
Ph.D Thesis

A study on improving the performance of
three-stage Clos networks

Labson Koloko

Graduate School of Engineering Science,

Department of Mathematical Science and

Electrical-Electronic-Computer Engineering,

Akita University

This dissertation is submitted in partial fulfilment for the award

of the degree of Doctor of Engineering in Electrical and

Electronic Engineering

September 2021

Akita University

Dedication

This thesis is dedicated to my mum whose prayers and faith inspires me to move to
higher heights. To my late Dad who taught me to always work hard and be resilient in

life.

i

Akita University

Personal quote

“Never let disappointment make you drop God’s promises for your life”

ii

Akita University

Declaration

This dissertation is the result of my own work and does not include anything which is
the outcome of work done in collaboration except where specified within the text. It
has not been submitted in part or in whole to any university or institution for any

degree or qualification.

Signed .

Date .

2021
Akita University.

iii

Akita University

List of Publications

This dissertation is based on my published international journal and conference papers.

International Journal papers
1. L. Koloko, T. Matsumoto and H. Obara, “Design and implementation of fast and
hardware-efficient parallel processing elements to set full and partial permutations in
Beneš networks,” IET Journal of Engineering, 2021.4, Doi: 10.1049/tje2.12037.

2. L. Koloko,H. Obara and S.Kumagai, “Structure and non-blocking properties of bidi-
rectional unfolded two-stage switches,” Electronics Letters, 2021.6, doi:10.1049/ell2.12258.

3. L. Koloko, 小原仁, “ 3段Clos 網のルーチング制御の高速化に向けたFPGAに
よる非同期並列処理回路の試作,”電子情報通信学会論文誌B, Vol. J104–B, No. 7, pp.
598–602, 2021,doi: 10.14923/transcomj.2020BLL0002

4. L. Koloko and H. Obara, “Applying bidirectional crossbar switches with extra sets of
inlets and outlets to three-stage Clos networks,” International Journal of Energy, Infor-
mation and Communications, Accepted under publication.

International Conference Papers
1. L. Koloko, N. Takanohashi, Y. Katoh, P. Selin and H. Obara, “Network utilization
monitoring technique using probe packet delay variance,” Proceedings of International
Conference on Electrical Engineering, G5-0930, Seoul, Korea, June 24-28, 2018.

2. L. Koloko and H. Obara, “Nonblocking Properties of three-stage Clos Networks
Composed of crossbar switch elements with an Extra set of Inputs and Outputs,” The
9th International Conference on Electronics, Communications and Networks (CECNet
2019), CNT2476, Kitakyushu, Japan.Oct. 18-21,2019.

3. L. Koloko and H. Obara, “Nonblocking Properties of 3-stage Clos networks comprised
of unidirectional crossbars,” Proceedings of 25th OptoElectronics and Communications
Conference (OECC2020), pp.1-3 (doi:10.1109/OECC48412.2020.9273703), Taipei, Tai-
wan, October 4-8, 2020.

4. L. Koloko, T. Matsumoto and H. Obara, “FPGA implementation of parallel routing
algorithm for three-stage Clos networks with component switch sizes of a power of two,”
Proceedings of International Conference on Emerging Technologies for Communications,
D2-1, Tokyo, Japan (Virtual Conference),December 2-4, 2020

iv

Akita University

紀要（査読あり）

1.小原　仁，Koloko Labson, “3段Closスイッチ網の性能改善に関する研究（その1）
－研究の背景とスコープ－,” 秋田大学大学院理工学研究科研究報告，第39号，pp.9-
14，2018

国内大会講演・研究会（査読なし）

2. 中川原 敬佑, Labson Koloko, 加藤 陽介, 小原 仁, “3段Closスイッチ網の性能改
善に関する研究（その2）－空きポートを利用した双方向クロスバースイッチの構
成－,” 電気関係学会東北支部連合大会講演論文集，p.112，2018

3. 柳 晋登, Labson Koloko, 加藤 陽介, 小原 仁, “3段Closスイッチ網の性能改善に
関する研究（その3）－FPGAを用いたハードウェア処理による3段Clos網の高速制
御－,” 電気関係学会東北支部連合大会講演論文集，p.112， 2018．

4. Labson Koloko, 橋本 拓大, 加藤 陽介, 小原 仁, “Improving Performances of Three-
Stage Clos Networks, PartⅣ,”電気関係学会東北支部連合大会講演論文集，p.119，2018．

5. 渋谷 悠悟, Labson Koloko, 加藤 陽介, 小原 仁, “3段Closスイッチ網の性能改
善に関する研究(その5) －3段Closスイッチ網の並列制御方式の提案－,” 信学技
報，vol.118，no.232，pp.1-5，2018．

6. 松本崇寛大，Labson Koloko,加藤 陽介, 小原 仁, “Benes網の並列ハードウェア
制御回路の高速化,” 電気関係学会東北支部連合大会講演論文集，2B07，2019．

7. プトリナディラビンティアズマン，Labson Koloko,加藤陽介,小原仁, “3段Clos網
のノンブロック性能評価のためのシミュレーション条件の最適化,” 電気関係学会東
北支部連合大会講演論文集，2B08，2019．

8. 柳晋登，Labson Koloko,加藤陽介,小原仁, “並列ハードウェア制御による3段Closス
イッチ網の高速制御,” 電気関係学会東北支部連合大会講演論文集，2B09，2019．

9. 松本崇寛，野中翔太，Labson Koloko,加藤 陽介, 小原 仁, “3段Clos網の並列
ハードウェア制御アルゴリズムの提案,” 電気関係学会東北支部連合大会講演論
文集，P05，2020．

v

Akita University

This page is left blank intentionally

vi

Akita University

Abstract

A study on improving the performances of
three-stage Clos networks

Labson Koloko

Abstract

With the increase in demand for IP (internet protocol) traffic on the internet
and many communication networks in recent past, high-capacity and fast switch-
ing routers and switches have become essential in the backbone of communication
networks. Routers and switches play a very important role of routing signals from
one node to another in a network. Their capacity and the speed at which this is
performed are key to achieving the desired performances in current communica-
tion networks. Most of the routers and switches are constructed with a multistage
switching fabric at the core of its switching. The three stage Clos network and the
Benes networks are such multi-staged switching fabrics. Multi-staged switches are
organized in such a way that several smaller switches in one stage are connected
to other switches in another stage to form a network with larger capacity. Each
switch in each stage connects to every switch in the next stage. Multi staging helps
solve the scalability problem that comes with the crossbar switch. Using a single
crossbar switch as a switching fabric does not allow for scalability as the cross
point increases exponentially with an increase in the number of ports. The three
stage Clos network, usually denoted by C(n,m, r), where n,m and r represent the
number of inputs/output ports of the input/output switches, the number of mid-
dle stage switches and the number of inputs/output switches respectively, has been
one of the most widely used designs in many switching architectures. This thesis
discusses two approaches in improving the performances of the switch. Firstly, the
study considers the structure of Clos networks that include conventional crossbar
switch elements which are composed of 2 × 2 basic switching elements often used
in optical switches. The study highlights the fact that crossbar elements have
a number of idle ports unused and discuss how these idle ports can be used to
improve the non-blocking properties of the network. An elaboration on the non-
blocking properties of this network is provided. This work shows that the lower
bound on the value of m for rearrangeably non-blocking switches can be reduced
by 25% of the original clos network when idle ports are used. It has also been
demonstrated in this study that when m = n, the number of rearrangements is
reduced to 1 regardless of the values of n and r. Typical conventional Clos switches
require r−1 rearrangements in a worst-case scenario. The work also shows that the
number of middle stage switches required for wide sense non-blocking in the Clos
network can be reduced approximately by 25% lower than the conventional Clos
switch. Secondly, this work discusses the design and implementation of fast and
hardware-efficient parallel processing elements to set full and partial permutations
in Benes network. A new design of parallel and distributed processing elements for
configuring Benes network is proposed. The novel parallel algorithm can realize
full and partial permutations in a unified manner with very little overhead time
and extra hardware. The proposed design reduces the hardware complexity of pro-
cessor elements from O(N2) to O(N(log2N)2) due to the distributed architecture.
The distributed architecture also allows for pipelining in the architecture which
in turn reduces the time complexity of processor elements from O((log2N)2) to

vii

Akita University

O(log2N). To further reduce the time complexity, asynchronous operation was
introduced in part. The prototype is implemented in a field programmable gate
array and the performance is investigated for the switch size of N = 4 to 32. Fur-
ther a fast parallel algorithm for setting up a three stage clos network in which the
component switch sizes have a power of two is presented. The algorithm is also
implemented in hardware using field programmable logic gate array and its per-
formance investigated through experiments. This work reports that the algorithm
can operate as fast as the time complexity of O(log2N) up to a certain switch size,
in contrast to the conventional algorithms which require a time complexity of at
least O((log2N)2). The experimental results demonstrate that the proposed de-
signs outperform recent methods several times in terms of hardware and processing
complexities.

viii

Akita University

Acknowledgements

First of all, I thank God for giving me the breath of life and for the good health I have
enjoyed throughout my studies.

