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Abstract 

In any mining operation, there are a number of factors that can affect the 

efficiency of the day-to-day resource extraction process across all of its stages from 

mine (drilling, blasting, haulage) to mill (mineral processing). As such, it is up to the 

management, when possible, to monitor these various factors and act accordingly by 

making modifications to mine planning as well as tweaking its execution.  One of such 

factors, specifically in mining operations that employ explosives and mineral 

processing, is the fragmentation size distribution of rock after it has been blasted.  

Scaling is a critical component of fragmentation size distribution measurement 

using photogrammetry as it will directly determine the accuracy of the size estimation. 

In creating a 3D model, extrinsic data such as ground truths are needed to create a 

properly-scaled reconstruction of the scene. There are several methods that are used to 

resolve scale in photogrammetry. Most of these methods have the same basic idea in 

that once the exact distance between at least two different points in a scene is known, a 

scale factor can be applied to the 3D model. One way to do this is to include an object 

of known length such as scale bars in the scene. In larger applications such as aerial 

mapping, GCPs (Ground Control Points) are used, which are marked points of known 

absolute or relative coordinates. 

The study aims to create a system for creating a scaled 3D model without the 

use of ground truth data such as GCPs (Ground Control Points) for the purpose of 

improving fragmentation size distribution measurement using positional data such as 

GNSS (Global Navigation Satellite System)-aided photogrammetry. To achieve this, 

the study firstly aimed to 1) investigate the effect of camera positional data and 

constraints on 3D model scaling accuracy; then 2) simultaneously collect image and 
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positional data (e.g., GNSS) from scenes that are to be reconstructed using 

photogrammetry; then 3) use the positional data in the photogrammetry workflow to 

scale the resulting 3D model; then 4) observe the effect of increasing the number of 

datapoints (image + positional data) on the scaling accuracy of the generated 3D model 

and finally 5) Determine the most effective configuration in data taking and data 

processing to achieve acceptable scale with the least number of datapoints needed. 

A preliminary experiment that was done show results that constraining camera 

positions to locations, relative or otherwise improves the accuracy of the generated 3D 

model. With this fundamental idea in mind, the study moved on to larger scale 

experiments that involved the actual use of GNSS positional data in conjunction with 

image data in 3D photogrammetry. In these further experiments, results show that the 

scale error decreases when more images from the same dataset are used. In conclusion 

two observations have been drawn from the study: firstly, constraining cameras to 

accurate positions in SfM will result in a properly scaled 3D model; secondly, 

increasing the number of georeferenced images in SfM will incrementally improve the 

scaling error of the reconstruction. These results lend credence to the possibility of 

improving the scaling aspect of 3D fragmentation measurement systems without the 

use of GCP or manual scales, specifically in surface mines where GNSS data is 

generally readily available. This shows that monitoring the fragmentation distribution 

can potentially be performed using just a camera and a GNSS-enabled devices, such as 

smartphones. 
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1 Introduction 

1.1 Background and Overview of the Study 

A mining operation contains a sizable number of factors that affect its efficient 

extraction of resources. One of such factors is fragmentation size, a key parameter 

across almost all of the stages of production from mine (drill, blasting, haulage, etc.) to 

mill (mineral processing). Several studies have explored the effect of fragmentation 

size on other factors such as drilling and blasting cost (Afum & Temeng, 2014) and the 

performance of crushing and grinding circuits (Kanchibotla et al., 1999; Valery et al., 

2001). It can be therefore considered that it is vital for companies to continuously 

monitor fragmentation size and make necessary changes to mine planning and 

execution to keep the fragmentation size that is most beneficial to the operation as a 

whole. Traditionally, methods such as manual sieving, boulder counting and visual 

estimation have been used for fragmentation size measurement. However, due to the 

generally large amount of material being mined as well its innately heterogeneous 

nature, difficulties arise from using traditional methods. Limitations on sampling as 

well as bias make these methods relatively inefficient (Nefis & Talhi, 2016). As such, 

there exists a need for a quick and accessible method of rock fragmentation size 

distribution determination that can surmount the limitations of physical sampling and 

laboratory analysis. A currently used digital solution to this problem is to employ 

image-based particle size analysis software. Commercial products such as WipFrag 

(Palangio et al., 1995) make use of images of a muckpile or orthomosaics to measure 

fragmentation size distribution. 
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A 3-Dimensional Fragmentation Measurement (3DFM) system was developed 

that makes use of 3D Photogrammetry to measure particle size distribution at accuracies 

greater than that of conventional methods (Jang et al., 2020). A theoretical visualized 

workflow for this particular system when applied to a mining operation is shown in 

Figure 1. 

 

Figure 1. Application of a 3D Fragmentation Measurement System. 

The developed system is divided into stages, utilizing multiple computational 

techniques in order to achieve its purpose. In a hypothetical application of the system, 

pictures of the muckpile from the products of blasting are taken. The sizes of muckpiles 

vary greatly depend on the specifications of the hauling equipment as well as the mine 

plan that the operation employs. In situations where the muckpile is too large or have 

parts that are inaccessible to photo-taking, it is possible for the system to reconstruct 

only a representative “slice” of the muckpile. The images are then processed in a high-

power computer by a sequence of 3D imaging techniques that will ultimately output a 

scaled 3D model of the muckpile in the form of a point cloud. A technique known as 
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supervoxel clustering is then performed on the 3D model then undergoes supervoxel 

clustering in order to divide the individual fragments into segments whose dimensions 

have been calculated. The dimensional data can then be used in the computation of the 

fragment size distribution of the muckpile. Using this information, the blasting product 

can be judged if it is up to the expected specification. Adjustments are then made the 

blasting design such as the amount and type of explosive and blasting patterns in order 

to achieve the required distribution. 

Scaling is a critical component of fragmentation size distribution measurement 

using photogrammetry as it will directly determine the accuracy of the size estimation. 

In creating a 3D model, extrinsic data such as ground truths are needed to create a 

properly-scaled reconstruction of the scene. There are several methods that are used to 

resolve scale in photogrammetry. Most of these methods have the same basic idea in 

that once the exact distance between at least two different points in a scene is known, a 

scale factor can be applied to the 3D model. One way to do this is to include an object 

of known length such as scale bars in the scene. In larger applications such as aerial 

mapping, GCPs (Ground Control Points) are used, which are marked points of known 

absolute or relative coordinates. 

1.2 Research Objectives 

This study focuses on the 3D model scaling aspect of this system, as highlighted 

with a red box in Figure 1. To this end, the study aims to investigate the utilization of 

other more readily available extrinsic data such as GNSS positional data in order to 

achieve proper scaling of 3D models generated through photogrammetry without the 

need of physical manipulation of the scene with things such as scale bars and GCPs. 

Specifically, this study aimed to achieve these objectives: 
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• Investigate the effect of constrained camera positional data on 3D model 

accuracy. 

• Simultaneously collect image and positional data (e.g., GNSS) from 

scenes that are to be reconstructed using photogrammetry. 

• Use the positional data in the photogrammetry workflow to scale the 

resulting 3D model. 

• Observe the effect of increasing the number of datapoints (image + 

positional data) on the scaling accuracy of the generated 3D model. 

• Determine the most effective configuration in data taking and data 

processing to achieve acceptable scale with the least number of 

datapoints needed. 

