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A B S T R A C T   

When satellite-based SAR (Synthetic Aperture Radar) images and images acquired from the ground are regis
tered, they offer a wealth of information such as topographic, vegetation or water surface to be extracted from 
the ground-level shooting images. Simultaneously, high temporal-resolution and high spatial-resolution infor
mation obtained by the ground-level shooting images can be superimposed on satellite images. However, due to 
the differences in imaging modality, spatial resolutions, and observation angle, it was not easy to directly extract 
the corresponding points between them. This paper proposes an image registration method to estimate the 
correspondence between SAR images and ground-level shooting images through a set of multi-altitude images 
taken at different heights.   

1. Introduction 

SAR (Synthetic Aperture Radar) mounted on satellites or aircraft is 
an imaging radar that uses microwaves to image the earth’s surface. It is 
possible to obtain terrain information such as vegetation and immersion 
water from phase and polarization information [1]. In addition, it is also 
possible to superimpose terrain information acquired via ground-level 
shooting images and also possible to superimpose high temporal and 
spatial visual information on SAR satellite images, if SAR images and 
ground-level shooting images such as mobile cameras, car-mounted 
cameras, and surveillance cameras are co-registered (i.e., projection 
transformation between the two images is obtained). However, due to 
the differences in their imaging modality, spatial resolutions, and 
observation angle, it is difficult to directly estimate geometrical corre
spondence between SAR satellite images and ground-level shooting 
images. There have been no reports to solve this problem. This paper 
proposes an image-to-image registration method to find the correspon
dence between satellite-based SAR and ground-level shooting images 
through a set of multi-altitude images, taken at different heights (Fig. 1). 

We achieve an image registration method between SAR satellite 
images and ground-captured images, which is previously unrealized. It 

is a novel method that allows us to integrate large-scale event recogni
tion of objects from satellite images and detailed information such as 
reconstructed 3D scenes from ground-level shooting images. 

In the proposed method, we classify imaging types into four cate
gories: “SAR,” “optical,” “low-altitude,” and “ground-level.” The pro
posed method estimates projection transformation between “SAR image 
and optical image,” “optical image and low-altitude image,” and “low- 
altitude image and ground-level shooting image,” respectively, by 
detecting the corresponding points using local features. The method 
integrates them to achieve an effective registration between SAR image 
and ground-level shooting image. Table 1 shows characteristics of the 
above-mentioned imaging styles and factors that made the detection of 
corresponding points difficult. Two-way arrows in Table 1 correspond to 
the following three problems. We attempted to solve them in this work 
by detecting corresponding points between: 

I. SAR and optical images: to detect corresponding points between 
images that have differences in appearance due to the variations in 
imaging mode (modal differences) caused by the differences in 
observing wavelengths of the imaging sensors, we use SAR images as 
input and generate images that simulate the appearance of optical im
ages (generated optical images) to achieve corresponding points 
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detection by aligning image modals. 
II. Optical and low-altitude images: to detect corresponding points 

between images with large differences in spatial resolution due to the 
differences in imaging altitude, optical images are upscaled using image 
super-resolution, and low-altitude images are downscaled to align their 
spatial resolutions. 

III. Low-altitude and ground-level shooting images: to detect 
corresponding points between images with projection distortion caused 
by the difference in imaging directions, we generate virtual-top-view 
image, which is looking down from top-viewpoint, by correcting pro
jection distortion of the ground surface area according to internal pa
rameters of the camera and value of the accelerometer at the time of 
imaging. In this way, the correspondence point search between the two 
images is achieved. 

2. Related work 

2.1. Estimation of correspondence between SAR and optical images 

Image registration between remote sensing images is commonly 
performed by using a DEM (Digital Elevation Model) and with ortho- 
rectification [2,3]. However, the spatial resolution of a DEM may be 
insufficient for accurate registration of SAR and optical images with high 
spatial resolution. Also, if we assume that we will be assessing the 

situation immediately after a disaster, topography of an area may 
change significantly after the disaster. As a result, DEM may become 
unsuitable to utilize. Therefore, an image feature-based registration 
method, which does not depend on DEM, is needed. However, wave
length of microwaves used in SAR is longer than those of visible lights. 
Due to the differences in their reflection and scattering characteristics, 
appearance of SAR and optical images differ greatly even then they 
represent the same area. Therefore, it is difficult to obtain common 
feature in both images. 