I am greatly indebted to my supervisor, Professor Hitoshi Obara for accepting me into
his laboratory and for allowing me to carry out research under his supervision in the field
of internet networks and Optical communication systems. My whole period of research
under his guidance has been very rewarding. He has taught me how to do research. Ap-
proaching research problems in a piecewise manner, presenting research results, writing
papers and how to give seminars. I have learnt a lot of things from him including his
passion for research, being hardworking and his patience and kindness towards students.
He made time to listen to me and discuss his ideas with me whenever I asked. He has
always been encouraging and pushing me to work extra hard and never to give up. He
has been more than a usual supervisor can be. His influence on me is far beyond. I
am very fortunate and proud to have been his student. I cannot thank him enough! I
remain indebted to him the rest of my life.

I owe my special thanks to professor Kumagai the head of Department who took me
up as his student and Professor Motoshi Tanaka who allowed me to be part of his re-
search laboratory after my supervisor retired.

Special thanks go to the other members of the supervisory committee, Professor Saitou
and Professor Yamaguchi. They provided not only useful comments but they sparked
numerous discussions that helped me understand my subject even better.

I am very grateful to Mr. Yosuke Kato who was always available to help me setup ex-
periments and provisioning all the necessary equipment and tools needed in my research.

I am grateful to all the members of the Obara laboratory who made life easier and
provided an enjoyable friendly working atmosphere in the laboratory.

I am grateful to my mum for her prayers and never ending encouragements, my brothers
and sisters for their support and who continuously cheered me to push on.

Finally, I would like to thank the Japanese government for offering me the MEXT schol-
arship to come and study in Japan. I thank all members of the Electrical Engineering
department, the staff, faculty members and fellow students who made the department a
great place to work and study. My years at Akita University were very enjoyable.

ix

Akita University

Contents

Dedication i

Personal quote ii

Declaration iii

List of Publications iv

blank page vi

Abstract vii

Acknowledgements ix

Contents xii

List of tables xiii

List of Figures xvi

Abbreviations and Acronyms xvii

Chapter 1

Introduction 1

1.1 Background . 1

1.2 Switching fabrics . 3

1.3 Multi-staged Switches . 4

1.4 Control algorithms . 6

1.5 Outline of this thesis . 8

x

Akita University

Chapter 2

Related works/Literature review 9

2.1 Previous clos structure and properties 9

2.1.1 Summary of Contribution . 10

2.2 Recent Benes and clos routing control algorithms 11

2.2.1 Control algorithm in BNW . 11

2.2.2 Summary of contributions . 12

2.2.3 Control algorithms in TSCN . 12

2.2.4 Summary of contributions . 13

Chapter 3

Design and operation of the proposed structure 14

3.1 Crossbar modification . 14

3.2 Application of XBS to TSCN . 15

3.2.1 Bidirectional TSCN . 15

3.3 Proposed Unidirectional TSCN . 21

3.4 Wide-sense non blocking . 22

Chapter 4

Simulation setup and experimental results 24

4.1 Simulation flow in Bidirectional TSCN 25

4.2 Simulation and experimental results . 29

4.3 Summary . 33

Chapter 5

Structure and non-blocking properties bidirectional two stage switches 35

xi

Akita University

5.1 Brief introduction . 35

5.2 Proposed structure of UTSN . 35

5.3 Non-blocking properties of B(n,m, r) 36

5.4 Hardware complexity of B(n,m, r) . 38

5.5 Summary . 39

Chapter 6

Design of parallel control algorithm 40

6.1 Benes Network . 40

6.2 Design of parallel processing elements . 45

6.2.1 Design overview . 45

6.2.2 Design of PEs for Full permutation 46

6.2.3 Design for partial permutations Unified Parallel algorithm for full
and partial permutations . 50

6.3 FPGA Design and Experimental Results for Benes network 52

6.3.1 Design environment . 52

6.3.2 Experimental results and discussion 52

6.3.3 Summary . 56

6.4 Clos Networks . 57

6.4.1 Outline of the proposed routing algorithm in TSCN 57

6.4.2 Hardware Implementation of the proposed algorithm 58

6.4.3 FPGA design and experimental results 63

6.4.4 Summary . 64

Chapter 7

Conclusion and Future works 65

xii

Akita University

List of Tables

1 Summary of the Properties of the TSCN 5

2 Summary of switch performances for conventional and proposed unidirec-
tional and bidirectional TSCN . 33

3 Summary of the performance of the algorithm 56

xiii

Akita University

List of Figures

1 Role of a switching function in telephony networks 1

2 General architecture of a switching node 2

3 Single stage architecture of the XBS with BSE 3

4 Multi staged architecture of XBS . 4

5 An N × N three stage Clos network represented by C(n,m, r) 5

6 Strictly non-blocking condition for a worst case scenario with minimum
number of middle stage switches required 6

7 Recursive construction of the Benes network 7

8 Sequential route setup in the TSCN . 7

9 Summary of objectives of proposed target (a) Hardware complexity (b)
crosspoint complexity reduction (c) Control complexity 11

10 Conventional crossbar (XBS) Switch with idle ports 14

11 Two possible types of XBS modification (a) Unidirectional modified (b)
bidirectionally modified . 15

12 Two possible types of XBS modification 16

13 Special configuration with m = n middle stage switches 17

14 Column Blocking and blocking resolution 18

15 bidirectional modified TSCN with 1st and 3rd stage modified 19

16 Sharing of rows and columns by a pair of connections in XBS 19

17 Routing n calls using m < n middle stage switches 20

18 Proposed Unidirectional TSCN . 21

19 Derivation of the proposed lower limit . 23

20 Flow chart of the simulation process . 24

21 Simulation of the XBS in C programing 25

22 Initializing the XBS to idle state . 26

23 Simulation of the XBS in C programing 26

24 Disconnection of a random pair in an XBS 27

xiv

Akita University

25 Initializing the XBS to idle state . 27

26 Simulation results of the conventional Clos network 28

27 Simulation results of the proposed architecture 29

28 Worst case blocking and need to rearrangement 30

29 Rearrangement process in conventional TSCN 31

30 Rearrangement process in proposed architecture 32

31 comparison of the number of rearrangements in conventional and proposed
architecture . 32

32 Cross point comparison in conventional and proposed architecture 34

33 Overall percentage reduction in the number of middle stage switches required 34

34 Structure of B(n,m, r) . 36

35 Design Example of ISM using bidirectional switching 36

36 Design Example of OSM using bidirectional switching 37

37 Worst-case scenario for rearrangement in B(n, n, r) 37

38 Modified TSCN with first and third stages replaced by two-stage switches 39

39 Primitive three–stage structure of N × N BNW (N = 8) 41

40 Full picture of N × N BNW (N = 8) . 42

41 Conventional looping algorithm in Benes network 43

42 Proposed Design overview of the parallel control unit with the switch body 45

43 Bus-connected PE array and its operation: (a) each PE accepts address
information and interchanges switch control data via multiple buses in
parallel; (b) link status after first phase; (c) link diagram in a cycle; (d)
implementing link diagram in FPGA using inverting and non-inverting
gates . 47

44 Simplified functional diagram of PE with binary suffix b(p) 48

45 Iterative steps to determine representative PE in the second phase: (a)
each PE is eligible for representative in the initial state; (b) the PE receives
two suffixes and compares its suffix to them and surviving PEs are reduced
to one-half and lost PEs become transparent and bypass incoming data; (c)
the competition process is repeated in subsequent iterations; (d) maximum
suffixes return to the originating PE in the final iteration 49

xv

Akita University

46 Example of partial permutation and modified link diagrams against dis-
connection: (a) input address 010 in Fig. 42 a becomes idle and is repre-
sented as x; (b) the link diagram is disconnected between PE00 and PE10;
(c) the disconnection is protected by the loop-back mechanism (similar to
self-healing ring networks); (d) alternatively, each PE is provided with an
extended suffix to mask disconnection . 51