1.3 Chapter Structure 

Chapter 2 discusses previous literature related to the study. Specifically, it 

discusses the importance of fragmentation size in mining operations, as well as 

traditional methods of fragmentation size distribution measurement. Chapter 3 

discusses the various materials and methods that are involved in the creation of a scaled 

3D model using photogrammetry. Chapter 3.1 discusses the general SfM-MVS 

(Structure-from-Motion – Multi View Stereo) workflow and Chapter 3.3 includes a 

previous preliminary study done by the author that involves the creation of a 3D model 

of a muckpile found in an underground mine using two different software. Chapter 3.4 

focuses on the utilization of GNSS data in the SfM-MVS workflow as well as a 

preliminary experiment that was used to validate fundamentals regarding the effect of 

positional data and scaling accuracy. Chapter 0 discusses the two experiments that were 

performed to observe the effectivity of GNSS-aided photogrammetry when it comes to 
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model scaling, including the results and the discussion. Chapter 5 discusses the 

conclusions that were made based on the results of the experiments as well as 

recommendations for further steps and future studies.   
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2 Review of Related Literature 

2.1 Fragmentation Size in Mining Operations 

The mine and the mill usually have an agreed-upon average fragmentation size 

from which various elements of the operation will be based on, such as drilling 

equipment, explosives, and mineral processing machinery. The importance of this 

specification is due to how it generally affects mining and milling costs differently. 

When a relatively high fragmentation size is set, the cost of drilling and blasting is 

proportionately lower (Afum & Temeng, 2014), but will require more mineral 

processing in order to achieve the final product. Inversely, a relatively lower 

fragmentation size means less expense is needed for milling, but the cost of drilling and 

blasting would increase (BME South Africa, 2016). Considering these effects, a middle 

ground must be reached in order to minimize the total cost of the operation, as illustrated 

by a theoretical graph in Figure 2. 

 

Figure 2. Relationship between fragmentation size and operational costs in 

mining 
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2.2 Previous Methods of Fragmentation Size Distribution 

Measurement 

The importance of measuring and monitoring fragmentation size distribution 

manifests itself in the development of various methods and techniques. Research on 

this particular topic has attracted experts from a variety of fields such as computer 

vision, machine learning and even simulation through mathematical models. 

2.2.1 Visual estimation and Sieve Analysis 

One of the earliest and easiest methods of evaluating fragmentation size was 

through visual estimation, which was done by individually counting rocks of predefined 

sizes in a muck pile, sometimes through the use of photographs (Grant & Dutton, 1983). 

While this method proved to be quick and inexpensive, it was a highly subjective 

method and was only accurate up to a certain level (Aler et al., 1996).  

Another earlier method which was borne out of the need for greater accuracy 

and consistency was manual sieving. Some applications would include using samples 

taken from scaled down blasting tests  (Bergmann et al., 1973). However, the method 

was traditionally used on a representative sample directly from the muck pile or at times, 

the crusher product. Using this process provided highly accurate results and is actually 

usually used as a reference for determining the performance of new fragmentation size 

distribution measurement methods, including this study. Despite this, however, 

regularly performing this in an actively producing operation has been widely known to 

be very costly and time consuming (Kanchibotla et al., 1999). 
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2.2.2 Optical Granulometry (WipFrag) 

The next significant step in fragmentation size measurement for mining 

applications was the development of photographic analysis methods. These 

applications came to be known as Optical Granulometry. It is a method in which an 

image of the product is digitally analyzed by a series of algorithms which essentially 

detect the edges of individual fragments in the muckpile. Using this data, a size 

distribution can be made for that particular photo. This technique has proven to be an 

accurate method that is sufficiently quick, inexpensive, doesn’t interfere with 

production, and is not limited by the volume of the product (Palangio et al., 1995).  

 One of the more popular applications of this technique is the WipFrag Image 

Based Granulometry System, which was developed by WipWare Inc. Some testing has 

shown that it is relatively more accurate than some of the other image-based fragment 

size analysis suites such as FragScan and Split (Liu & Tran, 2018).  

WipFrag utilizes images taken from various sources and of various formats. 

Using automatic algorithms, a “net” is created that outlines the edges of the fragments. 

Measuring this net, WipFrag reconstruct an imaginary 3-d distribution using geometric 

probability along with some calibrations. From this 3-d distribution a fragmentation 

size distribution can be produced. Practical tests comparing WipFrag measurements to 

sieving tests during its introduction have yielded errors ranging from 2 to 20% 

(Palangio et al., 1995)  
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Figure 3. Progression of WipFrag fragmentation analysis from base image 

(top) to net of rock edges (middle) and identified rock fragments (bottom) 

(Palangio et al., 1995). 
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Figure 4. Example particle size distribution output from WipFrag (Wipware 

Inc., 2017). 

2.2.3 Fragmentation Modeling 

Another alternative approach that was taken in this line of research was to 

predict the fragmentation size distribution before blasting was performed. A number of 

these models have been developed throughout the years, in an attempt to simulate size 

distribution from certain blast designs. The approaches fall mainly into two categories: 

empirical modelling, which assumes that the higher the energy input, the finer the 

fragmentation would be, and mechanistic modeling, which analyzes the physics of 

detonation as well as the energy transfer in well-defined rock for particular blasting 

layouts, in the process getting the whole range of blasting results. Despite mechanistic 
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modeling allowing for the illustration of the effect of individual mechanisms within the 

system, something that purely empirical models cannot achieve, it is quite difficult to 

apply on a daily basis due to its long run times and the requirement of collecting 

significantly more data from detonation to the end result, and in the end is not 

essentially more accurate. As such, empirical models have been considered to be the 

more practical tool for daily blast designing and amongst the various applications, the 

Kuz-Ram model was the most popular. It featured three key equations: 

The adapted Kuznetsov equation, 

𝑥𝑚 = 𝐴𝐾−0.8𝑄
1

6 (
115

𝑅𝑊𝑆
)
19 20⁄

,  (1) 

where xm = mean particle size, cm; A = rock factor (varying between 0.8 and 22, 

depending on hardness and structure) K = powder factor, kg explosive per cubic meter 

of rock; Q = mass of explosive in the hole, kg; RWS = weight strength relative to ANFO. 

The adapted Rosin-Rammler equation, 

𝑅𝑥 = exp [−0.693 (
𝑥

𝑥𝑚
)
𝑛

],  (2) 

where Rx = mass fraction retained on screen opening x; n = uniformity index, usually 

between 0.7 and 2. 

And the uniformity equation, 

𝑛 = (2.2 −
14𝐵

𝑑
)√(

1+𝑆 𝐵⁄

2
) (1 −

𝑊

𝑁
) (𝑎𝑏𝑠 (

𝐵𝐶𝐿−𝐶𝐶𝐿

𝐿
) + 0.1)

0.1 𝐿

𝐻
 , (3) 

where B = burden, m; S = spacing, m; d = hole diameter, mm; W = standard deviation 

of drilling precision, m; L = charge length, m; BCL = bottom charge length, m; CCL = 

column charge length, m; H = bench height, m. 

 Used together, these equations were able to ultimately output the mass fraction 

of a particular size and has been widely used since its inception in the 1980s. However, 
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deficiencies such as certain parameters (rock properties, blasting dimensions, timing, 

etc.), difficulty in scaling blasting effects and its limited ability to measure 

fragmentation were present in the initial version of the model. As such, changes were 

made to the model to address these deficiencies and the model has been evolving since 

then (Cunningham, 2005). 