It is necessary to detect common features from two images with 
different wavelengths to perform image-based registration (not DEM- 
based). Methods using template matching have been proposed, 
including NCC (Normalized Cross-Correlation) and Mutual Information 
(MI) [4,5]. These methods require a relatively wide range of image 
features. A small template size reduces accuracy of template matching, 
while a large template size reduces robustness to partial differences (e. 
g., pre- and post-disaster) and occlusions. Therefore, it is necessary to 
use local image features for registration in situations where the terrain 
changes partially, such as pre- and post-disaster. 

Local image features are used to achieve image-based geometric 
registration [6–8]. In particular, keypoint-based methods have the 
advantage of using local correspondences to estimate total correspon
dence between two images, unlike template-based matching methods. 
The advantage is that even if a part of observed region changes, 

Fig. 1. Proposed method, estimating correspondence between SAR images, optical images, low-altitude images, and ground-level shooting images. By detecting the 
corresponding points among multi-altitude images, superimposing between SAR satellite images and ground-level shooting images is realized as shown at the bottom. 

Table 1 
Characteristics of image type. Two-way arrows indicate the differences in image heights.. 
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correspondences can be obtained from other partial locations since local 
image features are used. 

When dealing with SAR image registration, geometric distortions 
such as layover and foreshortening are core problems [1]. Since it is 
complex to correct for a layover, a method to detect regions where no 
geometric distortion occurs (such as ground, coastline, etc.) and to find 
corresponding points within the region is a solution. Foreshortening is 
also difficult to correct; for small foreshortening, it is possible to find the 
corresponding points by using an algorithm that is robust to viewpoint 
change distortion. In this case, image registration should be performed 
with non-linear projection. For low resolution images, the geometric 
distortion can be ignored in many cases. 

2.2. Estimation of correspondence between optical and low-altitude 
images 

In conventional image registration methods, involving low-altitude 
drone images and optical images, methods of generating a 3D model 
by applying Structure from Motion (SfM) [9] has been proposed [10,11]. 
However, these methods require many drone images. It is difficult to 
apply them to a single drone image. Applying them to a small number of 
images has problems such as generation error of the 3D model and the 
effect of satellite positioning error. 

To reduce regression error by iterative processing using mutual in
formation after initial registration using SIFT keypoints [12] and a 
method using NCC [13] have been proposed. However, the former 
method is known to have difficulty in image registration when the initial 
registration by SIFT keypoints fails, and the latter method presents dif
ficulty in dealing with projective distortions between two images. 

2.3. Estimation of correspondence between low-altitude and ground-level 
shooting images 

A method has been proposed to detect corresponding points in the 
road area captured in both ground-level shooting images taken by a car- 
mounted camera and an aerial image taken by an aircraft [14]. In that 
method, ground area captured by a car-mounted camera is projected as 
if it would have been captured from a bird’s eye view, based on the 
camera parameters so that the perspective distortion between the two 
images can be corrected. The projection is calculated based on camera’s 
tilt angle. This method estimates the correspondence between two im
ages by detecting corresponding points using SURF [15], and then es
timates position and orientation of the car. In Ref. [14], it is assumed 
that the parameters for correcting projection distortion are fixed because 
a car-mounted camera with a fixed pose is used, but there are still 
problems for improvement to apply the method to mobile cameras, 
whose pose is not fixed. 

3. Corresponding points detection between SAR and optical 
images 

3.1. SAR to optical image translation using deep neural network for 
corresponding points detection 

In SAR, active imaging is performed using microwave, and reflection 
and scattering characteristics are different from those of visible lights. As 
a result, images with a different appearance from optical images are 
captured even if both capture the same area. Therefore, it is difficult to 
detect corresponding points based on similarity of local area, such as 
SIFT [16]. In the proposed method, a DNN (Deep Neural Network)-based 
image translator (as “image translation DNN”) trained by GAN (Gener
ative Adversarial Networks) [17,18], especially cGAN (Conditional 
GAN) [19,20], is used to translate SAR image appearance into an opti
cally translated image (as “generated optical image”) before the process 
of corresponding points detection is conducted. In this section, we 
propose a method to find local feature correspondences between 

multimodal (SAR and optical) images using image feature-based key
point detection, description, and matching algorithms, as shown in 
Fig. 2. Authors have proposed the core technology [21]. 