47 Asynchronous operation of the proposed structure 53

48 Number of occupied slices in FPGA vs. switch size 53

49 Processing time tf vs. switch size N for the first part in the proposed design 54

50 Processing time (ts) vs.switch size N for the Second part (DTR) in the
proposed design . 55

51 Total clock cycles vs. switch size for the first stage in the first part 55

52 Three stage Clos network C(4, 4, 2) . 57

53 Proposed routing principle with iterations 58

54 Routing principle with iterations of the proposed algorithm 59

55 Arrangement and operation of parallel processing elements (a)PEs con-
nected to bus bars (b) Neighbour search establishment (c) Link relationship
status (d)Implementation of link status using Inverting and non inverting
gates . 60

56 Iterative procedure for determining the representative PE 61

57 Determination of link status of each PE (a).Representative PE initially
setting its status to bar triggering the other PE status (b). The link status
implementation using inverting and non-inverting gates 62

58 Experimental processing time for the first part of the algorithm 63

xvi

Akita University

List of Abbreviations and Acronyms

BNW Benes network

BSE Basic switching element

FPGA Field programmable gate array

IP Internet protocol

MIN Multi staged interconnecting network

PE Processor elements

PCU Parallel control unit

RNB Rearrangeably non blocking

SCB Switch control bit

SE Switching element

SNB Strictly non blocking

SW Switch

TSCN Three stage Clos network

UTSN Unfolded Two stage network

WSNB Wide sense non blocking

XBS Crossbar switches

NoC Network on Chip

xvii

Akita University

Chapter 1

Introduction

1.1 Background

Recently, the internet and many communication networks have experienced an exponen-
tial rise in the demand for internet protocol (IP) traffic as predicted by the cisco report
[1]. This rise in demand is as a result of an increase in real-time services. With this
increase in traffic, high-capacity, fast switching routers and switches are needed in back-
bone communication switching networks. Switching is an important component of any
telecommunication system. In a telecommunication system, a switching system provides
a means to pass information from one node to another node in a network and therefore is
core to any communication system. For example, in earlier days of telephony networks,
the role of the switching function was performed by a pair of cables that connected two
terminals that needed to connect to each other. As can be seen in fig. 1(a) each ter-
minal had to be connected to another terminal through a single transmission line. As
the number of terminals increased to N , we see that the number of links increased as
N(N −1)/2. This was not viable because these links remained idle most of the time and
were only used during a short period of time when a call was generated, hence a central
switch was introduced and each terminal only needed a pair of connections to it (figure
1(b)). These local switches were connected to toll switches that enable long distance
communications (see figure 1(c))[2].

Figure 1: Role of a switching function in telephony networks

The general architecture of a switching node is shown in figure 2. A switching system

1

Akita University

basically receives signals such as control signals, message signals and forwards them to a
desired destination through a central module known as a switching fabric. These switch
modules are controlled by a control unit that processes signaling links. (see figure 2).

Figure 2: General architecture of a switching node

In order to meet high capacity and fast switching, lots of research has been devoted to
the design and implementation of the switching techniques [3]. Switching has evolved
over many years since Charles Clos initiated his classical circuit switching theory in 1953
[2]. An increasing trend towards mega data centers in which the switching architecture
proposed by Clos are used has been observed and this has been necessitated in order to
support the ever increasing demand for data [4]. The growth in communication brought
about the need for interconnecting many transmission links. This was because traffic
on these links needed to be multiplexed onto fewer links going to the same location for
effective utilization of resources. Secondly, the traffic on these links needed to be de-
multiplexed to different transmission links going to different locations. A space switch
was a candidate for interconnecting such links [2]. A space division switch can be imple-
mented by either an electromechanical or electronic switch. Prior to the advent of time
division switching, all telephone and telegraph switching machines were implemented us-
ing a variety of space division switching techniques, particularly Strowger (step-by-step)
switches and crossbar switches [5].

2

Akita University

1.2 Switching fabrics

At the core of any switch, is a switching fabric. The switching fabric is made up of basic
switching elements (BSE) arranged in a regular and planar structure forming what is
known as a crossbar switch (XBS) as shown in figure 3(a). BSEs have two input ports
and two output ports. Each BSE can be in either of the two states at a given time; cross
state with a switch control bit (SCB) of 1 (figure 3(b)) or bar state with an SCB of 0
(figure 3(c)), hence the name XBS. In the bar state, inputs port 1 and port 2 connects
with outputs port 1 and port 2 respectively. This means that the BSE forwards its two
input signals from the input ports straight to the two opposite output ports (figure 3 (a)).
In cross state, input port 1 connects with output port 2 and input port 2 connects with
output port 1 (see figure 3 (b)). BSE are arranged in a square matrix configuration to
form larger crossbar switches with multiple inputs n and multiple outputs m [2]. When
m > n, the XBS becomes a rectangular switch and if n = m, the switch is a square XBS.
The XBS in figure 3(c) has n = m = N and is therefore an N × N XBS.

Figure 3: Single stage architecture of the XBS with BSE

The XBS takes its inputs and connects them to any of the m outputs. XBSs are repre-
sented as n × m where n is the number of input ports and m is the number of output
ports (figure 3(a)). An XBS is considered to be strictly non-blocking (SNB) switches,
meaning that any signal at any input port can be transferred to any output port without
colliding or blocking with any existing signals in the switch and its control is very simple.
A switching fabric is said to be blocking if there are path assignments which cannot be
realized in the switching network. With an increase in the number of ports, the XBS
becomes impractical to implement because the cross point requirement increases as nm
and when n = m = N , then the cross point count becomes N2.

3

Akita University

1.3 Multi-staged Switches

During switching in an XBS, a single cross point in a row or a column is activated. To
route a group of signals, several cross points are activated in an XBS. When several XBSs
are connected between each other to form larger switches, such switches are referred to
as multi-staged switching fabrics. XBSs are multi-staged to provide more routes at
a reduced cross point count. Multi-staging has proved to be a good solution to the
scalability issue of the XBS and has helped build large switching architectures using
small BSEs (see figure 4). These play an important role in any switching devices such as
routers and switches. Multistage interconnection networks (MIN) are used in building
larger IP routers with higher capacities.

Figure 4: Multi staged architecture of XBS

Charles Clos in 1953 proposed a three stage network which is now known as a Three
Stage Clos network (TSCN). The TSCN consists of r, n × m XBS in the first stage
connected to each m, r × r XBS in the second stage. Each m XBS in the second stage
is connected to a set of r, m × n XBSs in the third stage. A TSCN C(n,m, r) shown
in figure 5 is made up of three stages, where n is the number of input ports and output
ports in the first and third stage XBSs respectively. m is the number of middle stage
XBSs and r is the number of input/output XBSs in the first and third stages. Each of
the first stage XBS is connected to the XBSs in the second stage only through a single
link. Similarly, each of the second stage XBSs is connected to each of the third stage
XBS through a single link. A multi-staged switch scales better than the XBS. An N ×
N TSCN has a much lesser cross point count of N1.5 than the N2 cross point count in
a single N × N XBS [2].
The TSCN has some important properties that make it to be widely used in many

4

Akita University

Figure 5: An N × N three stage Clos network represented by C(n,m, r)

communication networks. These properties can be fine-tuned by properly setting the
values of m and n. A summary of these properties and their values is provided in table
1 below. To obtain the SNB property, set m ≥ 2n − 1. This is proven as follows; in a

Table 1: Summary of the Properties of the TSCN

Number of
middle switches, m

property

m < n Blocking
m ≥ n Rearrangeably non-blocking (RNB)

m ≥
⌊
2n− n/F2r−1

⌋
Fk : k − th F ibonacci number Wide-sense non-blocking (WSNB)

m ≥ 2n− 1 Strictly non-blocking (SNB)

worst case scenario, if a free port exists at the input port of an input XBS A, we have
n − 1 existing connections that correspond to a set of unreachable number of middle
stage switches. Similarly, a free output port exists at the output XBS B, we have the
other n − 1 connections connected through another set of n − 1 unreachable middle
stage switches. To provide a free connection path, Clos showed that an extra middle
stage switch (shown in green in figure 6) must be added, hence there must be at least
2(n−1)+1 middle stage switches. When m ≥ n the TSCN becomes RNB. A TSCN can
also be wide sense non-blocking (WSNB) if a route can be provided in a network but
some rule must be used when setting up a path otherwise blocking may occur later. If
the number of middle stage switches is less than n the switch is referred to as a blocking
switch since some connection paths cannot be provided in the switch.
Another multistage switching network is the Benes network (BNW). It is a special type
of TSCN with m = n = 2 and is composed of 2 × 2 BSEs as building blocks. It has
2 log2N − 1 stages of which each is made up of N/2 2 × 2 switches. The number of
inputs and outputs is given by N = r × r = 2n. The central stage is composed of two

5

Akita University

Figure 6: Strictly non-blocking condition for a worst case scenario with minimum number
of middle stage switches required

N/2 × N/2. Each of the N/2 × N/2 switches are made up of log2N − 1 2 × 2 BSE
(see Fig. 7). In the case where N = 4, the middle stage switch is composed of 2 2 ×
2 BSE. When N is increased, the center stage can be repeatedly replaced by N/2 ×
N/2 to form a rearrangeably non-blocking (RNB) switch. The total number of switching
elements required is N log2N −N/2.