 

Figure 5. A sample fragmentation curve created using the Kuz-Ram Model 

(Cunningham, 2005). 
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3 Materials and Methods 

3.1 Structure-from-Motion – Multi View Stereo (SfM-MVS) 

Structure from Motion (SfM) has been collectively defined as the 

photogrammetric technique (Westoby et al., 2012), the process (Schönberger & Frahm, 

2016a), as well as the tools (Carrivick et al., 2016) used to generate 3D models from 

2D images taken at different angles. It has been developed since the 1980s, resulting in 

various applications such as photogrammetric surveys, virtual reality model 

reconstruction, determination of camera motion (Cipolla & Robertson, 2009), and 

odometric scale estimation (Gräter et al., 2015). Compared to traditional 

photogrammetry where the calculation is more direct, SfM makes use of repeating 

algorithms to identify matching features in a set of overlapping images, and use these 

matched features to calculate camera location and orientation as well (Carrivick et al., 

2016). SfM can be computed in several ways, depending on numerous factors such as 

camera type, image ordering, capture format, and more. 

Mathematically speaking, SfM can be described as the conversion of four 

coordinate systems, illustrated in Figure 6:  

1. Image pixel coordinate system, which concerns the pixels on the 2D image.  

2. Imaging plane coordinate system, which lies on the same plane of the previous 

system, but whose origin is the plane’s intersection with the camera’s optical 

axis. 

3. Camera coordinate system, which concerns a pinhole camera’s point of view of 

the image. 

4. World coordinate system, which is a reference system to describe the position 

of the camera and the objects being taken pictures of. 
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Figure 6. An illustration of the coordinate systems. Described is the 

conversion of world point Pw to camera point Pc, to imaging plane 

coordinates (x, y) and finally pixel coordinates (u, v). (Madali, 2020) 

 

The conversion of these 4 coordinates systems can be described by equation (4). 

𝑢 and 𝑣 describe the axes in the imaging planes. 𝑢0 and  𝑣0 are the coordinates of the 

origins of the imaging plane in the pixel coordinate system. 𝛿𝑥 and 𝛿𝑦 represent the 

physical size of each pixel in the image in the imaging plane (zoom ratio). 𝑓 describe 

the focal length, which is the distance from the optical center of the camera to the pixel 

plane. 𝑹 ∈ ℝ3×3  and 𝒕 ∈ ℝ3  describes the rotational and translational vectors that 

relate the camera and the world coordinate systems. 𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤  are the actual 

coordinates of a point in the world coordinate system (Madali, 2020). 
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𝑍𝑐 [
𝑢
𝑣
1
] =

[
 
 
 
 
1

𝛿𝑥
0 𝑢𝑜

0
1

𝛿𝑦
𝑣𝑜

0 0 1 ]
 
 
 
 

[
𝑓 0 0
0 𝑓 0
0 0 1

] [𝑹 𝒕] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] = [
𝑓𝑥 0 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

] [𝑹 𝒕] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (4) 

 

Equation (4) represents the fact that in order to estimate the position of a point 

in the real world, the external parameter matrix of the camera (i.e., R and t) needs to be 

measured first. Once R is known, the relative position of the object in the world 

coordinate system can be estimated, and once t is known, the absolute position can also 

be acquired as well. Basic SfM can relatively estimate R and t.  

It can be inferred that there is no single ‘correct’ workflow or process in the 

conversion of 2D images into models. However, there are key processes that are present 

in almost all applications of the method, as shown in the steps are briefly described in 

the following sections. 

 

Figure 7. SfM-MVS pipeline. 

3.1.1 Keypoint Detection 

The initial processing step after acquiring the images is feature detection, or ex-

traction, where possible common features (keypoints) in the individual images are 
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identified as shown in Figure 8. It is by these features that allow the different images in 

the dataset to be matched at the next stage. There are several techniques that have been 

developed for the solution of this step (Carrivick et al., 2016) but the most widely used 

amongst modern SfM applications is the scale-invariant feature transform (SIFT) 

(Lowe, 2004). The system recognizes feature points in the image set which are uniform 

in scaling and rotation and relatively uniform to changes in lighting and 3D camera 

view angles. The number of keypoints that are extracted in an image relies heavily on 

the resolution and texture of the images themselves, with high-quality, original-

resolution pictures returning the most results (Westoby et al., 2012). 

 

Figure 8. Keypoint detection on a pile of rocks. 

3.1.2 Keypoint Matching  

The next step is to match the keypoints and identify the correspondences 

between them. Matches are found by identifying a keypoint’s nearest neighbor in the 

database. The nearest neighbor is defined as the keypoint with the least Euclidean 

distance for its descriptor vector, as shown in Figure 9. (Lowe, 2004). It is also 

important to note at this point that not all keypoints are guaranteed to have a good match 

in the dataset. It is therefore necessary to discard these unmatched keypoints, making 

use of the ratio be-tween the Euclidean distance of the nearest neighbor with that of the 

second nearest, at a certain minimum value as a criterion for discarding false keypoint 

matches (Carrivick et al., 2016). The inherent complexity of the keypoint descriptors 
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gives rise to the need of an efficient solution to the search process, as brute-force 

searching for nearest neighbors proves to be computationally difficult and time-

consuming. Several solutions such as k-dimensional trees (k-d trees), best-bin first 

(BBF) and approximate nearest neighbor (ANN) searching are used to solve this 

problem of efficiency by partitioning the data into bins which are prioritized for match 

searching, decreasing the number of recursions needed to go through all the keypoints 

(Carrivick et al., 2016). 

 

Figure 9. Graphical representation of image gradients and keypoint 

descriptors (Lowe, 2004). 

3.1.3 Keypoint Filtering 

The third stage, also known as geometric verification or match filtering, is done 

to further eliminate erroneous matches. Since the initial matching is solely based on ap-

appearance, it cannot be guaranteed that the matched keypoints refer to the same point 

in an image (e.g., images with symmetrical or similar features) (Schönberger & Frahm, 

2016b). SfM then needs to verify matches by mapping keypoints across images using 

projective imagery. An example of this step can be illustrated by the image pair in 
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Figure 10. The two images are of the same scene, taken at two different angles, and the 

keypoints found in both images are matched, as shown by colored matching tracks. 

 

Figure 10. Keypoint matching tracks over two different views. 

3.1.4 Sparse Reconstruction: Structure-from-Motion 

The fourth step, which also by itself is sometimes called SfM (Structure-from-

Motion), is to reconstruct the scene that was taken using 2D images into an initial sparse 

3D structure. Using the verified matched keypoints, SfM aims to simultaneously 

reconstruct the: (a) 3D scene structure, (b) camera position and orientation (extrinsic 

parameters), and (c) intrinsic camera calibration parameters. The intrinsic camera 

parameters are defined by a camera calibration matrix that includes image scale, skew, 

and the principal point that is defined as the location on the image plane which inter-

sects the optical axis. Further intrinsic parameters are also required to resolve additional 

internal aberrations such as distortion on non-pre-calibrated cameras. These intrinsic 

parameters are either included in the camera’s image file format (e.g., EXIF) or will be 

resolved in additional intermediate steps. After this, a process known as bundle 

adjustment is used to produce sparse point-clouds (Schönberger & Frahm, 2016b). This 

process will be described further in another part of the study below as it is in this step 

that GNSS constraints will come to play in scaling the produced 3D model. A simplified 

illustration of this process is described by the illustration in Figure 11. 
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Figure 11. SfM example showing common points. 

