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Abstract

We propose an approach for estimating and reconstructing the material

appearance of objects based on the spectral image data acquired in complex

illumination environments with multiple light sources. The object appearance

can be constructed with various material properties such as spectral reflec-

tance, glossiness, and matteness under different geometric and spectral illumi-

nation conditions. The objects are assumed to be made of an inhomogeneous

dielectric material with gloss or specularity. The color signals from the object

surface are described by the standard dichromatic reflection model, which con-

sists of diffuse and specular reflections, where the specular component has the

same spectral composition as the illuminant. The overall appearance of objects

is determined by a combination of chromatic factors, based on the reflectance

and illuminant spectra, and shading terms, which represent the surface geom-

etries of the surface illumination. Therefore, the appearance of a novel object

can be reconstructed by modifying the chromatic factors and shading terms.

The method for appearance estimation and reconstruction comprises four

steps: (1) illuminant estimation, (2) spectral reflectance estimation, (3) shading

term estimation and region segmentation, and (4) appearance reconstruction

based on the reflection model. The proposed approach is validated in an exper-

iment in which objects of different materials are illuminated using different

light sources. We demonstrate typical reconstruction results with novel object

appearances.

KEYWORD S

appearance estimation and reconstruction, dichromatic reflection model, glossy surface,
material appearance

1 | INTRODUCTION

Reconstruction of the appearance of objects with differ-
ent material properties, such as color and gloss, under

different illumination colors, or from different illumina-
tion directions, is often necessary in daily life settings.
The creation of plausible novel object appearances under
different conditions is called material object recoloring,1,2
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appearance control,3–5 or appearance editing.6 Previous
studies have used a three-dimensional (3D) color space as
the control space for the appearance reconstruction of
color images.

This study considers an approach for estimating and
reconstructing the surface appearance of an object based
on the spectral image data acquired in a complex illumi-
nation environment with multiple light sources. The use
of high-dimensional spectral spaces not only increases
the accuracy of estimation and reconstruction but is also
far more versatile than the use of color spaces. Object
appearance can be constructed with various material
properties such as spectral reflectance, glossiness, and
matteness under different geometric and spectral illumi-
nation conditions.

The objects we target in this study are everyday
objects, such as natural objects and man-made objects,
which are assumed to be made of an inhomogeneous
dielectric material with gloss or specularity. The spectral
composition of the reflected light from the object surface,
often called the color signal,7 is decomposed into two
additive components, diffuse (body) reflection and specu-
lar (interface) reflection. The specular reflection has the
same spectral composition as the illuminant of the input
light source to the object surface. A dichromatic reflec-
tion model describes this type of light reflection.8,9 The
color signal is expressed as a weighted sum of two spec-
tral components: one is described by the product of the
spectral reflectance and the illuminant spectrum, and the
other is described by the illuminant spectrum only. Sev-
eral materials, such as man-made products as plastics,
paints, ceramics, vinyl, and tiles and such natural

products as fruits, leaves, and wood with hard and thick
surface layers have dichromatic reflection properties.9–11

We note, however, that fruits and leaves with soft and
thin surface layers have subsurface scattering like human
skin. Such objects cannot be described using the dichro-
matic reflection model because the spectral component
based on subsurface scattering is added to the two com-
ponents. As well, the model does not apply to translucent
objects.

Because the color signal in the dichromatic reflection
model is described by the weighted sum of these two
components, the overall appearance of objects in a scene
is determined by a combination of (1) chromatic factors,
based on the spectral reflectances and the illuminant
spectra, and (2) geometric factors, based on the weighting
coefficients of the two components. The geometric factors
represent the geometries of the surface and lighting,
which are called the shading terms in this article (see12).
Therefore, novel appearances of objects can be con-
structed in the dichromatic reflection model by modify-
ing the chromatic and geometric factors. Figure 1
presents an example of the appearance reconstruction of
a glossy natural object. We used a red paprika as the
object to test the appearance reconstruction by using dif-
ferent conditions. Figure 1A shows the original appear-
ance of a red paprika observed under three light sources
from different directions, namely, a LED light (upper
source), a fluorescent light (right source), and an incan-
descent light (left source). We reconstructed the original
appearance under two different conditions of spectral
reflectance and illuminants. First, the spectral reflectance
of the red paprika was changed to the spectral reflectance

FIGURE 1 Example of appearance reconstruction of a glossy object: (A) original appearance of a red paprika observed under three light

sources from different directions: a LED light (upper source), a fluorescent light (right source), and an incandescent light (left source).

(B) Constructed appearance of the object under different conditions of material and illumination, where the object has the same surface

geometries, but it has the surface reflectance of a green color checker and is illuminated according to CIE D65 from the right and left

directions, except for the upper direction (see Section 6.6 for the details).

1314 TOMINAGA AND YONG
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of a green paprika. Second, the light sources were chan-
ged to two light sources with different spectral power dis-
tributions. Figure 1B shows the constructed appearance
of a green paprika with the same surface geometries,
which has the reflectance of a green color sample and is
illuminated according to CIE D65 from the right and left
directions, except for the upper direction. The object
appearance of paprika with different colors but same geo-
metrics is reconstructed by replacing the spectral reflec-
tance and the illuminant spectra with different spectral
functions.

The basic process of reconstructing an object appear-
ance requires estimating two types of spectral functions
of surface reflectance for each object and scene illumi-
nant and the shading terms from the spectral image data
of the object acquired by a spectral imaging system. The
method for appearance estimation and reconstruction
proposed in this paper comprises four steps: (1) illumi-
nant estimation, (2) spectral reflectance estimation,
(3) shading term estimation and region segmentation,
and (4) appearance reconstruction based on the reflection
model.

Section 2 describes a simplified version of a previously
proposed method for estimating multiple illuminants.13

Multiple illuminants are estimated based on the highlight
areas on the dielectric object surfaces. We suppose that
the object surfaces are not flat but curved, and the light
sources are located at different positions, far from the tar-
get objects. In such cases, each specular highlight area
corresponds to only one light source among multiple
light sources (see reference 13). If multiple illuminations
with different spectral compositions may hit the same
region on the object's surface, we treat such multiple light
sources as a single light source. Highlight areas on the
object surfaces are detected using a combination of
Gaussian filters, and prominent highlight areas are
selected for effective illuminant estimation. At a specular
area on the object's surface, the reflected light is mixed
with the diffuse reflection and specular reflection. When
the target object's light reflection obeys the dichromatic
reflection model, the specular reflection component has
the same spectral composition as the light source. There-
fore, we propose an algorithm to estimate the illumi-
nant's spectral composition based on the dichromatic
reflection model from the highlight area in the spectral
image. The illuminant spectral curves are estimated from
the pixel distributions in the respective highlight areas,
which were further classified into groups of light sources
to find a reliable set of illuminant estimates.