In an RNB switch, a new path can always be set up between an existing free input port
to an existing free output port but already setup paths must be rerouted to accommodate
the new path.

Benes and Clos switches with 5,7,9, or more stages can be realized.

1.4 Control algorithms

In order to set up connection paths in non-blocking multistage switches, special routing
algorithms are required. These are important because they determine the path setup time
and the system reliability of the network which are important factors in determining the
performance of a switching network. In setting up paths from an input i to and output
j in the network, sequential search algorithm with complexity of O(m) per connection
is used resulting in a total of O(Nm) for a switch size of inputs N as shown in figure 8.
These sequential algorithms have long processing time. Therefore, parallel algorithms
which have lower processing time have been introduced. It is a well known fact that

6

Akita University

Figure 7: Recursive construction of the Benes network

parallel processing reduces the processing time of a given task [6]. This work seeks to
improve the time for path setup in the Benes and Clos network.

Figure 8: Sequential route setup in the TSCN

7

Akita University

1.5 Outline of this thesis

This dissertation is organized as follows; chapter 2 begins by reviewing the conventional
structure and properties of the TSCN. It presents some related works that have been
done in the area of structure and properties of three stage clos networks. It also covers the
recent works done in routing control algorithms for Benes and Clos networks. Chapter
3 introduces the design and operation of our proposed Clos architecture. It introduces
a new design in which conventional XBS are modified in two different ways and applied
to designing the new TSCN architecture. The first is the unidirectional modified XBS
and the second is the bidirectional modified XBS. Chapter 4 presents the simulation and
experimental call setup in the new architecture. Performance results of the new proposed
architectures are discussed and reported. Chapter 5 introduces a new emerging design
principle options for relatively small-capacity switches. The non-blocking properties of
unfolded two stage networks are discussed. In Chapter 6, the design of parallel control
algorithms for the Benes and clos networks are presented. The design of parallel and
distributed PEs for processing full and partial permutations in BNW is described.
The hardware implementation of the algorithms performed on an FPGA to realize higher
speed than the clock rate using asynchronous operation is also reported. Performances
of these algorithms are evaluated through experiments. Experimental results of the
performances are highlighted in this section. Finally, chapter 7 concludes the dissertation
and suggests future works.

8

Akita University

Chapter 2

Related works/Literature review

2.1 Previous clos structure and properties

The clos architecture has been the most practical and cross point–efficient design prin-
ciple for large switching networks [7]. It has been applied to various types of switches
such as space switches [8], time division multiplexed switches [9], packet switches [10]
and optical switches [11]. This is because of the non-blocking properties that the TSCN
has. Clos networks were at the beginning invented for application in telephone exchange
systems. However, recently it has been used in many applications ranging from electri-
cal and optical cross connects which are essential for building communication networks
that are economical with highly multiplexed signal links [12]. Clos networks have been
classified based on their connecting capabilities. Some have been classified as strictly
non-blocking (SNB) network [13], rearrangeably non-blocking (RNB) [14], wide sense
non-blocking (WSNB) [15, 16, 17] and repackaged network [18]. In each of the classes,
the relationship of the parameters n, m and r have been analyzed. By setting these
parameters appropriately, the above properties of the clos network can be realized. The
SNB network can be obtained when m is set equal to 2n − 1. This means that any
connection request can be established from the input side of the switch to the output
without a specified routing algorithm. In an RNB, a connection request can be made,
but existing calls must be rerouted or rearranged to pave way for the new connection
request. In WSNB network, a new connection request can be made but a specified rout-
ing algorithm must be used in order to avoid blocking in the switch. In a repackable
network, any connection is achieved by a repacking algorithm which must ensure that
calls are concentrated to some middle stage switch and reduce the load on some other
middle stage switches before adding another call to the network [18]. Most of these
designs have sought to achieve lower blocking probabilities, increased port count and a
lower cross point count within the switch network.

The structure of the TSCN is built based on each of these properties. Since the XBS
has been the building block in MIN, it has been studied carefully. In [19], a component
efficient design for a parallel optical XBS which utilizes the idle ports as extra input
ports and/or output ports was proposed. It was observed that conventional parallel
XBSs composed of 2 × 2 BSE have a significant number of idle internal routes between
its idle ports. By utilizing its internal idle routes, it reported a one-quarter decreased
switch count from N2 to 3

4
N2 . Here, the modified architecture was only applied to

single and two stage architectures. Because single stage crossbar switch architectures do
not fit dilation as their cross point size increases proportionally to the switch size as N2,
we focus on applying this to the three stage switch architecture. Also two new design
examples were proposed which are; unidirectional and bidirectional. If both are utilized
in a proper manner, an architecture with better performing non-blocking properties can
be yielded. The concept of idle ports was also applied in [20]. Idle ports of a PILOSS
switch were used in bidirectional mode. An Si-wire thermosoptic 4 × 4 PILOSS switch in
which a bidirectional use of a single path-independent-insertion-loss switch for polarized

9

Akita University

diversity was proposed. The polarized insensitive switching was realized with a single
PILOSS switch consisting of N2 as opposed to 2N2 element switches.

Two principle two-stage switch architectures both composed of two identical opti-
cal XBSs with an extra set of input and outputs were proposed in [21]. The cascaded
switches based on the utilization of idle ports and idle internal routes in the XBS were
reported. The number of cross points, switch control complexities and key optical perfor-
mances were compared to known cascaded conventional XBS. In [22, 23] a packet based
switch which focused on traffic balancing and congestion management was proposed.
The switch is called a Clos Unidirectional Network on chip (Clos-UDN). In comparison
to the conventional Clos switch, the whole XBS was replaced by a crossbar-like network
on chip (NoC) which operates in a unidirectional mode. The proposed multi hop NoC
operated as a crossbar with shorter inter router wires than those in a single-hop con-
ventional crossbar. F. Hassen and L. Mhamdi et.al, [24, 25] suggested a three stage clos
network which was based on Multi-directional NoC (MDN central modules). Both of
these works replaced the conventional crossbars with MDN modules. MDN modules are
modified types of UDN switches with their input and output ports operating in multi-
directional mode. The NoC based crossbar modules are expensive. To increase the port
count, means having larger NoC modules which ultimately increase the cost of designing
them. In a white paper of mentor Graphics [26], the creation and simulation of a 2
× 2 optical switch is illustrated. The switch studied employed a double sided mirror
whose movement is controlled by an electrostatic, comb drive actuator. A set of folded
springs controls the actuator movement. The mirror slides out to the intersection of two
perpendicular alignment grooves and then retracts when actuated. Two pairs of optical
fiber emitters sits in the alignment groves. In the cross state, the comb drive is actuated
and the mirror sits in the groove at the intersection. The mirror reflects the light beam
from left input to direct it to the lower output and from the top to the right sides of
the switch. In the through state, the comb drive actuates and the mirror retracts. The
light beam from left goes straight and is received on the by the output on the right side
of the switch. The top input emits the beam to the bottom output. These works report
the utilization of the idle ports in a 2 × 2 optical switch. Simulation of this switch was
done in S-Edit software to allow for quick assembly.

2.1.1 Summary of Contribution

This thesis reports an improved architecture of the TSCN that uses bidirectional XBS.
The XBS is modified by utilizing the idle ports. The modified XBSs are applied to the
TSCN to form a new architecture. By utilizing the idle ports in the modified XBSs, the
non-blocking properties of the new proposed TSCN are investigated through theoretical
and computer simulations through examination of additional routes. The total cross
point count and the number of rearrangements are also analyzed. This research reports
an improved architecture of the TSCN with a reduced number of middle stage switches
(figure 9 (a)), reduced cross point count (figure 9(b)) and a reduced number of rearrange-
ments in an RNB clos network. Parallel processing in BNW is investigated and reported
with a reduced processing time(figure 9(c)). The reported technique is then applied to
a TSCN to come up with a fast parallel algorithm for setting up paths in a TSCN with
a component switch size of a power of two. The algorithms for Benes and Clos networks

10

Akita University

are both implemented in FPGA. The experimental results of their complexities which
highlight the performance of the design in comparison with conventional methods are
reported.

