), rectum, pituitary gland (P.G), cerebral cortex
(C.C), cerebellum, olfactory bulb (O.B), hippocampus, medulla oblongate (M.O), striatum and thalamus + hypothalamus + pons (T.H.P) were
examined.
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stimulate the pancreatic and extrapancreatic effects of GLP-1.
Therefore, comprehensively understanding the pancreatic and
extrapancreatic effects of GLP-1 and GIP is essential.

GIP AS GUT-DERIVED SATIATION-RESPONSIVE
POLYPEPTIDE
As aforementioned, GIP was shown to have an activity to inhi-
bit gastric acid secretion and was known as gastric inhibitory
polypeptide. Subsequent studies showed that GIP has an activ-
ity to stimulate insulin secretion in a glucose-dependent man-
ner, thus it was renamed glucose-dependent insulinotropic
polypeptide. However, glucose-dependent insulinotropic
polypeptide might be an imprecise name, in two regards. First,
GIP has several extrapancreatic effects in addition to stimula-
tion of insulin secretion. Second, several peptides, including
GLP-1, can stimulate insulin secretion in a glucose-dependent
manner.
Our group has taken particular note of the extrapancreatic

effects of GIP. As GIPR is expressed in white adipose tissues,
and GIP increases glucose uptake and heparin-releasable
lipoprotein lipase activity of the differentiated 3T3-L1 adipose
cell line16, we hypothesized that diet-induced GIP is responsive
for promoting nutrient uptake into the adipose tissues. A high-
fat diet or overeating induces obesity in mice as well as
humans, compared with the control diet (Figure 3). These diet
styles increase blood GIP levels and insulin levels16. We bred
GIP receptor-deficient mice fed a high-fat diet or induced by
leptin deficiency to overeat, and found that mice lacking the
GIPR were protected from obesity. The GIPR-deficient mice
had a lower respiratory quotient, suggesting that fat was used
as the preferred energy substrate instead of storing it in the adi-
pose tissues. Therefore, GIP directly links overnutrition to obe-
sity. Next, we examined the effects of aging on obesity, as aging
is associated with increased fat mass and decreased lean mass.
Aged GIPR-deficient mice on the normal diet showed signifi-
cantly reduced fat mass with conserved lean mass. Furthermore,
GIPR-deficient mice showed higher heart rate, lower body tem-
perature and increased physical activity17. These phenotypic
characterizations of genetic inactivation of GIP signaling

showed similarity with those of caloric-restricted mice. Indeed,
the GIP-deficient mice showed lower adiposity18. From these
results and other studies, we have proposed GIP as “gut-derived
satiation-responsive polypeptide.”

GLP-1 AS A RENOPROTECTIVE FACTOR
Diabetic patients might develop microvascular complications,
such as retinopathy, nephropathy, and neuropathy; and macro-
vascular complications, such as cerebral infarction, myocardial
infarction and peripheral arterial diseases, which are the major
causes of morbidity and mortality. Because poor glucose control
is the major risk factor for diabetic complications, antihyper-
glycemic agents, such as sulfonylureas, biguanides and insulin,
have been given to diabetic patients.
Although GLP-1 receptor messenger ribonucleic acid was

detected in the kidney, its precise localization was controversial
because of the poor specificity of anti-GLP1R antibodies19.
Using in situ hybridization, we have shown that GLP-1 recep-
tor messenger ribonucleic acid was expressed in glomerular
capillary and vascular walls in the mouse kidney20. In vivo
examination was carried out using Akita diabetic mice on KK/
Ta or C57BL/6 background. Akita diabetic mice on C57BL/6
background are nephropathy-resistant, and genetic ablation of
GLP1R showed higher urinary albumin levels and more
advanced mesangial expansion with increased glomerular super-
oxide and upregulated renal nicotinamide adenine dinucleotide
phosphate oxidase, despite comparable levels of hyperglycemia.
By contrast, nephropathy-prone Akita diabetic mice on KK/Ta
background treated with liraglutide, a GLP1R agonist, showed
reduced albuminuria and mesangial expansion. These results
showed that GLP-1 has a crucial role in protection against
increased renal oxidative stress under chronic hyperglycemia.
Although it has not been defined as the primary end-point of
the Saxagliptin Assessment of Vascular Outcomes Recorded in
Patients with Diabetes Mellitus–Thrombolysis in Myocardial
Infarction 53 trial21, patients treated with saxagliptin, a DPP-4
inhibitor, were significantly more likely to have an improved
albumin-to-creatinine ratio, consistent with our animal studies.
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