Section 3 proposes a comprehensive method for esti-
mating the surface spectral reflectance based on the
dichromatic reflection model. Spectral image data for a
specific area will be selected from an object surface are

described using the estimated illuminant spectra, surface
spectral reflectance, and shading terms. This estimation
is based on the fact that the two unknowns have different
domains. The spectral reflectance will be defined in the
wavelength domain, and the shading terms will be
defined in the spatial coordinate domain. We develop an
iterative algorithm that repeatedly estimates the reflec-
tance and shading terms in two steps. The output esti-
mates in the first step will be used as input in the second
step, then the output estimate will feedback to the first
step for iterative estimation.

In Section 4, we propose that the shading terms are
estimated for a large area of the image based on the pre-
viously estimated illuminants and spectral reflectances.
Then each object region is proposed to be segmented
using the spectral angle (SA). First, a region suitable for
describing the appearance of each object, such as a region
with highlights and no boundaries or shadows, will be
selected as a reference region, and the average color sig-
nal in that region will be calculated as a reference spec-
trum. The SA is to be defined to represent the spectral
similarity between two vectors in the high-dimensional
spectral space. Next, we will calculate the SA at each
pixel between the reference spectrum and the original
spectral image. Pixels with small SAs will then be
grouped in the same material region. Thus, region seg-
mentation will be performed based on spectral similarity.

In Section 5, novel appearances of objects in the
original scene will be created by modifying some com-
ponents of the reflection model in the respective seg-
mented regions, where the spectral functions of
reflectances and illuminants are replaced with differ-
ent functions to reconstruct the color appearance as
shown in Figure 1B. The shading intensities are chan-
ged to reconstruct the geometric appearance, such as
matteness and glossiness. An inpainting technique will
be used to correct the irregular areas in the estimated
shading images. The entire procedure will be presented
for appearance reconstruction.

In Section 6, the feasibility of the proposed approach
will be examined in an experiment using everyday objects
observed by a spectral imaging system in an illumination
environment with multiple light sources. We plan to
show the accuracies of both the estimated illuminant
spectra of the light sources and the estimated surface
spectral reflectances of the objects. We will calculate the
root mean square errors (RMSEs) between the estimated
color signals based on the dichromatic reflection model
and the observed image data for a comprehensive accu-
racy assessment. We will then demonstrate typical recon-
struction results with novel appearances of objects to
confirm the feasibility of the proposed appearance esti-
mation and reconstruction approach.

TOMINAGA AND YONG 1315
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2 | ILLUMINANT ESTIMATION

The estimation process of the illuminant spectra of multi-
ple light sources comprises two steps: (1) highlight detec-
tion and (2) spectral estimation. Here, we describe a
simplified version of a previously proposed method for
estimating multiple illuminants.13

2.1 | Highlight detection

Figure 2 shows a scene in which a spectral camera
observes a target object composed of an inhomogeneous
dielectric material under K multiple light sources. The
inhomogeneous material is a substance composed of dif-
ferent component materials, such as a vehicle at the sur-
face layer and embedded pigments at the colorant layer.
For example, plastics and paints are inhomogeneous.
Metals and crystals are typical examples of homogeneous
objects (see reference 9). Let Y λ, xð Þ be the observed color
signal (spectral radiance of the reflected light) at wave-
length λ and pixel location x = (x, y) from the object sur-
face. Color signals can be recovered from the outputs of a
spectral imaging system by determining the spectral sen-
sitivity functions. We used the luminance value L λð Þ for
highlight detection. To perform this, the original color
image Y λ, xð Þ was converted into the CIE-XYZ space
using the CIE color-matching functions, and then the
luminance component L was selected. Two Gaussian fil-
ters were applied to the luminance image L λð Þ. One is the
center-surround filter, which is determined by the differ-
ence of two Gaussian distributions (DOGs). A broader
DOG has a large standard deviation σ1 and a narrower
DOG has a small standard deviation σ2, where σ1 > σ2.
The values for σ1 and σ2 are empirically chosen. For
instance, the image in Figure 1 has a size of about

500�500. In such a case, σ1 is chosen to about 10–15, and
σ2 is chosen to about 1/4–1/3 of σ1. The broader DOG
was subtracted from the narrower DOG, as shown in
Figure 3A. This filter is effective for detecting specular
highlight areas, as well as a boundary region between the
objects and the background. The other filter is a low-pass
filter of the DOG with a large standard deviation σ3, as
shown in Figure 3B. This other filter is used to remove
the boundary regions. We select the highlights with
strong intensities among the detected highlight areas by
both filters. This is because the highlights with strong
intensities are more effective in estimating the illumina-
tion than those with weak intensities, where the color
signal of weak specular reflection is contaminated more
by diffuse reflection from nearby objects.

2.2 | Spectral estimation

The detected highlight areas provide important clues for
estimating the illuminant spectra. There are several con-
straints. Each object surface is supposed to be convex,
curved, and smooth, not rough surfaces. Concerning light
sources, multiple light sources are supposed to be sepa-
rated from the target objects also separated from each
other. In this situation, specular reflection occurs when
the incident angle of incoming light to the surface coin-
cides with the camera's viewing angle. Each detected
highlight area on the surface has illuminant spectral
information (SI) of the corresponding one light source
among the multiple light sources. If the light sources
overlap, they are treated as one light source.

We assume L different light sources. Let S λð Þ be the
surface spectral reflectance of the target object, and let
E λð Þ be the spectral power distribution of the incident
light, which is a mixture of different illuminants from K
light sources, E λð Þ¼E1 λð ÞþE2 λð Þþ…þEK λð Þ. Then, the
color signal observed at highlight point xp is described as

Y λ, xp
� �¼ cS xp

� �
Ep λð Þþ cD xp

� �
S λð ÞE λð Þ, ð1Þ

where the first and second terms represent the specular
and diffuse reflection components, respectively. The spec-
tral function Ep λð Þ is the illuminant spectrum of a single
light source corresponding to the highlight. The weight-
ing coefficients of the spectral functions, cS xp

� �
and

cD xp
� �

, are constants over the visible wavelength range.
We estimate Ep λð Þ based on the dataset of observed spec-
tra Y λ, xp

� �� �
in the highlight area.