However, a previous study [21] using Pix2pix [22] to train image 
translation DNN by cGAN had problem of blurring details and losing 
local features. To obtain more accurate corresponding points, we need to 
use a training method that emphasizes local information. To overcome 
shortcoming of the previous study [21], we propose a method to obtain 
an image transformation DNN that does not lose local features, neces
sary for detecting corresponding points by applying an 
edge-enhancement filter to the answer image data during GAN training. 

3.2. Training deep neural networks with conditional adversarial 
generative networks 

Using SAR images as input and optical images as the answer, we train 
image translation DNN with cGAN and generate optical images by 
prediction of the image translation DNN that learned SAR to optical 
image translation. The GAN makes the generator and discriminator 
competing to produce high quality generated optical images. Accuracy 
of the corresponding point detection is degraded due to blur in the 
generated image with conventional cGAN, as shown in Fig. 3. In the 
proposed method, quality of the generated image by the generator G is 
improved by applying an edge-enhancement filter to the answer image 
during the training of the discriminator D. 

Fig. 4 shows the cGAN model, in which DNN is trained to perform 
image translation. The SAR image is set as input x to the cGAN, and 
Fedge(y), which is the result of applying an edge enhancement filter to an 
optical image y, is set as the answer for training the generator G (image 
translation DNN) and discriminator D. The process of translating SAR 
image to a generated optical image using this image translation DNN 
allows generated optical image to have the same modality as original 
optical image, and conventional corresponding detection process, such 
as SIFT, can be applied. 

In this case, loss function L Proposed of the proposed method can be 
expressed as follows with reference to the loss function of Pix2pix [22]. 

L Proposed(G, D) = Ey
[
logD

(
Fedge(y)

) ]
+ Ex,z[log(1 − D(x, G(x, z) ) ) ]

+λEx,y,z
[⃦
⃦Fedge(y) − G(x, z)

⃦
⃦

1

]
,

where constant λ is set to 0.1 in this work. 

3.3. Corresponding points detection using keypoint detector and descriptor 

An overview of corresponding points detection process of the pro
posed method is shown in Fig. 2. An image translation DNN is obtained 
using the learning model described in the previous section, and SAR 
image is translated into a generated optical image by the image trans
lation DNN. SIFT [16] is used for corresponding points detection pro
cess, and it is performed between generated and actual optical image. 

Fig. 2. Image translation and corresponding points detection using image 
transformation DNN, trained by GAN. 
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3.4. Removal process of false corresponding points 

The corresponding points detection process is performed between 
generated and actual optical images. In the process of detecting corre
sponding points, some false corresponding points are identified, and 
these points reduce accuracy of the image registration process. In the 
case of registration between high-altitude images, false corresponding 
points can be removed according to the scale and orientation of the 
keypoints since they can be regarded as the differences in scale, rotation, 
and translation [23]. 

4. Corresponding points detection between optical and low- 
altitude images 

In this section, we describe a method for detecting corresponding 
points between images with significantly different spatial resolutions, 

such as low-altitude images (drone images) and optical images (optical 
satellite images), as authors have proposed the core method in Ref. [24]. 
The spatial resolution is increased by applying a super-resolution pro
cessing to low resolution (LR) image, and at the same time, the spatial 
resolution of the high resolution (HR) image is decreased to align two 
images for improving accuracy. 

As shown in Fig. 5, spatial resolutions of low-altitude and optical 
images differ greatly (a scale ratio of 12 times is assumed in this paper). 
On the other hand, a scale ratio of about 5 times is assumed in the 
corresponding points detection process using image features [25]. 

In this case, an approach to increase accuracy of the corresponding 
points detection process can be considered by applying super-resolution 
processing to an LR image (optical satellite image) to increase spatial 
resolution and reduce the difference between two images. 