(a) hardware complexity (b) Control complexity

(c) Crosspoint complexity reduction

Figure 9: Summary of objectives of proposed target (a) Hardware complexity (b) cross-
point complexity reduction (c) Control complexity

2.2 Recent Benes and clos routing control algorithms

2.2.1 Control algorithm in BNW

The BNW is an example of a TSCN. As can be seen in figure 7, the basic building blocks
are the 2 × 2 BSEs. It corresponds to the TSCN with n = m = r = 2 and is a RNB net-
work. The BNW provides a unicast connection between N inputs and N outputs where
N = 2n. The BNW comprises 2n− 1 stages each of which comprises N/2 2 × 2 switch
elements (SE) [27]. There is a total of O(N(log2N)) SEs, which satisfies the theoret-
ical lower bound of the non-blocking switch complexity [28]. Recently, several parallel
algorithms have been investigated to apply the BNWs to high-speed time-division mul-
tiplexed systems of the agile responsibility to arbitrary permutations [29]. In 1981, Lev
et al. formulated parallel algorithms for Benes and Clos networks based on a mathe-
matical graph theory approach [30]. In 1982, Nassimi and Sahni developed a parallel

11

Akita University

algorithm for BNWs based on an engineering (parallel computing) approach [31]. These
works were performed concurrently and independently in these two different approaches.
Both achieved a time complexity of O((log2N)2) with completely interconnected parallel
computers for full permutations with each input corresponding to a unique output. In
several practical applications, some inputs and outputs may not have any connection
requests (idle state) on them resulting in what is known as a partial permutation. In
this scenario, original parallel algorithms for BNWs suspend processing when an idle
connection is encountered. Parallel algorithms for BNW are required to handle such
partial permutations efficiently and effectively[32]. To address this issue, two approaches
have been suggested. Firstly, in 1995, Lee and Oruc introduced quadruple datasets to
match the idle inputs with idle outputs to act as dummy destinations [33]. Once each
input is assigned to a unique output, conventional parallel algorithms are then applied
and can therefore work effectively. This approach requires a complicated data structure
and a considerable pre-processing time. Secondly, in 2002, Lee and Liew proposed an
additional merging process which fits in efficiently with the original algorithms [34]. In
2017, the Lee‘s algorithm was implemented in Field programmable gate array (FPGA)
for switch size of N = 8 to 32 by Jiang and Yang [35]. They reported a well-functioning
algorithm but it incurred significant overhead time. For the first stage processing of the
parallel control unit (PCU) of switch size N = 16, which only required four clocks for
completion, they reported that it required up to 17 clocks. Their approach which was
based on the crossbar-like centralized architecture resulted in an increased PCU hard-
ware requirement of O(N2) [36]. Prior to their implementation of the Lee’s algorithm in
FPGA, in 2009 Kai et al designed a PCU to configure BNWs. The design only focused
on the first stage of the PCU for BNW of switch size 16 × 16 [37]. The approach how-
ever employed a distributed architecture rather than a centralized one. This reduced the
hardware complexity from O(N2) to O((log2N)2). They further suggested that the time
complexity can be reduced from O((log2N)2) to O(log2N) using a pipeline architecture
suggested by Lee and Oruc. In as much as this algorithm has these advantages, it could
not handle partial permutations.

2.2.2 Summary of contributions

In this thesis, a parallel algorithm that sets up both full and partial permutations with
less overhead time and less additional hardware cost is reported. A PCU with distributed
PEs which generates SCB in a pipelined and in part asynchronous manner is constructed
in an FPGA.

2.2.3 Control algorithms in TSCN

The TSCN requires a setting time of O(N log2N) under a sequential algorithm [38]. This
processing time is too long for its application in data centers and other communication
networks. In order to improve the switching time of the TSCN, several parallel algorithms
have been proposed. Lev et al. proposed an O((log2N)2) algorithm based on the graph
theory [30]. Zheng et al. came up with a O(

√
N) algorithm which was based on a

distributed pipeline routing architecture [39]. Most of these algorithms have no reports of
implementation in hardware. Besides, the full advantage of the switch having the switch

12

Akita University

size of the power of two had not been fully taken advantage of in these algorithms. Several
parallel routing algorithms for BNW in which the switch size is given by N = 2k have
already been developed and their hardware implementations in FPGA already reported
[37].

2.2.4 Summary of contributions

This thesis reports a new parallel routing algorithm for setting up TSCN in which the
component switch sizes have a power of two using the above developed BNW for the
first time. The algorithm is implemented on an FPGA. The performance of the new
algorithm is analyzed and compared with the latest conventional methods.

13

Akita University

Chapter 3

Design and operation of the proposed structure

3.1 Crossbar modification

The XBS is made up of 2 × 2 BSE which are either in bar or cross state. To route a call
in an XBS as shown in fig. 10, the BSE in the second row and third column must change
its state to bar. Recently, a modified XBS switch using idle ports to provide an extra
set of input and output reported in [40, 41]. The reported modified XBS single-stage
architecture has a drastically reduced cross point count and a simple routing algorithm.
The modified XBS is derived from a Conventional XBS which has idle ports on the top
and the right side as shown in figure 10.

Figure 10: Conventional crossbar (XBS) Switch with idle ports

The idea is to utilize these idle ports to provide additional routes in the XBS without
increasing the cross point count. Two types of modified XBS one with unidirectional
and the other with a bidirectional mode were reported in [21]. These are shown in fig.11.

The unidirectional mode of figure 11 (a) is modified in such a way that the top ports
are used as extra inlets and the idle ports on the right are used as extra outlets. The
direction of travel of the signal in this switch is such that it moves from left inlets to the
right outlets and/or left inlets to right outlets turning to bottom outlets. The signal can
also travel from either top to bottom outlets or from top towards bottom and turning
to the right outlets. This is considered as unidirectional switch because its either left to

14

Akita University

(a) Unidirectionally modified XBS (b) bidirectionally modified XBS

Figure 11: Two possible types of XBS modification (a) Unidirectional modified (b) bidi-
rectionally modified

right or top to bottom or left to right going bottom or top to bottom going right.
The bidirectional one shown in figure 11 (b) is modified by using the right side idle ports
of the XBS as inlets and the top ones as outlets. Signals can travel from left towards
right turning to the lower outlets and can also travel from the right side going towards
left turning to the upper outlets. Because of this direction of travel in both right and
left directions by two different signals, this switch is referred to as bidirectional switch.
These two types of XBS are applied to the TSCN in order to provide additional internal
routes without increasing the size of XBS which, in turn yields a smaller number of
XBSs, reduced cross points and a reduced number of rearrangements in RNB switches.

3.2 Application of XBS to TSCN

The modified XBSs are used to design a new TSCN architecture. Firstly, a special case
of a bidirectional modified TSCN is described in which the number of rearrangements
are reduced to only one regardless of n, m and r at a negligible cost of extra crosspoints.
The non-blocking properties of the TSCN such as the SNB, WSNB and RNB depend
on the number of middle stage switches m. It has been observed that by adjusting this
parameter appropriately, the properties of the TSCN are also changed. The proposed
design reported in this thesis focuses mainly on the middle stage XBSs.

3.2.1 Bidirectional TSCN

The proposed general architecture of the modified TSCN using modified XBS is as shown
in figure 12 below. The proposed architecture has three stages similar to the conventional
TSCN. Each stage is composed of XBSs represented by Ix , My and Oz with (1 ≤ x ≤ r,
1 ≤ y ≤ m,1 ≤ z ≤ r). The input stage XBS Ix (1 ≤ x ≤ r) are n × 2m ordinary XBS

15

Akita University

and its outputs 2m − 1 and 2m are connected to the left and right side of the middle
stage XBS respectively. Similarly, the third stage also is composed of 2m × n Oz XBS.
Their inputs 2m − 1 and 2m may simultaneously receive signals from the middle stage
switches. The total number of cross points in the input and output stages become twice
as large as the conventional TSCN. However, the number of middle stage switches is
reduced drastically. The middle stage has r × r bidirectional XBS with extra sets of
r inlets and r outlets. It should be stressed here that each of the first stage Ix XBS
provides two links to each of the rows of every My middle stage XBS. The columns of a
modified XBS are used as outputs and feed to the inputs of the XBS in the next stage.
The proposed structure also provided two links from each of the My to each Oz. For
example, two signals from Ir can both be routed through the M1 XBS to any two third
stage XBSs. The two signals may simultaneously coexist in a single row of middle stage
XBS. In a conventional TSCN, only a single link is provided between each switch in each
stage.