To make the calculation of illuminant estimation
easier, we use the discrete representation of color signals.

FIGURE 2 Scene of an inhomogeneous dielectric object

observed by a spectral camera under multiple light sources

1316 TOMINAGA AND YONG
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Let y be an n-dimensional vector of the color signal
Y λ, xð Þ in the highlight area when the visible range (400–
700 nm) is sampled at n wavelengths with equal intervals.
Typically, all spectral functions are sampled in the high
dimension of n = 61 at 5 nm intervals in this study.
Because the color signal is expressed as a linear combina-
tion of only two spectral components, the color signal has
two-dimensionality. Therefore, the image data in high-
light area are projected onto a two-dimensional subspace
spanned by two principal components. Let p1 and p2 be
the first and second principal components, calculated
using principal component analysis for a dataset of the
color signals in the highlight area. The projection from

the n-dimensional space to the two-dimensional subspace
is described as

a1
a2

� �
¼ p1

t

p2
t

� �
y, ð2Þ

where symbol t indicates matrix transposition.
Figure 4 shows an example of the pixel distribution

of the image data projected onto the two-dimensional
subspace. The pixel distribution on the coordinate
a1, a2ð Þ consists of two clusters. The pixel distribution in
the upper right in the figure mostly belongs to the clus-
ter by the diffuse reflection component, and the
remaining linear distribution is the cluster by the spec-
ular reflection component. Because the specular com-
ponent has the illuminant spectral composition, the
directional vector of this linear cluster corresponds to
the light source color, that is, the illumination to be
estimated. In Figure 4, points A and B are the centroid
of the pixel distribution and the farthest pixel point
from the centroid A, respectively. Let the directional
vector A!B be a01, a

0
2

� �
. Then the illuminant vector E of

the spectral function Ep λð Þ can be estimated by

FIGURE 3 Typical filter shapes of (A) the center-surround filter (σ1 = 12, σ2 = 3) and (B) the low pass filter (σ3 = 20), and also 2D side

views (C) and (D) corresponding to (A) and (B), respectively, where the shape difference is clearly seen.

FIGURE 4 Pixel distribution of the image data in a highlight

area projected on the two-dimensional space a1, a2ð Þ, where points
A and B are the centroid of the pixel distribution and the farthest

pixel point from the centroid A, respectively.

TOMINAGA AND YONG 1317
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transforming a01, a
0
2

� �
into the n-dimensional spectral

space as follows:

bE¼ p1
t

p2
t

� �þ a01
a02

� �
, ð3Þ

where symbol + indicates the generalized inverse of a
matrix.

Because the estimates contain errors, we classified the
estimated spectral curves into groups of light sources to
find a reliable set of illuminant estimates. We adopt the
k-means clustering algorithm14 to perform this grouping.
The algorithm has an iterative process, where it starts
with initial estimates for the Κ centroids of illuminants,
which are randomly selected from the spectral dataset.
Each data point is assigned to its nearest centroid based
on Euclidean distance (ED). The centroid is recalculated
for each cluster. Because the number of light sources is
known in advance, we can set parameter K to the num-
ber of light sources L.

If the number L of light sources is unknown, we can-
not set K to L in advance. In this case, the parameter
K changes based on the number of detected highlights.
Therefore, the classification result depends on largely on
the initial values for K centroids. As the first step, we
repeat the clustering algorithm by changing the initial
values randomly. So that we have a set of classified illu-
minant spectra for different classes of K. We note that
classification using only the estimated spectra is not
enough to identify the light sources on each object
surface.

As the second step, we assign the most matched illu-
minant to each detected highlight location on each object
surface, since specular highlights appear on multiple
objects in the scene. The highlight locations on each sur-
face are closely related to the relative directions to where
those light sources exist. For example, when the object
surfaces are convex, the highlight position on the left sug-
gests that the light source is located left, and the light
comes from the left direction. Thus, the relative posi-
tional relationship between highlight areas among differ-
ent object surfaces is useful for identifying spectral light
sources on each surface. We use not only the illuminant
SI but also highlight locational information. The method
of probabilistic relaxation labeling can be applied to solv-
ing the present identification problem. The details of this
method are shown in,13 where the results illustrating the
critical choice of K are demonstrated. Thus, a set of reli-
able illuminant estimates can be determined by examin-
ing the best match based on the positional relationship
among the light source candidates detected from the
highlights of multiple object surfaces.

3 | REFLECTANCE ESTIMATION

3.1 | Model equations

We consider the estimation of spectral reflectance S λð Þ. A
discrete form of the color signal Y λ, xð Þ is often repre-
sented as an n-dimensional column vector when the visi-
ble range (400–700 nm) is sampled at n wavelengths with
equal intervals. Let N be the number of pixels in the
region of interest (ROI). The color signals observed at
wavelengths λi (i = 1, 2, …, n) and pixel points xj (j = 1,
2, …, N) are described as follows:

Y λi, xj
� �¼ cS1 xj

� �
E1 λið Þþ cS2 xj

� �
E2 λið Þþ…

þ cSK xj
� �

EK λið Þþ cD1 xj
� �

S λið ÞE1 λið Þ
þ cD2 xj

� �
S λið ÞE2 λið Þþ…

þ cDK xj
� �

S λið ÞEK λið Þ,

ð4Þ

where the first K terms represent the specular reflection
by the illumination of L light sources, and the latter
K terms represent the diffuse reflection by illumination of
the same light sources. The weighting coefficients cSk xj

� �
and cDk xj

� �
(k = 1, 2, …, K) are shading terms, which

depend on geometries such as object shape, position, and
distance from the light source and camera. Normally,
there are as many shading terms as there are two compo-
nents of specular reflection and diffuse reflection multi-
plied by the number of light sources.

We note that the illuminant spectra Ek λð Þ (k = 1,
2, …, K) of K light sources have already been estimated as
described in the previous section, so we denote the esti-
mate by bEk λð Þ. The spectral reflectance S λð Þ and shading
terms cSk xj

� �
and cDk xj

� �
(k = 1, 2, …, K) are unknown.

We define several vectors for the discrete representation
of the model as follows:

s¼

S λ1ð Þ
S λ2ð Þ
..
.