 

3.1.5 Dense Reconstruction: Multi View Stereo 

An additional, post-processing method known as MVS (Multi-View Stereo) can 

be applied to the sparse 3D model from SfM in order to generate an enhanced “dense” 

3D model. The final output of MVS is a complete 3D scene reconstruction from a 

collection of images of known intrinsic and extrinsic parameters, which is already 

resolved through SfM. A variety of MVS algorithms are available but recent variants 

called clustering views for MVS (CMVS) and patch-based MVS (PMVS) has been 

observed to perform well against other algorithms (Carrivick et al., 2016). CMVS 

decomposes the camera poses from bundle adjustment into manageable clusters and 

PMVS is used to independently reconstruct the 3-dimensional model from these 

clusters (Westoby et al., 2012). Most modern MVS pipelines, including the one in the 

software used for this study includes features from both these variants of MVS. A 
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comparison between point density between sparse and dense reconstruction is 

illustrated in Figure 12.  

 

Figure 12. Sparse point cloud (Left) and dense point cloud (Right) of a scene. 

3.2 Application in the Geosciences 

In recent times, SfM has found various applications in the field of geoscience. 

Even though most of the research currently exist as proof-of-concept studies, SfM 

becomes closer to mainstream use in the geosciences as it is subjected to the rigors of 

the scientific method, improving the analysis of error and uncertainty. Presently, SfM-

MVS finds its use commonly in land surveys, specifically in the creation of digital 

elevation models (DEM), which are gridded from 3d point cloud for use in mapping, 

landform geometry analysis, and even for input in numerical models. DEMs have the 

potential to be used to detect changes in topography and subsequently deduce dynamic 

processes in varying geological environments.  
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Figure 13. 3d mapping of a landslide using SfM-MVS (Carrivick et al., 2016) 

Inspiration for this research has been drawn from one of the more novel 

applications of SfM-MVS in the geosciences, which was to ascertain the volume of 

various geological features such as stalagmites and boulders by using 3d point cloud 

data. 
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3.3 SfM Experiment on Mining Muckpiles 

In a previous study (Tungol, 2019), a video recording of a muckpile in a tunnel 

in an underground mine operated by Kalgoorlie Consolidated Gold Mines (KCGM) in 

Kalgoorlie, Australia was used as the test data for reconstruction using SfM-MVS. 

Individual images were extracted from the video for use in the reconstruction process. 

A total of 218 images were extracted from the video. A sample set of images used in 

the reconstruction. OpenDroneMap and Meshroom were used to create 3d 

reconstructions of the muckpile, and the results are viewed on MeshLab, an open-

source 3d model mesh processing tool (Cignoni et al., 2008).   

 

Figure 14. A single frame taken from the video of the muckpile. Presence of 

soccer ball for scaling purposes. 
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Figure 15. A sample set of images used in the reconstruction 

3.3.1 OpenDroneMap (ODM) 

ODM is an open-source, Linux-based (written on Ubuntu) SfM-MVS program 

that was mainly developed to process aerial imagery to create a variety of georeferenced 

outputs such as maps and 3d models (OpenDroneMap Authors, 2020). At its core, it 

uses OpenSfM, an open-source SfM library (OpenSfM Authors, 2020). Despite being 

intended to be used for aerial imagery, it still has sufficient capability to create muckpile 

3d models.  

ODM utilizes a command-line based reconstruction workflow housed in a 

Docker container. As such, the user can manipulate the command input to tweak the 

process by taking in and out certain steps, inputting auxiliary data such as georeferenced 

information, outputting intermediate results, and more. A basic illustration of the 
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workflow can be seen in Figure 16, and reconstruction results can be seen in  Figure 17 

and Figure 18.

 

Figure 16. Workflow utilizing OpenDroneMap to create 3d models 

 

Figure 17. Dense 3d point cloud from OpenDroneMap 
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Figure 18. Textured model of the underground muckpile, output from 

OpenDroneMap 

3.3.2 AliceVision Meshroom 

Meshroom is another open-sourced 3D reconstruction software, based on its 

own AliceVision framework (Griwodz et al., 2021). It is available for use in both 

Windows and Linux operating systems, and features a modular reconstruction pipeline 

that can be fine-tuned by the user as is appropriate for the output that is needed. The 

general workflow of Meshroom is described in Figure 19, and reconstruction results 

are found in Figure 20 and Figure 21. 
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Figure 19. Workflow utilizing Meshroom to create 3d models 

 

Figure 20. Dense reconstruction (uncolored) from Meshroom 
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Figure 21. Textured Model output from Meshroom

3.3.3 Reconstruction Analysis 

Comparing the final textured output from the two workflows, output from the 

Meshroom produced a model with a greater number of vertices (points) and faces at 

172297 points and 344496 faces, while the OpenDroneMap reconstruction generated 

100108 vertices and 143361 faces. However, upon visual inspection of the final 

textured models, ODM’s output is subjectively more accurate than Meshroom’s, 

judging by the reconstruction of the soccer ball and the general form of fragments. 
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Figure 22. Close-up of the Textured Mesh generated by Meshroom. Note that 

the soccer ball is almost unidentifiable and the presence of floating ‘blobs’ 

 

Figure 23. Close-up of the Textured Mesh generated by ODM. The soccer ball 

has relatively been well reconstructed and no floating ‘blobs’ are present
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Suffice to say, this suggests that the number of vertices and faces generated isn’t 

an appropriate metric for determining the accuracy of a reconstruction.  

In addition, upon using MeshLab’s measuring tool to measure the soccer ball’s 

diameter in the scene. It has been observed that ODM’s reconstruction is fairly close to 

real scale, with the ball, being a regulation FIFA ball with a computed average 

circumference of 22cm (The International Football Association Board, 2020). 

Measuring the ball in the scene shows a rough average diameter of 21cm. It should be 

noted that due to the nature of the reconstruction some difficulty was present in using 

the measuring tool.  

3.3.4 Limitations in the Reconstruction Process 

Difficulties in properly reconstructing the scene was present in both workflows, 

requiring multiple runs and tweaking to achieve what was shown previously. These 

issues are possibly due to a variety of reasons. One of these reasons could be video 

quality in the form of lighting, as video was taken using a smartphone camera in a low-

light environment and the fact that a large percentage of the images extracted from the 

video contains a significant amount of blur. Additionally, there is a substantial amount 

of tweaking that can be done when using the reconstruction software, requiring some 

finesse that will come as more reconstructions are performed. Structure-from-Motion 

was first and foremost a tool for use in computer generated imagery (CGI) and 

animation and could be considered an art. 

3.4 GNSS-aided Scaling in Photogrammetry 

The study proposes a method that makes use of GNSS (Global Navigation 

Satellite System) data to create scaled 3D models without the need for post-

reconstruction rescaling. GNSS positional data and its sub-systems such as GPS, 
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Beidou, GLONASS, and Japan’s own QZSS can be utilized. A previous study has been 

with regards to using GPS in reconstruction, but mostly in the context of UAV 

(Unmanned Aerial Vehicle) Mapping (Fonstad et al., 2013). This study aims to create 

a system that doesn’t need ground truth data such as GCPs to create a properly scaled 

3D model of a muckpile. This would aid greatly in the fragmentation size distribution 

measurement of muckpiles using photogrammetry. 