4.1. Corresponding points detection between two images with significantly 
different spatial resolutions by image super-resolution of characteristic 
regions 

It is a fact that man-made structures in top-view images appear as 
relatively simple shapes and apply super-resolution processing to LR 
images to reduce the difference in spatial resolution between the two 
images and improve the accuracy of corresponding points detection. As 
an example, Fig. 6 shows a comparison between Bicubic interpolation 
and super-resolution. It can be seen that the proposed method restores 
local regions such as the white lines of roads and contours of structures 
compared to Bicubic interpolation. 

We use a DNN-based method (as “super-resolution DNN”) for super- 

Fig. 3. Generated image by conventional cGAN (left) and the answer image (right). Left image, the blur smooths out the luminance gradient, which loses accuracy of 
the corresponding point detection. 

Fig. 4. A GAN that preserves local features needed for correspondence point 
search by adding edge enhancement filtering. 

Fig. 5. Difference in spatial resolution.  
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resolution. The higher the super-resolution factor, the better the image is 
because it improves accuracy of corresponding points; however, if the 
factor is too high, artifacts are generated in the image, and many false 
corresponding points occur. In our investigation of the balance between 
super-resolution factor and false corresponding points [24], we 
confirmed that it is appropriate to limit the factor to 4–6 times when the 
difference in spatial resolution is 12 times. In our method, as shown in 
Fig. 7, super-resolution processing is applied to LR images (optical im
ages), and at the same time, the downscaling process is applied to HR 
images (low-altitude images) to achieve a good balance between the 
spatial resolution and correspondence point search accuracy. 

4.2. Super-resolution processing of local area 

We adopt a DNN-based method for super-resolution processing. It is 
necessary to decide an effective region as training data to train a DNN 
that performs super-resolution of local regions for detecting corre
sponding points. Fig. 8 shows the process of training data generation. 
The SIFT keypoint detection is applied to a set of HR images taken by a 

drone in an urban area, and the regions around the derived keypoints are 
extracted as patches. Also, HR image is scaled down to generate the LR 
image. In LR image, patches are extracted from the same area as a patch 
in the HR image. If size of the keypoints (the diameter of the region 
around the keypoints used for feature detection) is too small, spatial 
resolution of the LR image is not adequate. Therefore, sizes of the key
points are important consideration during the keypoint detection in the 
HR image, and the patch extraction is performed only around the feature 
points with a certain size using an appropriate threshold. The threshold 
value is determined according to the difference in the spatial resolution 
of the HR image and the LR image. 

4.3. Downscaling process considering spatial resolution and 
correspondence points detection accuracy 

In this section, we describe the process of aligning spatial resolutions 
of two images for corresponding point detection. To achieve accurate 
keypoint detection, description, and matching, spatial resolution of the 
two images should be the same [25]. However, as the factor of 
super-resolution increases, artifacts appear in the estimation by DNN, 
and the accuracy of the corresponding point detection decreases. 
Therefore, we apply high-factor super-resolution processing to the LR 
image so that the accuracy of the corresponding point detection does not 
decrease, and then downscale HR to align with LR image to generate a 
middle resolution (MR) image with a spatial resolution between the HR 
and LR images, and perform the correspondence point search with the 
same spatial resolution. A smoothing filter corresponding to the down
scaling factor is applied in advance before the downscaling process to 
prevent moiré (interference fringes). 

4.4. Detecting corresponding points between super-resolution and middle- 
resolution images and calculating the homography matrix 

Since the purpose of super-resolution processing in the proposed 
method is to estimate features of the edges and corners of structures, the 
keypoint detector should distinguish those features efficiently. Also, 
since the orientation information is not always retained in the low- 
altitude images taken by drones, the keypoint detector should be able 
to detect corresponding points in a way that is robust to changes in 
rotation. In the proposed method, ORB [26] is used as keypoint detector, 
and the SIFT is used as the keypoint descriptor because of such condi
tions. The ORB keypoint detector is based on FAST [27], which can 
detect edges and corner features quickly, and the ORB also calculates the 
direction of the brightness gradient when detecting keypoints, thus, 
meeting the above conditions. Robust estimation of RANSAC [28] is 

Fig. 6. Comparison of corner and edge feature estimation.  