S λnð Þ

26666664

37777775, yj ¼

Y λ1, xj
� �

Y λ2, xj
� �

..

.

Y λn, xj
� �

26666664

37777775, cj ¼

cS1 xj
� �
..
.

cSK xj
� �

cD1 xj
� �

..

.

cDK xj
� �

266666666666664

377777777777775
,

zi ¼

Y λi, x1ð Þ� cS1 x1ð ÞbE1 λið Þ� cS2 x1ð ÞbE2 λið Þ�…� cSL x1ð ÞbEL λið Þ
Y λi, x2ð Þ� cS1 x2ð ÞbE1 λið Þ� cS2 x2ð ÞbE2 λið Þ�…� cSL x2ð ÞbEL λið Þ
..
.

Y λi, xNð Þ� cS1 xNð ÞbE1 λið Þ� cS2 xNð ÞbE2 λið Þ�…� cSL xNð ÞbEK λið Þ

26666664

37777775,
i¼ 1, 2,…, n, j¼ 1, 2,…,Nð Þ

ð5Þ

1318 TOMINAGA AND YONG
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where s is an n-dimensional column vector of the spec-
tral reflectance; yj is an n-dimensional column vector of
the imaging system output at location (pixel point) xj, cj
is a 2 K-dimensional column vector of the shading terms
at location xj, and zi is an N-dimensional observation
vector for the diffuse reflection component at wavelength
λi, which is obtained by subtracting the specular reflec-
tion component from the observation.

3.2 | Estimation algorithm

There are two types of unknown variables: s and cj,
which have different domains. The spectral reflectance
is defined in the wavelength domain, and the shading
terms are defined in the spatial coordinate domain.
Utilizing this property, we propose an iterative solution
method to obtain the optimal estimates of the surface
spectral reflectance function and all the weighting
coefficients of the shading terms. The iterative process
is decomposed into two steps: (1) the estimates of the
shading terms are updated under the estimated reflec-
tance fixed, and (2) the estimate of the spectral reflec-
tance is updated under the estimated shading terms
fixed.

3.2.1 | Shading term estimation

The relationship between the shading terms and all
observations is described as

y1
y2

..

.

yN

266664
377775¼

B 0 � � � 0

0 B . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 B

2666664

3777775
c1
c2

..

.

cN

266664
377775, ð6Þ

where the observation vector on the left side is a high
dimensional vector with n*N dimensions, and an n � 2 K
matrix B on the right side is defined as

The observation at each pixel point is rewritten as

yj ¼Bcj j¼ 1, 2,…,Nð Þ: ð8Þ

Therefore, the standard least square estimate for cj is
given in a form

bcj ¼ BtBð Þ�1Btyj j¼ 1, 2,…,Nð Þ: ð9Þ

3.2.2 | Spectral reflectance estimation

The relationship between the spectral reflectance and all
observations is described as

z1
z2

..

.

zn

266664
377775¼

b1 0 � � � 0

0 b2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 bn

2666664

3777775
S λ1ð Þ
S λ2ð Þ
..
.

S λnð Þ

266664
377775, ð10Þ

where the observation vector on the left side is an N*n-
dimensional vector, and the n � 1 matrix bi on the right
side is defined as

bi ¼

cD1 x1ð ÞbE1 λið Þþ cD2 x1ð ÞbE2 λið Þþ �� �þ cDL x1ð ÞbEK λið Þ
cD1 x2ð ÞbE1 λið Þþ cD2 x2ð ÞbE2 λið Þþ �� �þ cDL x2ð ÞbEK λið Þ

..

.

cD1 xNð ÞbE1 λið Þþ cD2 xNð ÞbE2 λið Þþ �� �þ cDL xNð ÞbEK λið Þ

2666664

3777775:
ð11Þ

The observation at each wavelength is rewritten as

zi ¼biS λið Þ i¼ 1, 2,…, nð Þ: ð12Þ

Therefore, the standard least square estimate for s is
given in a form

bS λið Þ¼bt
izi= bt

ibi
� �

i¼ 1, 2,…,nð Þ, ð13Þ

B¼

bE1 λ1ð Þ bE2 λ1ð Þ � � � bEK λ1ð ÞbE1 λ2ð Þ bE2 λ2ð Þ � � � bEK λ2ð Þ
..
. ..

. ..
.

bE1 λnð Þ bE2 λnð Þ � � � bEK λnð Þ

S λ1ð ÞbE1 λ1ð Þ S λ1ð ÞbE2 λ1ð Þ � � � S λ1ð ÞbEK λ1ð Þ
S λ2ð ÞbE1 λ2ð Þ S λ2ð ÞbE2 λ2ð Þ � � � S λ2ð ÞbEK λ2ð Þ

..

. ..
. ..

.

S λnð ÞbE1 λnð Þ S λnð ÞbE2 λnð Þ � � � S λnð ÞbEK λnð Þ

26666664

37777775: ð7Þ
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where we note that the estimate is a scalar.

3.2.3 | Iterative estimation process

We repeat the iterative estimation calculations of the
above steps (1) and (2), starting from an appropriate ini-
tial estimate of spectral reflectance. Figure 5 shows a
visual diagram of the iterative estimation process. The
initial value of bS λið Þ is constant in the range 400≤ λ≤ 700
(say, bS λið Þ = 0.5).

In the observation model above, Equation (4), the
shading term cDk xð Þ (k = 1, 2, …, K) and spectral reflec-
tance S λð Þ are multiplied by cDk xð ÞS λð Þ. In this case, the
absolute value of each estimate could not be determined.
For instance, if the shading term is doubled as 2cDk xð Þ
and the spectral reflectance is halved as S λð Þ=2, the mul-
tiplication is the same. Therefore, we assume that the
spectral reflectance is normalized by

Pn
i¼1S λið Þ2 ¼

1 sk k¼ 1ð Þ in this iterative process.
The area selected for reflectance estimation may affect

performance. Because we aim to estimate the spectral
reflectance for the diffuse reflection component, only matte
areas that contain neither gloss nor specularity can be
extracted and used for estimation. In this case, the specular
shading terms cSk xð ÞEk λð Þ (k = 1, 2, …, K) in the above
algorithm are neglected as cSk xð Þ¼ 0, so that we have

cj ¼

cD1 xj
� �

cD2 xj
� �
..
.

cDK xj
� �

2666664

3777775, zi ¼
Y λi, x1ð Þ
Y λi, x2ð Þ

..