It is a known fact that an inherent error exists within GNSS and its subsets, and 

even high-end geodetic GNSS receivers have errors in the centimeter range (Khomsin 

et al., 2019). For this study, a smartphone is used as a GNSS receiver for the digital 

camera. This decision is due to the end-goal of this research which is to be able use 

both image data and GNSS data from a smartphone, as this practicality can be important 

in a mining operation environment. This comes at a drawback to the GNSS accuracy, 

as recreational grade GNSS chips like those found in smartphones typically have errors 

in the meter range (Merry & Bettinger, 2019). To overcome this error, the study 

proposes to make use of an increasing number of georeferenced images to statistically 

decrease the scaling error of the constructed 3D model. Figure 24 shows a general 

overview of the proposed system for this study. Utilizing a smartphone’s built-in GNSS 

receiver, GNSS data can be logged and sent to a camera. At the moment an image is 

taken, GNSS data can be embedded into the image’s metadata (EXIF). 
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Figure 24. GNSS-aided photogrammetry workflow.  

3.4.1 GNSS-aided scaling in Bundle Adjustment 

In the bundle adjustment phase of SfM, the previous and imperfect solutions 

regarding camera positions and 3D features of the scene are refined (Zhang et al., 2006). 

More specifically, bundle adjustment is a non-linear minimization procedure that 

jointly optimizes camera parameters and point position by minimizing the reprojection 

error between the image locations of observed and predicted image points. This 

minimization is done using nonlinear least-squares algorithms (Lourakis & Argyros, 

2009). Numerous studies have been done since its inception in the 90’s regarding 

bundle adjustment, with most of the research going into reducing its computational 

burden and accelerating the problem-solving process (Triggs et al., 1999). One of such 

propositions is the fusion of positional data and bundle adjustment, with GNSS data 

being used as constraints for solving reprojection errors (Kume et al., 2010). This 

concept is what this research aims to produce accurately-scaled 3D reconstructions of 
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muckpiles. GNSS data is used to provide position and covariance estimates for the 

bundle adjustment process. The nominal form of these solutions is:  

𝑟𝐺𝑁𝑆𝑆
𝑀 (𝑡) = 𝑟𝑐

𝑀(𝑡) + 𝑅𝑐
𝑀(𝑡)𝑟𝐺𝑁𝑆𝑆

𝑐 + (𝑏𝐺𝑁𝑆𝑆
𝑀 + 𝑑𝐺𝑁𝑆𝑆

𝑀 (𝑡 − 𝑡0)), (5) 

where 𝑟𝐺𝑁𝑆𝑆
𝑀 (𝑡)  is the position of the GNSS receiver, 𝑟𝑐

𝑀(𝑡)  denotes the camera 

position, and 𝑅𝑐
𝑀(𝑡) is the rotational matrix that aligns camera and mapping space axes, 

and 𝑟𝐺𝑁𝑆𝑆
𝑐  is the difference between the GNSS receiver and camera position. 𝑏𝐺𝑁𝑆𝑆

𝑀  and 

𝑑𝐺𝑁𝑆𝑆
𝑀  denote bias and drift terms and are included to account for data inconsistencies 

and the inherent errors that exist within GNSS. A previous study (Jaud et al., 2020) 

applied GNSS-assisted terrestrial photogrammetry to model coastal areas without the 

use of GCPs. With bundle adjustment being an error minimization problem with 

multiple factors, weights can be assigned to them, as is the case in the study’s SfM 

workflow. The software that was used for this study was developed with the aim of 

being able to perform SfM without the need for any additional intrinsic or extrinsic data 

(such as GNSS) aside from the image themselves. (Toldo, 2013). However, the 

software itself still allows for the importation of GNSS data from images for the 

purpose of constraining camera positions. Weights are assigned to this GNSS data and 

is used in the bundle adjustment step (3Dflow, 2019). As such, the study deems it 

necessary to initially prove if properly constraining camera positions will help in 

creating a properly scaled 3D model. A preliminary experiment was designed to test 

this theory, which is described in the proceeding section.  

3.4.2 Preliminary experiment for validating GNSS-aided scaling 

fundamentals 

A preliminary photogrammetry experiment was performed before the main 

experiment to test some core concepts regarding the study, specifically the effects of 
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known and constrained camera positions on scaling error and reconstruction quality. 

This small-scale experiment involved taking photos of a scene that was set-up indoors 

in the laboratory that consisted of a stuffed dog plushie that was placed on the floor in 

such a way that it was in the middle of a grid of 9 carpet panels. The panels are 50cm 

by 50cm in size and form a 3 x 3 grid measuring 150cm by 150cm in total. Figure 25 

shows the general layout of the scene. The purpose of this grid is to provide a spatial 

reference for the camera positions when taking pictures of the scene. A detailed board 

was put on the middle of the scene to provide enough feature points for SfM, as initial 

reconstructions without the board resulted in distorted point clouds with missing parts.  

 

Figure 25. Grid layout of the 1st preliminary experiment (left) and a toy as the 

object (right). Red dots indicate camera positions and the blue rectangle 

indicates the board that was inserted for improved feature detection. 

The camera used for this preliminary and succeeding experiments is a Canon 

EOS R equipped with a Canon 24-105mm lens. The f-stop is set at 4 with variable 

exposure times, automatic white balancing enabled, and the zoom was kept at a 

minimum to provide a fixed focal length which is required for SfM. A total of 32 photos 
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were taken, two at each of the intersection points of the grid at different heights- 45 and 

60cm, with sample images shown in Figure 26. The height was maintained by mounting 

the camera on an adjustable tripod. Along with the 50cm spacing, this provided known 

relative camera positions. The captured images were then processed, with a workflow 

that consisted of making the sparse point cloud and a dense point cloud using 

photogrammetry software. Creating a textured mesh was deemed unnecessary as it 

meant a longer processing time and larger project file size and ultimately did not 

contribute to analyzing the results of the experiment. After which, the camera positions 

were constrained to their known locations. The scaling error of the reconstructed model 

was then analyzed. 

 

Figure 26. Data input and output of the preliminary experiment. 

Without any camera constraints, the software arbitrarily designated a scale, 

rotation and translation for the model, and the measurement of the dimension of the 

carpet panel measured at about 10 units (since there are no constraints applied, this 

value cannot be assigned a specific unit of measurement). However, upon adding 

constraints to the camera (at the centimeter level) by importing a file describing each 

image’s distance from each other, the same dimension now measures at 51.2719cm, 
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with a difference of 1.2719cm from the real measurement of 50cm. This difference was 

attributed to human error during the shooting process. A possible specific example is 

that the center of the tripod (and by extension the center of the camera) was what was 

used to align the camera to the grid, instead of the nodal point of the camera lens. This 

means that the images were offset from the actual intended grid position depending on 

the orientation of the camera and the tripod. Despite this difference, the study still 

proves fundamentally that accurately constraining the camera positions to their real-

world values improves the scale accuracy of the constructed 3D model.  
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4 Experiments on GNSS-aided Photogrammetry 

4.1 GNSS-constrained SfM on monuments of known 

dimensions 

To perform quantitative evaluation of the effects of GNSS constraints on the 

scaling error of 3D reconstruction using SfM, an analysis using monuments of known 

dimensions outside Akita University was done. The experiment aims to correlate the 

scaling error to the number of images used in SfM. The hypothesis of this experiment 

is that as more images are used, the scaling error due to GNSS error will decrease. In 

this scene, the cube-shaped monument has sides measuring approximately 1 meter. This 

dimension is used to compute scaling error. This particular scene was chosen for this 

reason, in addition to the monuments being of simple 3D shapes, as demonstrated in 

Figure 28, making analysis of measurements more accurate for the purpose of 

quantitative evaluation. 