Fig. 7. Accuracy of the detection of corresponding point, spatial resolutions of 
two images are aligned to an appropriate value by combining super-resolution 
and downscaling processing. 
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performed to estimate the correspondence using the obtained corre
spondence information. Fig. 9 shows an example of the corresponding 
points detection and image registration. 

Fig. 8. The process of training dataset generation to train a super-resolution DNN to estimate local regions. The process involves detecting keypoints on the HR image 
and extracting patches from surrounding region, and then extracting patches from the same region of LR image. 

Fig. 9. Corresponding points detection by ORB + SIFT (left) and example of 
image registration (right). In the left, blue points indicate keypoints for which 
no corresponding points were found, and yellow points indicate keypoints for 
which corresponding points were found. The corresponding points are con
nected by yellow lines. The right figure shows overlaying of low-altitude image 
onto optical image by calculating homography transformation, based on the 
corresponding points information. 

Fig. 10. Perspective distortion of ground area, caused by the difference in 
imaging direction. Left figure shows a ground-level, and right figure shows a 
low-altitude image. When ground surface is taken horizontally, spatial resolu
tion is higher in the foreground area and lower in the background (perspec
tive distortion). 

Fig. 11. An overview of corresponding points detection between low-altitude 
and ground-level shooting images. 

Fig. 12. Virtual top-view image generation.  
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5. Corresponding points detection between low-altitude and 
ground-level shooting images 

We propose a method to calculate geometric correspondences be
tween low-altitude images looking down vertically and ground-level 
shooting images taken with mobile, car-mounted, or surveillance cam
eras by detecting corresponding points using keypoint matching. The 
direction of imaging differs greatly between low-altitude images and 
ground images. As a result, visibility of the object (especially ground 
area) changes due to perspective distortion, as shown in Fig. 10, making 
it difficult to detect corresponding points. Authors have proposed the 
core technology for mobile camera localization [23,29]. 

As shown in Fig. 11, this method corrects perspective distortion and 
achieves corresponding point detection by projecting ground area in the 
ground-level shooting image into a virtual top-view image, as if looking 
down from top-view [23]. 

Fig. 12 shows procedure for generating a virtual top-view image. 
Assuming that internal parameters of camera used for taking ground- 
level shooting images are known, the rotation matrix is calculated ac
cording to the camera’s tilt angle at the time of taking the image, and the 
homography matrix H1 is estimated to transform the image into one that 
looks down from the vertical top-viewpoint (virtual top-view image). 

As shown in Fig. 13, corresponding points between generated virtual 
top-view and low-altitude images are detected by the SIFT. The 
homography matrix H2 from virtual top-view to the low-altitude image 
is estimated from corresponding points. 

As Fig. 14 shows, after H1 and H2 are computed, homography matrix 
from the ground-level to low-altitude image can be represented as their 
product. When (x, y), (xv, yv), (xa, ya), which represent points on a 
ground-level shooting image, a virtual top-view image and a low- 
altitude image, have corresponded; they are described as the following: 
⎛

⎝
xv
yv
1

⎞

⎠ = H1

⎛

⎝
x
y
1

⎞

⎠,

⎛

⎝
xa
ya
1

⎞

⎠ = H2

⎛

⎝
xv
yv
1

⎞

⎠.#(2)

Therefore, the homography matrix H from a ground-level shooting 
image to low-altitude image is described as the following: 

H = H2H1#(3)

Fig. 13. Detecting corresponding points between virtual top-view and low- 
altitude images. 

Fig. 14. Calculation of homography matrix from ground-level to a low- 
altitude image. 

Fig. 15. Overview of the validation in this section.  
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6. Validation of image registration process 

We validate image registration between SAR and ground-level 
shooting images by integrating methods described in Section 3, 4, and 
5, as shown in Fig. 15. 