Figure 12: Two possible types of XBS modification

The utilization of idle ports introduces additional routes and therefore more than one
signal from each XBS in one stage can be routed to another XBS in another stage. The
other special design is as shown in figure 13. In this design the middle stage is composed
of m = n modified XBS used in bidirectional mode. Each first stage is composed of
ordinary r n × n XBSs. Each of the output from the first stage is fed either to the left
or right inlet of the middle stage switch through a
1 × 2 switch. At the second stage, it is switched to the third stage from the top outlets
of the switch. The wiring pattern of the inlets at the left side and outlets at the bottom

16

Akita University

sides is the same as that in a conventional XBS of the TSCN.

Figure 13: Special configuration with m = n middle stage switches

The signals are then fed to the third stage switches through a 2 × 2 BSE. As a result
of the 1 × 2 switch in the first stage, only a single connection request from the first
switch in the first stage to the first middle stage switch occupies a row of the middle
stage switch although it has two inlets at the end of each of its rows. Therefore, only a
single signal is allowed to travel along the row of the middle stage switch either from the
left side going right or entering to the right side going left. This prevents row blocking
from occurring in any row of the second stage of the TSCN. However, blocking can occur
when two input signals from different input switches are destined for an identical switch.
As can be seen when the signal indicated in blue seeks to connect to the upper side in
the first column, blocking may occur with the green signal which is already destined for
the bottom output in the same column. This is further illustrated in figure 14a, i.e., if a
signal from a lower input switch on inlet I3 is fed to the right side, and its destination is
O
′
3, we see that blocking can occur in the column since another signal from input switch

on inlet I1 is already occupying the column. This is known as column blocking. As can
be seen in figure 14b, this kind of blocking can easily be resolved by exchanging a pair
of routes to other switches after a conventional rearrangement control. The blocking
that occurs here is resolved by diverting the existing connection to an alternate route
through the same column swapping only a single pair of routes. This limits the number
of rearrangements in the proposed CB(n, n, r) to only a single rearrangement. Therefore
it requires at most a single rearrangement regardless of n or r. therefore the number of
rearrangements RB(n, n, r) is expressed as

RB(n, n, r) = 1 (1)

17

Akita University

(a) column blocking
(b) Blocking resolution by exchanging a
pair of connections

Figure 14: Column Blocking and blocking resolution

The second case of the bidirectional TSCN has a reduced number of middle stage
switches. In this design (figure 15), Each input to the first stage-switches Ix has a 1 × 2
switch to route the signal either to the left or to the right side of the switch. The extra
unused ports on the right side of the switch are used as extra inlets and the top ports
as extra outlets. The output signal of the first stage switches is tapped from either the
top or the bottom depending on the side the signal entered from. The signal entering
through the left side of the XBS can travel to the bottom outlet while the signal entering
through the right side can travel to the upper outlet. A pair of column outlets of the
first stage are fed to the same row of each of the second stage switches. The upper outlet
is fed to the left side of the middle stage XBS and the bottom outlet to the right side of
the middle stage switch. Similarly, the column outlets of the second stage switches are
fed to the third stage switches through 2 × 2 BSE which distributes and exchanges the
signal in the third stage. In the third stage, the output ports are equipped with 2 × 1
BSE to select the appropriate route from where the signal is emanating. The use of idle
ports in this proposed design allows each of the first stage switches to route at most two
signals to the same middle stage switch.

Consider a conventional TSCN C(n,m, r) with n = 4, m = 4 and r = 4. In this
switch, we require a minimum of m = n = 4 middle stage switches to connect all n = 4
inputs from a single XBS, i.e. for the switch to maintain RNB properties. Since blocking
has been avoided in the first and third stages, we focus mainly on the routing of calls
in the middle stage switches only. This premise is also based on a well-known fact that
the properties of the TSCN is mainly dependent on the middle stage switches. In a
conventional TSCN, two calls from the same first stage switch cannot be switched to the
third stage through the same middle stage XBS. We also see that two calls originating
from two different first stage switches need at least two rows and two columns in a single
middle stage XBS to be switched to the third stage. This means a total of 2 rows and 2
column resources are used up in a single XBS to route two calls as can be seen in Fig.
16(a). The bidirectional TSCN represented by CB(n,m, r) allows for two calls coming
from the same input stage XBS to be routed to the third stage through the same middle

18

Akita University

Figure 15: bidirectional modified TSCN with 1st and 3rd stage modified

stage XBS because it has additional inlets and outlets. Two calls from two different first
stage switches headed for the same destination switch in the third stage can use two
different rows but will share a column. This will use up 2 rows and a single column (3
resources) (see Fig. 16b). Similarly, two calls coming from the same first stage switch
can share a row to reduce the resource requirement to 3 resources (see Fig. 16 c). A
special case where two calls from the same first stage switch headed for the same third
stage switch will share a row and a column resulting only in using 2 switch resources
(see Fig. 16d).

Figure 16: Sharing of rows and columns by a pair of connections in XBS

19

Akita University

Let us see how the sharing of rows and columns in the proposed TSCN CB(n,m, r)
allows routing n = 4 inputs through m < n. Consider routing all calls from the first
stage switch to the last switch of the last stage i.e. input SW 1, 2, 3, 4 to output SW
4, 3, 2, 1 respectively.

Figure 17: Routing n calls using m < n middle stage switches

As can be seen in figure 17, the first n − 1 calls can be routed through the first three
middle switches. The remaining call can be routed through any of the available routes
indicated by dotted lines in any of the three middle stage switches shown on the right
side. The above demonstrates that to route n = 4 inputs from any first stage switches,
a minimum of 3 middle stage switches is required. The conventional TSCN requires a
minimum of 4 middle stage switches to route n = 4 from each of the first stage XBS.
It has also been demonstrated that the row/column resource usage reduces to three
quarters. Though the conventional TSCN requires 4 row/column resources, based on
the above, we hereby make a proposition that the minimum number mL of middle stage
switch resources required to route n inputs of each of the first stage XBS becomes as
follows:

m =
⌈3n

4

⌉
(2)

for the bidirectional TSCN. The
⌈
x
⌉

denotes the ceiling function which is to say the

value of the least integer greater than or equal to x.

20

Akita University

3.3 Proposed Unidirectional TSCN

The proposed structure of the unidirectional TSCN Cu(n,m, r), just like the bidirectional
TSCN is composed of three stages. The first stage XBSs are represented by Ix, middle
stage switches My and third stage switches by Oz with x, y and z as described earlier.
The first stage XBS have been modified to have inputs at both the left and the right
side. Each input to the XBS is first fed through a 1 × 2 SE which can divert the input
signal to either the left or the right side. This avoids row blocking from occurring in
the first stage. The outlets are taken from the top and bottom of the switch. Each
top outlet is then fed to the top inlet of the middle stage XBS and the bottom outlet
is fed to the left side of the middle XBS switch as shown in Figure 18. At the second
stage, each of the r × r XBS uses the left and bottom side of the switch as inlets and
outlets respectively. The extra top inlets and right outlets are used as additional inlets
and outlets respectively. The top inlets and right outlets provide additional routes in
the XBS without additional cross points. The direction of travel of signals in this switch
is from left to right (forming a straight through connection) or (left to bottom forming
a rectangular route) and top to bottom or top to right (rectangular route). The general
direction of signal travel is one way from top to bottom or left to right and/or top bottom
going right or left to right going bottom. This is referred to as unidirectional as was
described above in section 3.1 figure 11(a).

Figure 18: Proposed Unidirectional TSCN

The XBS in the third stage are bi-directionally modified with inlets at the left and right
sides and outputs at the bottom and top side of the switch. The outlets of the second
stage XBSs are fed to the third stage XBS via a 2 × 2 BSE. These 2 × 2 BSE allows
the two signals to access either sides of the XBS in the third stage. The outputs to
the third stage are connected through 2 × 1 BSEs at the top to select the signal either
from the top or from the bottom part of the XBS. Similar to the bidirectional TSCN,

21

Akita University

the extra routes provided in the unidirectional switch allows two connection requests to
share a row or a column in one XBS. If we assume two connection requests coming from
two different switches. If the destination of the request from the left side is equal to
the source port of the second request from the top, and provided the destination of the
request from the top is less than the source port of the request on the left side, the two
requests will share a column. If the destination switch of the request from the top is the
same as the source switch of the request from the left, provided the destination of the
request on the left side is less than the source switch of the top request, the two requests
will share a row. If the destination of the request on the left is the same as the source
port, and the output on the left is free, then a straight through connection is made. The
straight through case only requires a single row and a single column for the two calls.