 

Figure 27. Data input and output of the experiment using 200 images. 
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Figure 28. Mesh reconstructed 3D CG model of the monuments. 3rd picture 

(bottom) shows measured side of cube monument when using 100 images. 

For this experiment, around 200 images of the scene were taken across 2 days 

at roughly the same time of the day, with sample images shown in Figure 27 and a map 

of the depicted photo taking area and the recorded camera positions in Figure 29. For 

this and the proceeding experiment, the camera was used freehanded without a tripod, 

with a Xiaomi Mi 9T Pro smartphone placed close to the camera sending GNSS data to 

it via Bluetooth. The dataset, as with the previous experiment, was used to create 3D 

reconstructions at different image numbers. The scaling error when varying number of 

images are used was noted and compared. For reconstruction purposes in this and the 
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following experiments, 3DF Zephyr was used, with a setting of 50% GNSS data weight, 

as specified in the software’s manual (3Dflow, 2019). 

 

Figure 29. GNSS location of camera positions as logged by a smartphone (red 

dots) of the experiment on monuments of known dimensions.  

Table 1. Results of the Experiment on Monuments of Known Dimensions. 

Data 
Measured 

(m) 

Real 

Measurement 

(m) 

Difference from Real 

Measurement (m) 

50 

images 
2.00 1 1.00 

100 

images 
1.97 1 0.97 

150 

images 
1.74 1 0.74 

200 

images 
1.61 1 0.61 
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As shown in Table 1 and Figure 30, there is a trend that at increasing number of 

images used in reconstruction, the difference from the real measurement decreases. This 

increase in accuracy lends credence to the hypothesis that using more images for 

reconstruction has the tendency to lessen scale error in 3D models. Using the trendline 

of the data, a model with a difference from real measurement of 0.1m (10% scaling 

error) can be hypothetically created if 386 (385.93) images are used.  

 

Figure 30. Graph detailing the results of the experiment. 

4.2 Experiment on a pseudo-muckpile 

For this test, the goal was to recreate a scene of a collection of boulder-sized rocks 

found at a temple site near the university, shown in Figure 31. The aim of this case 

study is to provide both quantitative and qualitative evaluation of the effects of GNSS 

constraints on the scaling error of 3D reconstruction with a subject that is a close 

simulation of an actual muckpile in a mining environment. The study conducted an 

experiment using a rock pile located near Akita University. These rocks are similar in 

y = -0.0028x + 1.1806

R² = 0.9339

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

D
if

fe
re

n
ce

 f
ro

m
 R

ea
l 

M
ea

su
re

m
en

t 
(m

)

Number of Images

Number of Images vs. Difference from Real Measurement (m)

Akita University



40 

 

size and shape to a muckpile, and if the effectiveness of the method on this dataset can 

be confirmed, it can be assumed that the method will be equally effective on an actual 

muckpile in a mine site. 

  

Figure 31. Data input (Set #1) and output of the experiment using 100 images. 

 

Figure 32. GNSS location of camera positions as logged by a smartphone (red 

dots) of the experiment on a pseudo-muckpile. 

Akita University



41 

 

 

Figure 33. Meshed 3D CG reconstruction of wooden box reference with 

measurement (at 100 images used). 

 A total of 200 photos were taken, split into two datasets (Set #1 and #2) as 

shown in Figure 31 and Figure 34, with a map depicting the photo taking area and the 

recorded camera positions found in Figure 32. The rockpile was divided into two parts, 

one with bigger, angular rocks and another with smaller, rounded rocks. Both piles are 

around 4m wide on their longest side and are less than a meter long. A wooden box 

measuring 30 x 30 x 17 cm was placed in the scene for reference, as shown in its 

reconstructed form in Figure 33. In addition, measurement of the big, rectangular prism-

shaped rock with dimensions of 35 x 40 x 30 cm were taken for reference as well, which 

can be seen in its reconstructed form in Figure 35. After the photos were taken, they 

were once more processed to produce several 3D models at different image numbers. 

The scaling error and the reconstruction quality is then observed in a similar fashion to 
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the previous experiments. Since two sets of data were used for this experiment, scaling 

error between using 50 images (chosen at random) and 100 images for each set are 

used. An additional exploratory test using 200 images using both sets are added for 

testing. The study’s initial hypothesis, however, was that this will introduce some 

reconstruction errors as there are not enough images that are similar between these two 

scenes. 

 

Figure 34. Data input (Set #2) and output of the experiment using 100 images. 
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Figure 35. Close up of Set #2 meshed 3D CG reconstruction, with 

measurements on long rectangular prism-shaped rock that was used as 

reference. 

Table 2. Results of the experiment on a pseudo-muckpile 

Data Set and 

Image Count 

Measured 

(m) 

Real 

Measurement (m) 

Difference 

from Real 

Measurement 

(m) 

Set #1 (50 

images) 
2.98 0.30 2.68 

Set #1 (100 

images) 
1.60 0.30 1.30 

Set #2 (50 

images) 
6.11 1.40 4.71 

Set #2 (100 

images) 
6.09 1.40 4.69 

Combined Set 

(200 images) 
0.16 0.17 0.01 
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The measurement comparison is shown in Table 2. For Set #1, at 50 images 

used, the difference from the real measurement of the width of the box (0.3m) is 2.6m. 

At 100 images used, the difference is 1.3m. This leads to a decrease in 1.3m in the 

scaling error when using 50 more images. For Set #2, at 50 images used, the difference 

from the real measurement of the width of the rectangular rock (1.4) is 4.8m. At 100 

images used, the difference is 4.6m. This leads to a decrease in 0.2m in the scaling error 

when using 50 more images. For a final, investigational set of using 200 images 

combining both previous sets, a surprising result has been observed – even though there 

were significantly more reconstruction errors (missing parts, duplicating parts, etc.) in 

this particular reconstruction, the wooden box width in this reconstruction was 

measured at 0.167m, with a difference of 0.01m from the real measurement. 

Reconstruction is shown below in Figure 36. The study considers that this increase in 

accuracy can be attributed to not just the number of images increasing, but also the 

general area of the scene becoming larger as it includes both pseudo-muckpiles (the 

effect of model size on GNSS error is discussed in a latter part of this section). However, 

combining the datasets also means that the scene being reconstructed is contextually 

different as it now includes both parts of the pseudo-muckpile.  
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Figure 36. 3D CG reconstruction results of the combined data sets. 

It can be seen from both experiments through the maps in Figure 29 and Figure 

32 the apparent GNSS drift that occurs during the photo taking. Some of the recorded 

camera positions are either outside the photo taking area or in spots that are obstructed. 

The study recognizes that these changing boundary conditions have an effect on the 

results and a separate investigation on this can provide insight for GNSS-aided 

photogrammetry. Aside from the inaccuracies found in GNSS, several additional 

factors have been considered to contribute to the drift. One of such is the effect of the 

partial tree cover in some of the camera positions. A previous study (Uzodinma & 

Nwafor, 2018) in a similar setting (university campus) that analyzed the effect of not 

only partial tree cover, but also nearby infrastructure on GNSS accuracy by comparing 

GNSS data to total station survey data. Results show that some points were no longer 

suitable for GNSS positioning due to high GDOP (geometric dilution of precision) and 

where it was suitable, the GNSS recorded position differed by as much as 5.7m from 
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the total station data. This difference is consistent with what transpired in this study’s 

experiments, as can be seen from the maps. In a mining site, where there is usually less 

vegetation and obstruction, this effect should be diminished, however. 