6.1. Experimental site and dataset 

6.1.1. Experimental site 
Fig. 16 shows an aerial image of experiment site. The experimental 

location was Yokoze-city, Chichibu-county, Saitama-prefecture, Japan, 
and the experimental dataset consisted of Sentinel-1 satellite images 
(SAR images), GeoEye-1 and Sentinel-2 satellite images (optical im
ages), low-altitude images, and ground-level shooting images of a 
common area. The reason for using two types of optical satellite images 
with different spatial resolutions is to prepare images with intermediate 
spatial resolutions and interpolate the differences, because the spatial 
resolution of SAR images, which are generally available at present, is 
several m/pixel at best, while the spatial resolution of optical satellite 
images is several tens of cm/pixel. The GeoEye-1 and Sentinel-2 satellite 
images have geographic information assigned to each pixel (i.e., they are 
already registered), so it is possible to obtain accurate correspondences. 

6.1.2. Training dataset for image translation DNN 
Sentinel-1 SAR satellite images and Sentinel-2 optical satellite im

ages (optical images) of the experiment site are used to train the image 
translation DNN. 16 images, which are not covered with cloud, were 
selected of 67 images taken by Sentinel-2A and Sentinel-2B satellites 
during the period from January 1 to December 31, 2019, and Sentinel-1 
satellite images with close taking dates were selected as a pair, respec
tively. Table 2 shows selected image datasets. One of the 16 images was 
used as validation dataset. 

Each image pair was registered using a DEM (Digital Elevation 
Model), obtained from Fundamental Geospatial Data Download Service 
of the Geospatial Information Authority of Japan [30], and spatial res
olution of each pair was set to 12.5 m/pixel so that the images over
lapped pixel-by-pixel. Patches of 256x256 pixels were cut out every 128 
pixels in height and width from the images, and 896 patches were pre
pared as the training and 56 patches as validation datasets. The 
brightness values in the range of [μ − 2σ, μ+2σ] were linearly normal
ized to the range of [ − 1, 1] and used for training and validation. 

6.1.3. Training dataset for super-resolution DNN 
As HR image, we used aerial images of urban area taken by a drone in 

Oshima-town, Tokyo-prefecture, Japan, on September 19, 2019. The 
drone was a DJI Phantom 4, and spatial resolution of the HR images was 

Fig. 16. Aerial view of the experimental site (Yokoze-city, Chichibu-county, 
Saitama-prefecture, Japan). 

Table 2 
Date and time of the image dataset used to train image translation DNN. Highlighted rows refer to validation dataset. 

Fig. 17. Random shift during patch extraction.  
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4.0 cm/pixel. The HR image was reduced to 1/4 of its original size to 
obtain the LR image for training. The threshold of the keypoint size was 
set to 12.0 pixels. As shown in Fig. 17, a random shift was added to the 
patch extraction process. This is because prior experiments showed that 
the keypoints are always located in the center of the patch so that point- 
like artifacts are observed in the super resolution (SR) image without 
random shift. The patch size was 128x128 pixels, and the number of 
patches was about 36,000. Each pixel depth of the images in the training 
dataset was unsigned 8-bit RGB, which was first converted to grayscale 
to make one channel, and then the brightness values in the range of [0,
255] were linearly normalized to the range of [ − 1, 1] as the input. 

6.2. DNN training details 

6.2.1. Image translation DNN 
U-Net [31] was used as image translation DNN to translate SAR 

images to generated optical images and was trained by cGAN, as shown 

in Fig. 18. The image patch size used for training was 256x256 pixels, 
the input batch size was 16, and the training time was 12 h. The learning 
rate of the generator and discriminator was set to 1.0 × 10− 3. The loss 
functions were the L1 norm and binary cross-entropy, respectively. The 
patch size of PatchGAN [22] was set to 128x128 pixels. We used Cygnus 
[32], a high-performance computer at the Center for Computational 
Science, University of Tsukuba. As for the training time, as shown in 
Fig. 19, it was confirmed that the value of the loss function in the vali
dation data of the generator (image translation DNN) did not change for 
a long time, so the training was terminated after 12 h, and the image 
translation DNN was constructed using the parameters whose loss 
function in the validation data had the minimum value of 1.668 × 10− 1. 
The image translation DNN was constructed using the parameters whose 
loss function was 1.668 × 10− 1. 

The edge-enhancement filter for training the discriminator was 
implemented as: 

Fedge(v, I)=

⎡

⎣
− v − v − v
− v 1 + 8v − v
− v − v − v

⎤

⎦I,

where I is input image and v is a parameter for setting the strength of the 
edge enhancement. In this experiment, v = 0.1 was used because it 
revealed promising results in preliminary experiments. 