Similar to the bi-directional switch, as can be seen on the right side in figure 18, 4
inputs from the first stage XBS can be routed using only 3 middle stage switches. 3 of
the inputs will be routed using the solid lines while the remaining fourth connection will
be routed through any of the three switches using any of the dotted routes. There is
a resource reduction in the number of middle stage switches required to route n inputs
to use only 3n

4
compared to that of m = n in conventional Clos. In a conventional

TSCN, when the minimum number of middle stage switches m = n, it becomes an RNB
network and the number of rearrangements is represented as r−1 in a worst case scenario
[42].These rearrangements are confined within a pair of middle stage switches [43]. In
the bidirectional TSCN with mL < n (where L stands for lower), every middle stage
switch can accommodate up to 4

3
r connections. Due to additional routes in the modified

TSCN, during rearrangement, the call rearrangement is not confined to only a side of a
pair of middle stage switches but has options of being routed to the other side of inlets in
any other middle stage switch which has free idle ports and internal routes. Therefore,
the number or rearrangements in the proposed CB(n,m, r) is expressed as follows:

RB(n,mL, r) =
r

2
− 1 (3)

The detailed derivation of equation 3 is given in section 4.2 of summary of simulation
results.

3.4 Wide-sense non blocking

As observed above, the sharing of row/column resources reduces the minimum value of
m to maintain RNB properties for both unidirectional and bidirectional TSCNs. By
increasing m, just like in conventional TSCN, both the WSNB and SNB TSCN types
can be realized. In order to maintain the SNB property in the proposed TSCN, the
row/column pairing must be followed. Because of this,the minimum m that requires no
rearrangement becomes WSNB. Based on the conventional SNB TSCN, the minimum
value of m for the proposed WSNB is derived. As was discussed in figure 6, conven-
tional SNB TSCN require a minimum number of middle stage switches to maintain SNB
properties given by the equation 4 below;

m = 2n− 1 (4)

From fig.19 below,it can be seen that n− 1 inputs of switch A are connected to the

22

Akita University

third stage through n− 1 middle stage switches. Similarly, n− 1 outputs of switch B in
the third stage are connected through a different set of n− 1 middle stage switches. In
order to route a connection request from the idle port of the first input switch A to the
idle output of the third stage output switch B, an extra middle stage switch is necessary
for maintaining SNB property.

Figure 19: Derivation of the proposed lower limit

The proposed structure reduces each set of the middle stage switches to mL as in eqn. 2.
Therefore, to route all the calls, the number of middle stage resources reduces to three
quarters. Therefore, we need 3

4
of the total resources used in a conventional TSCN.

Therefore, the WSNB condition for the proposed structure becomes

m = 2
⌈3

4
(n− 1) + 1

⌉
=> m =

⌈3n

2
+ 1
⌉

(5)

where the equality holds when n = 2d(d = 1, 2, 3, ...). the mWSNB is smaller by about
25% in comparison to the mSNB. The proposed architectures require a certain control
algorithm to maintain the row/column sharing of call set up. The details of the algo-
rithm are discussed in the next chapter.

23

Akita University

Chapter 4

Simulation setup and experimental results

In order to test the non-blocking performance of the proposed TSCN switches, simula-
tions were run using c programming. The methodology employed in this study involves
building simulation models of the proposed switch using C programming. The non-
blocking performance of bidirectional TSCN through simulation of call connection and
disconnection is examined. The number of middle stage switches that determine the non-
blocking properties was observed in relation to blocking that occurred in the simulation.
Since no blocking can occur in first and third stages as was described in section 3.2.1,
the simulation focused on the connection requests arriving at the middle stage switches.
Two dimensional data arrays were used in representing the connections at every inlet
as I[s][k] and outlet as O[s][k] of each XBS. The first dimension represents the XBS
number of middle stage switches s, (1 ≤ s ≤ m), while the second dimension represents
the inlet or outlet number of the XBS k, (1 ≤ k ≤ r). The second dimension was set to
twice the number of inlets and outlets meaning that for each XBS, there are twice the
number of inlets coming from the first stage switches and twice the number of outlets
going to the third stage switches. This was implemented by using four two dimensional
arrays, two for the inlet side of the switch, I1 and I2 and two for the outlet side of the
same switch, O1 and O2. The details of this simulation implementation are described in
the next section and are summarized in the flow chart of figure 20.

(a) Flow chart of the simulation process (b) Detailed flow chart of the simulation
process

Figure 20: Flow chart of the simulation process

24

Akita University

4.1 Simulation flow in Bidirectional TSCN

The simulation was performed in Microsoft Visio studio 2010 IDE. The parameters for
the bidirectional switch were set as follows; The inlets on the left side of the XBS were
represented by the array I1[s][k] and the right side inlets as I2[s][k]. The bottom outlets
as O1[s][k] and the upper outlets as O2[s][k]. This is represented in figure 21 below.

Figure 21: Simulation of the XBS in C programing

A connection request was represented by a source port Pt1 to a destination port dest1.
Similarly, a second source port as Pt2 and destination port dest2. The number of input
ports per switch was set as n which was set equal to the value of r and the number of
middle stage switches set as SW. These parameters were manually set before the sim-
ulation was compiled and run. The value n was set to an even number for simulation
purposes.
(i) Initialization
As shown in the flow chart of figure 20, the procedure starts with initialization of all
arrays to show that no initial connections exist in the switch. This was done by setting
the idle state of all the inlets and outlets of the XBS to a value of −1. In the simulation,
the value −1 means no connection exists at a specific inlet or outlet of the switch, for
example, as shown in figure 22, all the ports are empty.
(ii) Call setup
Next, an initial 100% call setup was performed by assigning the inlets of the XBSs with
the destination outlets numbers and also linking the outlets with the source inlets. i.e.
to say the content of the outlets O1[s][dest1] are set to the inlet port 1 and the contents
of the inlets I1[s][pt1] are set to the destination dest1. In this simulation, a 100% load
call setup was assumed. This is because the compact connection pattern as discussed
earlier in 3.2.1 is suitable for imposing a worst case scenario. The connection requests
were set up so as to maximize the row/column sharing as shown in figure 23. Note that
only n/2 middle switches were used for this.
(iii) Disconnection
Next, an arbitrary pair of connections was selected and disconnected. The random func-
tion rand() in c programming was used for this. This was done by first selecting a random
switch (w = rand()%SW) from which to make the first disconnection, then a random
side of that switch (d = rand()%2) to disconnect the call from and then the actual call

25

Akita University

Figure 22: Initializing the XBS to idle state

Figure 23: Simulation of the XBS in C programing

to disconnect (t = rand()%N), where w is the randomly selected switch, d is the side
limited to two sides only and t is the actual connection to disconnect. If a random side
d = 0 was selected, it meant that the disconnection was performed on the left side of
the switch. The content of I1[w][t] must be assigned to dest1 as I1[w][t] = dest1 with
input port as Pt1 = t and side 1 (sd1 = d = 0). The corresponding inlets and outlets
must be reset to a value of −1 to represent that a disconnection has been performed
i.e. I1[w][pt1] = −1 and O1[w][dest1] = −1 as shown in figure 24. This procedure was
repeated for the second disconnection assigning the respective values accordingly, with
sd2 = 1, Pt2 = t and dest2 = I2[w][pt2]. In the second disconnection, a random side
sd = 1 corresponding to a right side was generated.

(iv) Reconnection
After disconnections, the destinations were swapped and an attempt to reconnect the
two new call requests was made one after the other. The algorithm began first by
searching for an available route for the first request and if it successfully found the route,
it sets it up and went on to search for the available route for the second request. The
algorithm searches for the route for the second request in the same manner as the first.
Once successful, the second request completes and the procedure repeats for a different

26

Akita University

Figure 24: Disconnection of a random pair in an XBS

random pair. Several route conditions to avoid blocking were set carefully. During
call setup, the highest priority in the bidirectional switch was to search for routes that
sought to pair calls in either rows or columns so as to use the switch resources efficiently.
Two parameters were defined C[s] and R[s] to represent the number of pairs formed
in columns and row directions respectively in the s-th XBS. An idle route is sought in
sequence. At the middle stage switch s, C[s] and R[s] are compared. If R[s] > C[s],
an idle route is sought in the column direction to achieve a balance between R[s] and
C[s]. If C[s] > R[s], an idle route is sought in the row direction to increase R[s]. If
C[s] = R[s], the algorithm skips s to s + 1. If the routes cannot be found in which a
row or a column pair cannot be formed, then and only then should a search for other
available routes with no row/column pair condition can be performed. These conditions
are used in searching for routes on both the left and the right sides.If there is a row
occupied and the connection request’s destination does not interfere or cause blocking
with an existing call in the row, then set up the call through this row and form a row
pair. This is illustrated in figure 25.