Another factor that can be considered is the overall scale of the pseudo-

muckpile. A large majority of GNSS-aided photogrammetry applications are usually in 

the form of aerial imagery and mapping, with a scope and scale larger than both of the 

terrestrial photogrammetry experiments performed in this study. A study (Fleming 

Zachariah & Pavlis Terry, 2018) investigating the application of terrestrial 

photogrammetry in field geology by using SfM-MVS aided by GPS to model an 

outcrop that long observed scaling and rotational errors in their reconstruction. Aside 

from concluding that GNSS contributed highly to these model errors, they suggested 

that at a larger scale, the error would be less of an issue. In parallel to this, the study 

observes that the relatively small scale of the experiment area affects the data; 

particularly the pseudo-muckpile whose size is smaller than a muckpile that one would 

normally find in a mining operation. Ultimately however, the results show that even at 

this scale, incremental improvements to 3D model scaling have been made as shown in 

the data. 

4.3 Experiments on a Muckpile in Mikurahana Quarry Site 

For this experiment, an actual muckpile found in an active mining (quarry) site 

is recreated in 3D space. The aim of this experiment is to assess the performance of 

GNSS-aided photogrammetry in a practical application in an open mining environment. 

The site chosen for this experiment is the Mikurahana Quarry Site, found in the town 

of Hachirogata in Akita Prefecture, Japan. The muckpile is composed mainly of 

limestone and fragments are generally large, with fragments as large as 2 meters wide 
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in its largest dimension. Satellite imagery is shown in Figure 37 and Figure 38 to 

provide locational context for the quarry and the muckpile in question. 

 

Figure 37. Satellite view of the Mikurahana quarry site; the red box indicates 

location of the muckpile and its photographs.  

 

Figure 38. Close-up of quarry and muckpile photograph locations (marked as 

red dots) 
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A total of 400 images of the muckpile were taken, taken from varying angles 

facing the muckpile using the same camera-smartphone GNSS set-up from the two 

previous experiments. Sample images are shown in Figure 39, which also feature the 

yellow cardboard box that was used as an absolute reference for scaling error. The box 

measures 15 x 15 x 60 cm, with the 60 cm-long side used for measuring scaling error.  

 

Figure 39. Sample images from the dataset. The yellow box is used as an 

absolute reference. 

Using 3DF Zephyr, the images are used to create 3D models at different image 

numbers, namely 50, 100, 200 and 400 images. The scaling error of each model with 

respect to the yellow box is measured and plotted in a graph to observe the relationship 

between scaling error and image number. The sparse and dense reconstruction of the 

muckpile at 400 images used is shown in Figure 40 at different angles for reference. A 

mesh reconstruction featuring measurement of the yellow box in 3DF zephyr is also 

shown in Figure 41. 
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Figure 40. Sparse and dense reconstruction of limestone muckpile using 400 

images, shown at different angles. 

 

Figure 41. Close-up of mesh reconstruction, featuring reference yellow box 

and dimension of its longest side as measured.  
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Table 3. Results of the experiment on the Mikurahana quarry muckpile 

Number 

of Images 

Measured 

(m) 

Real 

Measurement 

(m) 

Difference from 

Real 

Measurement (m) 

Percent 

Error (%) 

50 0.82 0.6 0.22 36.67 

100 0.76 0.6 0.16 26.67 

200 0.74 0.6 0.14 23.33 

400 0.67 0.6 0.07 11.67 

 

 

Figure 42. Graph detailing the results of the Mikurahana experiment. 

 

As shown in Table 1Table 1 and Figure 1, there is a trend that at increasing 

number of images used in reconstruction, the difference from the real measurement 

decreases. This result, as with the previous experiments, lends more credence to the 

hypothesis that using more images for reconstruction has the tendency to lessen scale 

error in 3D models, with a relatively linear relationship between image number and 
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scaling error as shown by the trendline with an R-value of 0.93. It is noted, however, 

that the improvement in scaling error by increasing the number of images is lessened 

as the scaling error at using only 50 images is already 36.67%, which is much higher 

than when using 50 images in the other experiments. The study hypothesizes that this 

is due to the lack of vegetation in the area, which improved the GNSS accuracy. The 

study achieved 11.67% scaling error at 400 images, which is close to the extrapolated 

10% scaling error at 400 images in the previous experiment on monuments.  
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5 Conclusion  

In this study, the study proposes a method of creating an accurately scaled 3D 

model by constraining camera positions through the use of georeferenced images as 

input for SfM. Monitoring fragmentation size is an important procedure in optimizing 

mining operations that perform blasting. In recent years, a new method that involves 

using 3D photogrammetry to measure fragment sizes has been developed that has the 

potential to surpass traditional techniques. For this particular process to be accurate, a 

method for properly scaling 3D model with georeferenced images using GNSS is 

investigated. To validate the method, several experiments were performed. As an initial 

test to prove fundamentals, an indoor scene involving a small object was recreated in 

3D space using SfM with photos of known relative positions for constraining camera 

location, and good results that show that the created 3D model has a scaling error of 

1.27cm were achieved. For the next experiment, the study took georeferenced photos 

of an outdoor scene with a monument of known dimensions and made several 

reconstructions at increasing number of images used (50, 100, 150 and 200 images 

respectively). The results show a linear pattern with an R-squared value of 0.93 in 

which the scaling error decreases as the number of images used increases. Additionally, 

an experiment was done to verify the study’s hypothesis further, using a scene that 

includes a pseudo-muckpile to simulate the usage of the proposed system for a mining 

operation. In a similar fashion, the results show increasing scale accuracy with 

increasing number of images used in reconstructions. Finally, an experiment was 

performed on an actual muckpile in Mikurahana quarry to test the system’s accuracy in 

a practical application. 3D reconstructions were created at image numbers of 50, 100, 

200 and 400 of a limestone muckpile and the scaling error was measured and graphed 

against the image number. It also showed a linear pattern with an R-squared value of 
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0.93 in which the scaling error decreases with increasing image number, albeit at a 

lower ratio that has been hypothesized to be due to the lack of interference from 

vegetation and buildings. Two observations can be drawn from the experimental 

results:  

1) constraining cameras to accurate positions in SfM will result in a properly 

scaled 3D model and  

2) increasing the number of georeferenced images in SfM will incrementally 

improve the scaling error of the reconstruction. These observations can help 

improve scale accuracy in GNSS-aided 3D fragmentation measurement. 

These results lend credence to the possibility of improving the scaling aspect of 

3D fragmentation measurement systems without the use of GCP or manual scales, 

specifically in surface mines where GNSS data is generally readily available. This 

shows that monitoring the fragmentation distribution can potentially be performed 

using just a camera and a GNSS-enabled devices, such as smartphones. 

  

Akita University



54 

 

6 References 

3Dflow. (2019). 3DF Zephyr Manual. http://3dflow.net/zephyr-

doc/3DF%20Zephyr%20Manual%204.500%20English.pdf 

Afum, B., & Temeng, V. (2014). Reducing Drill and Blast Cost through Blast 

Optimisation - A Case Study. 3rd UMaT Biennial International Mining and 

Mineral Conference, 137–145. 

https://www.researchgate.net/publication/269165866 

Aler, J., du Mouza, J., & Arnould, M. (1996). Measurement of the fragmentation 

efficiency of rock mass blasting and its mining applications. International Journal 

of Rock Mechanics and Mining Sciences and Geomechanics, 33(2), 125–139. 

https://doi.org/10.1016/0148-9062(95)00054-2 

Bergmann, O. R., Riggle, J. W., & Wu, F. C. (1973). Model rock blasting—effect of 

explosives properties and other variables on blasting results. International Journal 

of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10(6), 585–

612. https://doi.org/10.1016/0148-9062(73)90007-7 

BME South Africa. (2016, May 4). Better blasting can save on power costs. 

https://bme.co.za/better-blasting-can-save-on-power-costs/ 

Carrivick, J., Smith, M., & Quincey, D. (2016). Structure from motion in the 

geosciences. Wiley, Blackwell. 