6.2.2. Super-resolution DNN 
U-Net was used as super-resolution DNN for optical images, and it 

was trained by GAN, as shown in Fig. 20. The image size used for 
training was 128x128 pixels, the input batch size was 128, and the 
training time was 48 h. The initial learning rate of the generator and 
discriminator was set to 1.0 × 10− 3, which was halved after 24 h. The 
loss functions were the L1 norm and binary cross-entropy, respectively. 
The patch size of PatchGAN was set to 64x64 pixels. As for the training 
time, as shown in Fig. 21, it was confirmed that there was little change in 
the value of the loss function in the verification data of the generator 

Fig. 18. Structure of generator (up) and discriminator (bottom) for image translation.  

Fig. 19. Graph of loss function of the generator in training an image translation 
DNN. The blue and orange lines show loss function for training and validation 
data, respectively. 
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(super-resolution DNN) for a long time, so the training was terminated 
after 48 h. The super-resolution DNN was constructed using parameters 
when the loss function in the validation data was a minimum value of 
7.775 × 10–2. 

7. Result and discussion 

Fig. 22 shows resulting images of the corresponding point detection 
between each image. It can be confirmed that the proposed method 
works effectively in each processing step, and accurately detect 
correspondence. 

Fig. 23 and Fig. 24 show results of registration of SAR and ground- 
level shooting images based on detected corresponding points. Infor
mation obtained by SAR can be overlaid on ground-level shooting 
image. Also, it can be confirmed that information with high temporal 
(high frequency) and high spatial resolution, which is close to the 
ground surface and the information on the ground surface can be un
derstood in detail, is overlayed on SAR image. 

One possible application of this research is sharing of information of 
damaged areas immediately after a disaster. We can share this by taking 
advantage of SAR characteristics, which enables observation even in 
poor atmospheric condition, and characteristics of ground-level 

shooting images, which enables us to capture localized changes that are 
difficult to capture with high-altitude. 

Another possible application is outdoor XR (a collective term for 
Augmented Reality, Virtual Reality, and Mixed Reality). As shown in 
Fig. 23, it is possible to realize a system that overlays geographic in
formation on ground-level viewpoint. However, as shown on the right of 
Fig. 23, if satellite images are directly overlaid on ground-level view
point, useful information cannot be presented due to a difference in 
spatial resolution. Therefore, it is necessary to construct a system that 
takes into account the difference in spatial resolution, such as converting 
information extracted from high-altitude images into a vector layer and 
overlaying it on the ground-level viewpoint. 

8. Conclusion 

In this work, we proposed a method to superimpose SAR images with 
ground-level shooting images by detecting corresponding points be
tween multi-altitude images taken at different altitudes. The possibility 
and usefulness of the method were demonstrated by an experiment using 
actual image. This makes it possible to mutually superimpose informa
tion from SAR satellite images and ground-level shooting images, which 
were previously handled completely separately. 

We have achieved a method of image registration between SAR 
satellite images and ground-captured images. It is a novel method that 
allows us to integrate large-scale event recognition of objects from sat
ellite images and detailed information such as reconstructed 3D scenes 
from real-world information of ground-level shooting images. 

As a further prospect for the future, by applying our proposed 
method to a group of images collected by crowdsourcing [33], it will be 
possible to achieve high spatial and temporal resolution at any point, 
and we can expect to construct a “next-generation GIS (Geographic In
formation System)” that is distinct from the current GIS. The “next-
generation GIS” will enable instantaneous sharing of information that 
transcends differences in imaging devices, locations, and time. Also, it is 
expected to be used as an essential information source for society as an 
information infrastructure. 

Fig. 20. The structure of the generator and discriminator for super-resolution.  

Fig. 21. Loss function of the generator in training a super-resolution DNN. The 
blue and orange lines show loss function of training and validation data. 

H. Toriya et al.                                                                                                                                                                                                                                  



Array 12 (2021) 100102

11

Fig. 22. Results of corresponding point detection between multi-altitude images. Results for optical and generated optical images (top), optical and low-altitude 
images (center), and low-altitude and ground-level shooting images (bottom) are shown. 
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