.

Y λi, xNð Þ

266664
377775: i¼ 1, 2,…,n, j¼ 1, 2,…,Nð Þ:

ð14Þ

4 | SHADING TERM ESTIMATION
AND REGION SEGMENTATION

4.1 | Shading term estimation

Shading term estimation in the previous section was
applied to a limited region of the image for reflectance

estimation. Shading estimation in this section is expand-
ing the region to the whole image. The shading terms are
estimated at all pixel points in a wide area, including the
target object, based on the previously estimated illumi-
nants and spectral reflectance. For this purpose, let y xj

� �
and c xj

� �
be the observed color signal vector and the

shading terms at pixel point xj (j = 1, 2, …, N), respec-
tively. The observational model in Equation (4) can be
expressed as

y xj
� �¼ cS1 xj

� �be1þ cS2 xj
� �be2þ…þ cSK xj

� �beK
þcD1 xj

� �bs:�be1þ cD2 xj
� �bs:�be2þ…þ cDK xj

� �bs:�beK
¼ be1 be2 � � � beK bs:�be1 bs:�be2 � � � bs:�beK½ �c xj

� �
,

j¼ 1, 2,…,Nð Þ
ð15Þ

where bs and bek (k = 1, 2, …, K) are the estimated spectral
functions of the reflectance and illuminant, respectively.
The symbol (. *) represents element-wise multiplication.
For mathematical simplicity, when we define an n � 2 L
matrix A as

A¼ be1 be2 � � � beK bs:�be1 bs:�be2 � � � bs:�beK½ �, ð16Þ

we have

y xj
� �¼Ac xj

� �
j¼ 1, 2,…,Nð Þ: ð17Þ

As the shading terms always take nonnegative values,
we solve a least-squares problem to find the c xj

� �
that

minimizes the residual norm y xj
� ��Ac xj

� ��� ��2
2 subject

to c xj
� �

≥ 0. In this study, we adopt the MATLAB func-
tion “lsgnoneq” to solve this nonnegative linear least-
squares problem. The obtained estimate bc xj

� �
is a 2 L

dimensional vector, where the first K elements bc1 xj
� �

,bc2 xj
� �

, …, bcK xj
� �

and the latter …, bcKþ1 xj
� �

, …, bcKþ2 xj
� �

,
…, bc2K xj

� �
correspond to the shading terms for the specu-

lar reflection and diffuse reflection by the K illuminants,
respectively.

4.2 | Region segmentation

Region segmentation extracts an area belonging to the
same material among the observed image. The region
segmentation technique looks for similarities between
the pixels. In other words, pixels with similar attributes
are grouped into a unique region. Because our image
data are high-dimensional spectra, we consider a
region-segmentation technique based on spectral
features.

FIGURE 5 Visual diagram of the iterative process for

reflectance estimation
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The estimated spectral reflectance is an important
feature for region segmentation. However, the experi-
mental results suggest that the color signals predicted
using the estimated spectral reflectances and illumi-
nants are more suitable than the spectral reflectances
for segmenting regions of the object surfaces with spec-
ular reflection and gloss. Hereby, we propose the steps
for the use of color signals for region segmentation.
First, a region suitable for representing each object
appearance is chosen as the reference region. In prac-
tice, we select a wide region on each object surface that
includes all high light areas but excludes boundary and
dark shadow areas. Then, the average of the predicted
color signals in that region is calculated as a reference
color signal.

Next, we consider region segmentation based on the
material properties. Traditionally, various spectral simi-
larity measures were proposed to be used to classify high-
dimensional image data captured by a spectral imaging
system in the fields, including remote sensing. The repre-
sentative measures are the SA, the Euclidean distance
(ED), the spectral frequency spectrum difference (SFSD),
the spectral correlation (SC), the spectral gradient (SG),
and the spectral information (SI (see references 15–19).
From the viewpoint of dealing with the material appear-
ance of strong glossy objects, the ED and SC measures
are not available for dichromatic surfaces but only avail-
able for smooth diffuse surfaces. The SFSD and SI mea-
sures have high computational costs because of
transformation into frequency domain and calculating
random variables with a probability distribution. The SA
is a based on the measurement of the spectral similarity
between two spectral vectors. It is invariant with respect
to the lengths of the spectral vectors, and effectively
represses the influence of shading on object surface.
Although SC is similar to SA, the SA is more direct and
simpler. Thus, we adopt the SA to predict the spectral
similarity between two vectors in a high-dimensional
space in this paper.

The basic formula for the SA is defined as follows:

θ¼ cos�1 yt1:�y2
y1k k y2k k

	 

, ð18Þ

where the symbol yk k indicates the norm y. The angle θ
represents the spectral similarity of y1 and y2: as the SA
decreases, the two vectors become more similar. The
angle ranges from 0� to 90�.

In the present region segmentation, we can assign y1
and y2 to the reference color signal yref and color signal
y xj
� �

, respectively, in the acquired spectral image. There-
fore, we have

θ¼ cos�1 ytref :�y xj
� �

yrefk k y xj
� ��� ��

 !
: ð19Þ

The reference color signal is the average of the pre-
dicted color signals over the reference region and is cal-
culated as follows:

yref ¼
XN
j¼1

by xj
� �

=N ¼
XN
j¼1

Abc xj
� �

=N: ð20Þ

The SA θ is not affected by the illumination intensity
because the angle between the two spectral vectors is
independent of the norm of the vectors.

The present segmentation method is simplified because
the similarity between adjacent pixels is not considered,
and only the angle similarity between the reference and
original color signals is considered. Figure 6 illustrates the
simplified region segmentation using the SA in the 3D
space. The observed color signals y xj

� �
in the image are

compared with the reference color yref . If the SA between
the two vectors is less than or equal to the threshold, that
is, θ≤ thd, the pixel of xj is added to the same region.

5 | APPEARANCE
RECONSTRUCTION

5.1 | Inpainting of the estimated shading
terms

Different appearances of objects in the original scene can
be reconstructed by modifying certain components of the

FIGURE 6 Principle of region segmentation based on the SA

between the reference and color signals in the acquired image. If

the SA between the two vectors yref and y xj
� �

is less than or equal

to the threshold, the pixel of xj is added to the same region. The

threshold value thd is chosen empirically in the range (0�, 90�). In
our experiments, we set thd = 30.
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dichromatic reflection model in the respective segmented
regions. The shading image of the reconstructed appear-
ance is based on the estimated shading terms in each seg-
mented region. As shown in the experimental results in
the following section, an error often occurs when estimat-
ing the shading terms for the diffuse reflection compo-
nent in an area where strong specular reflection occurs.