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., & Ranzuglia, G. 

(2008). MeshLab: an Open-Source Mesh Processing Tool. In V. Scarano, R. de 

Chiara, & U. Erra (Eds.), Eurographics Italian Chapter Conference. The 

Eurographics Association. 

Akita University



55 

 

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-

136 

Cipolla, R., & Robertson, D. P. (2009). Chapter 13: Structure From Motion. Practical 

Image Processing and Computer Vision: Wiley. 

Cunningham, C. V. B. (2005). The Kuz-Ram fragmentation model–20 years on. 

Brighton Conference Proceedings, 4, 201–210. 

Fleming Zachariah, D., & Pavlis Terry, L. (2018). An orientation based correction 

method for SfM-MVS point clouds—Implications for field geology. Journal of 

Structural Geology, 113, 76–89. https://doi.org/10.1016/J.JSG.2018.05.014 

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. 

(2013). Topographic structure from motion: A new development in 

photogrammetric measurement. In Earth Surface Processes and Landforms (Vol. 

38, Issue 4, pp. 421–430). https://doi.org/10.1002/esp.3366 

Grant, J. R., & Dutton, A. J. (1983). Development of a fragmentation monitoring system 

for evaluating open slope blast performance at Mount Isa Mines. Proceedings of 

the 1st International Symposium on Rock Fragmentation by Blasting, Lulea, 

Sweden, 637–652. 

Gräter, J., Schwarze, T., & Lauer, M. (2015). Robust scale estimation for monocular 

visual odometry using structure from motion and vanishing points. 2015 IEEE 

Intelligent Vehicles Symposium (IV), 475–480. 

Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., de Lillo, 

G., & Lanthony, Y. (2021). AliceVision Meshroom. 241–247. 

https://doi.org/10.1145/3458305.3478443 

Akita University



56 

 

Jang, H., Kitahara, I., Kawamura, Y., Endo, Y., Topal, E., Degawa, R., & Mazara, S. 

(2020). Development of 3D rock fragmentation measurement system using 

photogrammetry. International Journal of Mining, Reclamation and Environment, 

34(4), 294–305. https://doi.org/10.1080/17480930.2019.1585597 

Jaud, M., Bertin, S., Beauverger, M., Augereau, E., & Delacourt, C. (2020). RTK 

GNSS-Assisted Terrestrial SfM Photogrammetry without GCP: Application to 

Coastal Morphodynamics Monitoring. Remote Sensing 2020, Vol. 12, Page 1889, 

12(11), 1889. https://doi.org/10.3390/RS12111889 

Kanchibotla, S., Valery, W., & Morrell, S. (1999). Modeling fines in blast 

fragmentation and its impact on crushing and grinding. 

Khomsin, Mutiara Anjasmara, I., Guruh Pratomo, D., & Ristanto, W. (2019). Accuracy 

Analysis of GNSS (GPS, GLONASS and BEIDOU) Obsevation for Positioning. 

E3S Web of Conferences, 94. https://doi.org/10.1051/e3sconf/20199401019 

Kume, H., Taketomi, T., Sato, T., & Yokoya, N. (2010). Extrinsic camera parameter 

estimation using video images and GPS considering GPS positioning accuracy. 

Proceedings - International Conference on Pattern Recognition, 3923–3926. 

https://doi.org/10.1109/ICPR.2010.954 

Liu, Q., & Tran, H. (2018). Comparing systems—validation of Fragscan, Wipfrag and 

Split. In Measurement of Blast Fragmentation (pp. 151–155). Routledge. 

Lourakis, M. I. A., & Argyros, A. A. (2009). SBA: A software package for generic 

sparse bundle adjustment. ACM Transactions on Mathematical Software, 36(1), 

1–30. https://doi.org/10.1145/1486525.1486527 

Akita University



57 

 

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. 

International Journal of Computer Vision, 60(2), 91–110. 

https://doi.org/10.1023/B:VISI.0000029664.99615.94 

Madali, N. (2020, July 30). Structure from Motion. 

https://towardsdatascience.com/structure-from-motion-311c0cb50e8d 

Merry, K., & Bettinger, P. (2019). Smartphone GPS accuracy study in an urban 

environment. PLoS ONE, 14(7), e0219890. 

https://doi.org/10.1371/journal.pone.0219890 

Nefis, M., & Talhi, K. (2016). A model study to measure fragmentation by blasting. 

Mining Science, 23, 91–104. https://doi.org/10.5277/msc162308 

OpenDroneMap Authors. (2020). Open Drone Map - A command line toolkit to 

generate maps, point clouds, 3D models and DEMs from drone, balloon or kite 

images. https://github.com/OpenDroneMap/ODM 

OpenSfM Authors. (2020). OpenSfM. https://github.com/mapillary/OpenSfM 

Palangio, T. C., Franklin, J. A., & Maerz, N. H. (1995, January 1). WipFrag -- A 

Breakthrough in Fragmentation Measurement. 6th High-Tech Seminar on State of 

the Art Blasting Technology, Instrumentation, and Explosives Applications. 

Schönberger, J. L., & Frahm, J. (2016a). Structure-from-Motion Revisited. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113. 

https://doi.org/10.1109/CVPR.2016.445 

Schönberger, J. L., & Frahm, J. (2016b). Structure-from-Motion Revisited. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113. 

https://doi.org/10.1109/CVPR.2016.445 

Akita University



58 

 

The International Football Association Board. (2020). Laws of the Game. 

www.theifab.com 

Toldo, R. (2013). Towards automatic acquisition of high-level 3D models from images. 

Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (1999). Bundle 

adjustment—a modern synthesis. International Workshop on Vision Algorithms, 

298–372. 

Tungol, Z. P. L. (2019). A Study on the Use of 3D Photogrammetry Software for Rock 

Fragmentation Size Distribution Measurement. 

Uzodinma, V. N., & Nwafor, U. (2018). Degradation of GNSS Accuracy by Multipath 

and Tree Canopy Distortions in a School Environment. Asian Journal of Applied 

Sciences, 6(4). https://doi.org/10.24203/AJAS.V6I4.5458 

Valery, W., Morrell, S., Kojovic, T., Kanchibotla, S., & Thornton, D. (2001). Modelling 

and Simulation Techniques Applied for Optimisation of Mine to Mill Operations 

and Case Studies. 

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. 

(2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for 

geoscience applications. Geomorphology, 179, 300–314. 

https://doi.org/10.1016/J.GEOMORPH.2012.08.021 

Wipware Inc. (2017, January 13). WipWare ® Sampling and Analysis Guide. 

https://wipware.com/wp-content/uploads/2018/01/Sampling-and-Analysis-

Guide.pdf. 

Akita University



59 

 

Zhang, J., Boutin, M., & Aliaga, D. G. (2006). Robust bundle adjustment for structure 

from motion. Proceedings - International Conference on Image Processing, ICIP, 

2185–2188. https://doi.org/10.1109/ICIP.2006.312973 

  

 

Akita University