Figure 7A shows the image of the estimated shading
terms bcD2 xj

� �
for the second diffuse reflection component

when the spectral image in Figure 1A is decomposed into
three components according to the three illuminants.
The areas of the dark holes correspond to the strong
highlight areas. These errors are caused by the large
intensity difference between the specular and diffuse
reflections. An image inpainting technique is applied to
reconstruct the irregular holes in the image. We adopt
the MATLAB function “clickCallback” to perform
inpainting interactively, where the selected irregular area
is corrected using the exemplar-based matching method
(see reference 20). We specify a limited area, including
the irregular holes, and interactively perform inpainting
for all irregular holes while checking the correction.
Figure 7B shows an image corrected using the inpainting
technique. In comparison between Figure 7A,B, artifacts
look to appear at the place of the top highlights since the
inpainting is not always perfect.

5.2 | Appearance reconstruction
algorithm

The novel appearance of objects in the original scene is cre-
ated by modifying some components of the reflection model
in the segmented region for each object. The appearance
reconstruction algorithm based on the dichromatic reflec-
tion model is described as follows:

y xj
� �¼bcS1 xj

� �
e1þbcS2 xj

� �
e2þ…þbcSK xj

� �
eK

þbcD1 xj
� �

s:�e1þbcD2 xj
� �

s:�e2þ…þbcDK xj
� �

s:�eK :
ð21Þ

Figure 8 shows the algorithm flow for the appearance
reconstruction based on the estimated spectral functions
and shading terms, where the broken lines represent the
flow for appearance estimation of the observed image.
We can change the illuminant spectra ei (i = 1, 2, …, K)
of multiple light sources and the surface spectral reflec-
tance s of the target object to the other spectral functions
of illuminant and reflectance, so that chromatic appear-
ances, such as object color, are reconstructed. More

FIGURE 7 Example of inpainting for

an image with irregular holes: (A) original

shading image with areas of dark holes,

which is estimated for the shading terms of

the second diffuse reflection component in

decomposition of the spectral image in

Figure 1A, (B) image is corrected for the

irregular holes using an inpainting

technique.

FIGURE 8 Algorithm flow for appearance reconstruction
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specifically, the object color is changed mainly by spectral
reflectance, and the illuminant spectra change the illumi-
nant environment. These spectral functions can be freely
obtained from reflectance and illumination databases.
For the convenience of processing, the illuminants are
normalized using eik k¼ 1.

It should be noted that the light source positions are
fixed and independent of the object appearance. The geo-
metric appearance of the object surfaces is mainly con-
trolled based on shading terms. If we do not require a
specific light source i, we simply set bcSi xj� �¼bcDi xj� �¼ 0
or ei ¼ 0. For instance, in Figure 1B, the upper light
source among the three light sources is removed. To cre-
ate a matte surface without specularity, we set all specu-
lar shading terms to bcSi xj� �¼ 0 (i = 1, 2, …, K). In
addition, the degree of matteness or glossiness can be
controlled by adjusting the intensities of the specular and
diffuse shading terms (bcSi xj� �

,bcDi xj� �
). Thus, a wide vari-

ety of appearance editing techniques can be performed,
except for the addition of a light source.

6 | EXPERIMENTAL RESULTS

6.1 | Experimental setup and model
validation

A spectral imaging system was used in the experiments,
which consisted of a monochrome CCD camera with
12-bit dynamic range and Peltier cooling (QImaging,
Retiga 1300), a VariSpec liquid crystal tunable filter, an
IR-cut filter, and a personal computer (see reference 21).
The imaging system was placed at the same height as the
target object, approximately 3 m away. The image data
were represented by 61-dimensional vectors.

We selected three different objects regarded as inho-
mogeneous dielectric materials from the everyday objects
in the experiment. Figure 9 shows a scene comprising
three objects, where the left object is a blue cylinder
made of painted metal, the center object is a glossy natu-
ral object, red paprika, and the right object is a yellow
soy sauce container made of ceramic. These objects were
placed on a black felt cloth and illuminated using three
different light sources: an incandescent light source from
a light bulb in the left direction, a fluorescent light source
from a table lamp in the right direction, and an LED light
source from a ceiling lamp in the upper direction. The
image size was 638 � 884. The distances between the
light sources and target objects were 1–3 m. Areas with
gloss or specular highlights can be observed on the sur-
face of each object.

The dichromatic reflection properties are well known
for paints and ceramics. So we validated that the red

paprika has dichromatic reflection properties. In the
region surrounded by a white rectangular in Figure 9, the
red paprika is illuminated only by the incandescent light
from the left, and the influence of other light sources can
be considered sufficiently small. We cut out the corre-
sponding region of the spectral image and applied the
singular value decomposition (SVD) to the high dimen-
sional dataset. As a result, the cumulative contribution
rate for the first two principal components was 0.988, so
it was judged that the spectral dataset was two-dimen-
sional. We next checked whether the spectral functions
for the specular and diffuse components could be
described using the two principal components. For this
purpose, a linear combination of the two principal com-
ponents needed to describe each of the illuminant spec-
trum E λð Þ and the diffuse reflection spectrum S λð ÞE λð Þ
was determined by a least-squares fitting. Figure 10
shows the fitting results to (A) the specular reflection
component and (B) the diffuse reflection component. The
broken curve in (A) represents the directly measured illu-
minant E λð Þ of the incandescent light source, and the
bold curve represents the estimated curve by the fitting.
The broken curve in (B) represents the diffuse spectrum
S λð ÞE λð Þ based on the red paprika's direct reflectance
measurement, and the bold curve represents the esti-
mated curve. The two spectral functions can be estimated
using only two principal vectors. Thus, the red paprika
follows the dichromatic reflection model.

6.2 | Illuminant estimation

The spectral image captured from the scene was converted
into a luminance image to which the center-surround filter

FIGURE 9 Scene comprising three objects, where the left

object is a blue cylinder made of painted metal, the center object is

a glossy natural object, red paprika, and the right object is a yellow

soy sauce container made of ceramic.
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and the low pass filter were applied. The standard devia-
tions were set to the same values as σ1 = 12, σ2 = 3, and
σ3 = 20 in Figure 3, and the filter sizes were 2�σiþ1
(i = 1, 2, 3). We then selected specular highlight areas
with strong intensities. The blue areas in Figure 11 show
the entire set of eight highlight areas extracted from the
three object surfaces.

The spectral power distribution was estimated for
each of the detected highlight areas. The SVD was
applied to the dataset of the observed spectra at each
highlight area, and the spectral data were then mapped
onto a plane defined by the two singular vectors. Eight illu-
minant spectral curves were estimated for the eight high-
light areas and the procedure described in Section 2.2.
Finally, the light source for each highlight and the corre-
sponding spectral power distribution were determined
using the k-means clustering algorithm. Figure 12 shows
the spectral curves estimated for three light sources. The

three bold red, green, and blue curves correspond to incan-
descent, fluorescent, and LED light sources' estimated illu-
minant spectra. The broken curves represent the directly
measured illuminant spectral power distributions.

6.3 | Reflectance estimation

The surface spectral reflectances of the respective objects
in the scene shown in Figure 9 were estimated according
to the algorithm proposed in Section 3. The number of
light sources was K = 3, and the estimated spectral curves
in Figure 12 were used as bEi λð Þ (i = 1, 2, 3) for reflectance
estimation. We first cut out a ROI to estimate the spectral

FIGURE 10 Fitting results to (A) the specular component E λð Þ and (B) the diffuse component S λð ÞE λð Þ. The broken curves in (A) and

(B) represent the directly measured illuminant of the incandescent light source and the diffuse spectrum based on the direct reflectance

measurement of the red paprika, respectively. The bold curves represent the estimated curves by the fitting.

FIGURE 11 Detected highlight areas with strong intensity

except for the boundary regions

FIGURE 12 Spectral curves are estimated for three light

sources, where the bold red, green, and blue curves correspond to

the incandescent, fluorescent, and LED light sources' estimated

illuminant spectra. The broken curves represent the directly

measured illuminant spectral power distributions.
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reflectance on each object surface and determined the
corresponding observed color signals yi (i = 1, 2, …, N).
Figure 13 shows the three ROIs for the blue-painted
metal, red paprika, and yellow ceramics. The number of
pixels N used for the reflectance estimation was the num-
ber of pixels in each rectangular box. The number of
wavelengths utilized was 61.

The spectral reflectance and shading terms in each
region were estimated using an iterative estimation pro-
cess. The ROI for the red paprika included strong specu-
lar highlights; therefore, the original algorithm was used.
Meanwhile, the ROIs for the blue-painted metal and yel-
low ceramics had no highlights; thus, the simplified algo-
rithm using Equation (14) was adopted. The number of
iterations was approximately 50–100. Figure 14 shows
the estimation results of spectral reflectance s for the
three objects. The bold curves represent the estimated
spectral reflectances, and the dashed curves represent the

directly measured spectral reflectances by a spectrometer,
which was used as the ground truth. The RMSEs for the
ground truth were rmse = 0.019, 0.030, and 0.013 for the
blue-painted metal, red paprika, and yellow ceramic,
respectively. We also calculated the CIE-LAB color differ-
ences under a white illuminant with equal energy. We
obtained DE2000 values of 1.39, 5.25, and 1.81. The
potential reason with such a large difference as 5.25 for
the red paprika is that the selected region includes sev-
eral specular highlights. Strong highlight regions tend to
have large errors in spectral reflectance estimation. The
spectral reflectance of red paprika can also be estimated
using the matte region without highlights. The estima-
tion results are reported in Reference 22.

6.4 | Shading term estimation and
region segmentation

According to the algorithm in Section 4.1, the shading
terms were estimated based on the previously estimated
spectral functions of the illuminant and reflectance. A
wide area, including both mattes and highlights, was
selected as the reference region. We then calculated the
reference color signal, yref , and the SAs between yref and
the observed color signals. We set the angle threshold to
approximately 30� and detected pixels within this thresh-
old for the same image.

Figure 15 shows the result of region segmentation, where
three object regions with blue, red, and yellow colors were
extracted, corresponding to the blue-painted metal, red
paprika, and yellow ceramics, respectively. The estimated
shading term bc xj

� �
for each segmented region is shown in

the shading images in Figure 16, where the three rows
(B, R, Y) represent the blue painted metal, red paprika,
and yellow ceramics objects, respectively. The six

FIGURE 13 Regions of interest (ROIs) used for estimating the

spectral reflectance. The rectangular boxes represent ROIs for the

blue painted metal, red paprika, and yellow ceramics, from left to

right.

FIGURE 14 Estimation results of spectral reflectance for the three objects of (A) blue painted metal, (B) red paprika, and (C) yellow

ceramics, where the bold curves represent the estimated spectral reflectances, and the dashed curves represent the directly measured spectral

reflectances used as the ground truth.

TOMINAGA AND YONG 1325

 15206378, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/col.22824 by A

kita U
niversity L

ibrary - A
kita U

niversity , W
iley O

nline L
ibrary on [18/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



columns represent (bcS1 xð Þ, bcS2 xð Þ, bcS3 xð Þ) for the specular
component, and (bcD1 xð Þ, bcD2 xð Þ, bcD3 xð Þ) for the diffuse
component, which were caused by three illuminations
from the upper, right, and left light sources. The shaded
images in the figure include shadows occluded by other
objects. Shading image R6 appears very bright because
the high-intensity lamp is located close to the object.

To evaluate the comprehensive accuracy of the pro-
posed estimation approach, we calculated the RMSEs
between the predicted and observed color signals using

e xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiby xð Þ�y xð Þk k2=61

q
. Figure 17 shows the spatial

distribution of the error e xð Þ for the three objects, where

the gray scale represents the relative magnitude of the
error. It should be noted that the error distribution is not
spatially constant; large errors are limited to the highlight
areas, whereas the errors are small in other areas. As the
intensity of the specular highlight increased, the error
also tended to increase.

6.5 | Appearance reconstruction

A variety of different appearances of the objects in the
scene can be constructed by modifying the two spectral
functions of reflectance and illuminant, as well as the

FIGURE 16 Estimated shading term for each segmented region, where the three rows (B, R, Y) represent the blue painted metal, red

paprika, and yellow ceramics objects, respectively. The six columns represent the three terms 1–3 for the specular component and the three

terms 4–6 for the diffuse component, which were caused by the three illuminations from the upper, right, and left light sources.

FIGURE 15 Region segmentation result, where blue, red, and

yellow regions are extracted for the blue painted metal, red paprika,

and yellow ceramics, respectively.

FIGURE 17 Spatial distribution of RMSEs on the three

objects, where the gray scale represents the relative magnitude of

the error.
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shading terms, according to the flow in Figure 8. The typ-
ical reconstruction results were obtained as follows.

First, we changed the surface spectral reflectance of
the objects under the same illumination environment.
Figure 18 shows the measured spectral reflectances from
the three-color patches of brown, green, and pink
included in an X-rite Color Checker, which were used,
respectively, for the blue painted metal, the red paprika,
and the yellow ceramics in the original scene. Figure 19A
demonstrates a novel appearance reconstructed under

the original illuminant conditions, where the object
colors change, but the dichromatic reflection property
does not change; thus, specular highlights are included.
Figure 19B shows a novel appearance for the matte object
surfaces, where the reflection has only a diffuse compo-
nent and no specular component when setting (bcS1 xð Þ,bcS2 xð Þ, bcS3 xð Þ) to zeros.

Next, the illumination conditions were changed. The
upper light source was neglected and the illuminant spec-
tra of the remaining two light sources were assumed to
be the CIE standard illuminant D65.23 Figure 20A dem-
onstrates a novel appearance for the same object surface,
as shown in Figure 19A, which was illuminated with the
D65 illuminant from two light sources on the left and
right sides. Figure 20B shows the matte appearance with-
out specularity. In this case, as well as in Figure 19B, the
object surfaces appear matte and illuminated by diffuse
light sources or nondirectional ambient light, in contrast
to the directional light sources.

7 | CONCLUSIONS

We proposed an approach for estimating and reconstruct-
ing the material appearance of an object based on the
spectral image data acquired in a complex illumination
environment with multiple light sources. The use of
high-dimensional spectral spaces not only increased the
accuracy of reconstruction but was also far more versatile
than the use of color spaces. Object appearance can be
constructed with various material properties such as

FIGURE 18 Spectral reflectances measured from the three-

color patches of brown, green, and pink in an X-rite color checker,

which were used, respectively, for the blue painted metal, red

paprika, and yellow ceramics in the original scene.

FIGURE 19 Novel appearances of the three

objects reconstructed using the surface

reflectances in Figure 17 under the original

illuminant conditions. (A) Appearance for the

gloss surfaces where the dichromatic reflection

property does not change, and thus specular

highlights are included. (B) Appearance for the

matte surfaces without specularity.

FIGURE 20 Novel appearances of the three

objects reconstructed under changed

illumination conditions. (A) Appearance for the

gloss surfaces illuminated with the D65

illuminant from only two light sources, left and

right. (B) Appearance for the matte surfaces

with the same spectral reflectances without

specularity under the same light sources.
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spectral reflectance, glossiness, and matteness under dif-
ferent geometric and spectral illumination conditions.

The objects we targeted in this study were everyday
objects such as natural objects and man-made objects,
which were assumed to be made of an inhomogeneous
dielectric material with gloss or specularity. The color sig-
nals from the object surface were described by the stan-
dard dichromatic reflection model, which consisted of
two additive components, diffuse reflection and specular
reflection, where the specular component had the same
spectral composition as the illuminant.

The overall appearance of the objects was determined
by a combination of chromatic factors based on the
reflectance and illuminant spectra and the shading terms
representing the surface geometries of the surface illumi-
nation. Therefore, the appearance of a novel object can
be estimated and reconstructed by modifying the chro-
matic factors and shading terms. We present a four-step
procedure for estimating and reconstructing an object
appearance based on spectral image data.

First, multiple illuminants were estimated from the
highlight areas on the object surfaces. Each specular
highlight area corresponds to only one light source, and
the detected highlight has the same spectral composition
as the light source. Second, we developed an iterative
algorithm that repeatedly estimates the reflectance and
shading terms in two steps. This algorithm utilizes the
fact that spectral reflectance and shading terms have dif-
ferent domains: wavelength and spatial coordinates.
Third, we estimated the shading terms in a large image
area and then segmented each object region using the
SA, defined as the spectral similarity. Fourth, we recon-
structed the novel appearances of the objects by modify-
ing some components of the reflection model in the
respective segmented regions. We presented the entire
procedure for appearance reconstruction. It should be
noted that the appearance of objects under different con-
ditions can be reconstructed using only one spectral
image without knowing the 3D object shape.

The proposed approach was validated in an experiment
in which three objects made of different materials were
observed using a spectral imaging system under three light
sources with different spectra. We show the estimation
results for the illuminants, reflectances, shading terms, and
segmentation results. The comprehensive accuracy of the
proposed approach is revealed by the spatial distribution of
the RMSE between the predicted color signals and the
observed image. Finally, we demonstrated typical reconstruc-
tion results with novel appearances of objects in a scene.

The image processing pipeline proposed in this article
incorporated some interactive processing to improve pro-
cessing efficiency and did not adopt the machine learning

approach. The obstacle of the machine learning approach
to the present problem is the lack of commonly used
standard training datasets of spectral images, even in the
image segmentation stage. There are a wide variety of
spectral imaging systems with different spectral sensitivi-
ties and many light sources with different spectral distri-
butions. Standardization of spectral image data is desired
in the future.

The limitations of the method proposed in this article
are summarized as follows:

1. The target material is limited to the dielectric object
having the dichromatic reflection property. Therefore,
the method does not apply to metal and translucent
material with subsurface scattering.

2. The object shape is limited to convex. It is difficult for
a concave or flat object to detect highlights and iden-
tify the light sources.

3. The reflection components are limited to the two com-
ponents of diffuse reflection and specular reflection.
The effect of mutual reflection is not considered.

4. Multiple light sources are supposed to be separated
from the target objects also separated from each other.
Therefore, if the light sources overlap, they are treated
as one light source. However, if the light sources are
close to each other and the object surfaces are close to
flat, it is difficult to separate the light sources using
the highlight areas. Moreover, when a large area light
source is near the objects, highlight detection and
light source identification become less accurate.

5. The image processing pipeline in the proposed
method incorporates some interactive processing to
improve processing efficiency so that it has partly
manual inputs such as the determination of ROI.
However, full automation remains as future work.
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