Figure 25: Initializing the XBS to idle state

If a row pair cannot be achieved, search for a column pair in a similar manner. If there
are no free rows or columns to form row/column pairing, then the call is set up using
a default search, which does not necessarily search for row/column pairs. If all the
conditions to search for the routes are not met, it was concluded that no route is found

27

Akita University

in the switch and blocking happened and the route setup procedure ends in a failure and
it displays the loop at which blocking occurred. Once blocking is detected, the number
of middle stage switches was increased and the procedure repeated. The detailed path
search for setting up the first and second calls is summarized in a more detailed flow
chart of figure 20(b). Although the path search algorithm requires several runs through
a search for an available route through each middle switch, the complexity for setting
up a connection is the same as that of a conventional SNB TSCN of O(mr). In the
simulation, m was varied for several pairs of fixed n and r to check the point at which
blocking in the bidirectional switch stopped occurring. The maximum number of loops
used was set to 1 × 1014 for each setting of n. This value is sufficient to test all the
necessary call attempts for non-blocking because it was observed that blocking for the
conventional TSCN C(n,m, r) was detected within the loop-counts of 1 × 1010 as shown
in figure 26. The dotted lines in the figure represents the point at which blocking was no
longer detected in the corresponding switch. Figure 26 shows the loop count at which
blocking was detected vs number of middle stage switches. The vertical dotted lines
correspond to a point at which blocking stopped in the respective curves representing
different switch sizes.m was increased further until no blocking occurred for a maximum
number of loops.

Figure 26: Simulation results of the conventional Clos network

28

Akita University

Figure 27: Simulation results of the proposed architecture

4.2 Simulation and experimental results

The results in figures 26 and 27 shows a summary of the simulations performed. As can
be seen in figure 26, blocking in the conventional TSCN occurred all the way until m =
2n − 2. When the number of middle stage switches reached 2n − 1, the dotted lines,
blocking ceased. For example, when n = 8, blocking occurred up until m = 14. However,
at m = 15, no blocking occurred. In the proposed TSCN, blocking continued to occur

up until the number of middle stage switches m was
⌈
3
2
n
⌉
. Blocking stopped when the

number of middle stage switches reached
⌈
3
2
n+1

⌉
. For example, when n = 6 and m = 10,

no blocking occurred. However, blocking occurred at all points lower than m = 10. Each
dotted line corresponds to a point at which blocking ceased for the respective values of
n. In summary, equation 5 holds as a test for the WSNB condition. Equation 2 was
also indirectly verified because equation 5 was derived from equation 2 which was based
on the row/column sharing scheme. The performance of the conventional, bidirectional
TSCN is summarized in the table 2 with respect to m, the number of rearrangements,
total number of cross points and the differential number of cross points to c(n,m, r).
The number of cross points are calculated in an n×m XBS as nm. The number of
crosspoints in the first, second and third stages in C(n,m, r) are calculated as n2r,
r2n and n2r respectively. The resulting total number of cross points in C(n,m, r) is
2n2r + r2n which is N(2n + r) as shown in table 2, here N = nr. Several values in
the table 2 were approximated in order to clearly observe the difference in performance

29

Akita University

at a glance. There is a clear performance trade off relationship between the number
of rearrangements and the total number of crosspoints. For example, the conventional
C(n,m, r) has r − 1 rearrangements but has a minimum number of crosspoints, while
the special case of the CB(n,m, r) and CU(n,m, r) only has a single rearrangement at an
increased crosspoint count. The bidirectional CB(n,m, r) and unidirectional CU(n,m, r)
achieves no rearrangements at an increased crosspoint count at the first and third stages
while they have a smaller number of crosspoints in the middle stage switches. It is clear
from the graph in figure 27 that the number of middle stage switches are reduced by
25% in the proposed TSCN in comparison to those in the conventional TSCN due to
row/column sharing. A new lower bound of m = 3n/4 for maintaining rearrangeably
non-blocking property capability has been proposed. This is much smaller than the
conventional TSCN.

In terms of rearrangements, consider a fully loaded conventional RNB TSCN as shown
in figure 28. If a pair of calls in Mj1 and Mj2 disconnect as shown in dotted lines, and
an attempt to establish a new connection from Ir to Ok is made as indicated in blue
line, blocking occurs. It is therefore necessary to perform some rearrangements in order

Figure 28: Worst case blocking and need to rearrangement

to provide a route for this connection. These rearrangements are restricted to the two
middle stage switches. The conventional XBSs only use a single side as inputs. The
rearrangement can be performed by sending the call to be rerouted to the other switch
and if blocking occurs in the second switch, then the existing blocked call is rerouted to
the initial switch and the procedure repeats until all connections are established. As can
be seen in figure 29, the call tries to set up (in red) in sw1, the existing call is sent to
sw2 in which blocking occurs with another call with a similar input. The call is sent to
the other switch and there is no blocking that occurs. We see that the total number of
connections are given by 2r − 1 and the number of rearrangements is less than or equal
to the number of existing calls and is given by the equations with the figures below. The
total number of connections is equal to 2r− 1 Therefore, the number of rearrangements

30

Akita University

Figure 29: Rearrangement process in conventional TSCN

needed becomes
C1 + C2 ≤ 2r − 1

2 min(c1, c2) ≤ 2r − 1

min(c1, c2) ≤ r − 1

(6)

In the proposed architecture, the modified XBSs have extra inputs on the right (in
the bidirectional) and at the top (in the unidirectional) SW. So during a rearrangement,
calls can begin rearranging within the first switch before they are taken to the second
switch. For example in a bidirectional sw, if blocking happens on the left side in one
switch, existing connections can be rerouted to the right side of the same switch. And
if blocking continues, the existing blocked call can be taken to the second switch which
also has two sides. This procedure is repeated until all the calls are rearranged and
reconnected successfully. This procedure is represented in figure 30.
As can be seen in figure 30, the total number of rearrangements can be derived and
becomes;

c1 + c2 + c3 + c4 ≤ 2r − 1

= 4 min(c1, c2, c3, c4) ≤ 2r − 1

= min(c1, c2, c3, c4) ≤ r/2− 1/4
∼= min(c1, c2, c3, c4) ≤ r/2− 1

(7)

Figure 31 show the number of rearrangements in the conventional and proposed method.
Based on the column and row sharing of the method, the proposed architecture has a
reduced number of rearrangements. As can be seen in the orange curve, the reduction

31

Akita University

Figure 30: Rearrangement process in proposed architecture

in the number of rearrangements is about 50% compared to those in the conventional
architecture.

Figure 31: comparison of the number of rearrangements in conventional and proposed
architecture

Table 2 shows a summary of the performance of the conventional three-stage Clos and
the proposed architecture. The table compares the number of middle stage switches
required in the SNB, RNB conventional and proposed three-stage Clos network. The
table also shows the number of rearrangements in the RNB switches of the proposed and
three stage architecture. A generalisation of the total cross points count and a reduction
in the crosspoint counts in the SNB and RNB and also a shown.
The graph in figure 32 shows the crosspoint comparison of the conventional three stage
Clos network and the proposed architecture. The decrease in the crosspoint count be-

32

Akita University

Table 2: Summary of switch performances for conventional and proposed unidirectional
and bidirectional TSCN

Type of
TSCs

Middle
stage SWs

Re -
arrange
ments

Total
cross points

Reduction in
cross points from

conventional TSCN
Clos SNB 2n− 1 0 2N(n+ r) 0

Prop.
Clos SNB

⌈
3
2
n
⌉

+ 1 0 N
(
2n+ 3

2
r + 3

)
+ r2 r

2
N − 3N + r2

Prop.
Clos SNB

With n× 2n
d3
2
ne+ 1 0 N

(
4n+ 3

2
r
)

+ r2 Nr
2
− 2Nn− r2

Clos RNB n r − 1 N(2n+ r) 0
Prop. RNB 3

4
n r

2
− 1 N

(
2n+ 3

4
r + 3

)
N
(
r
4
− 3
)

Prop. RNB n 1 N(4n+ r) −2Nr
Prop.

Clos RNB
With n× 2n

n 1 N (2n+ r + 3) −3N

comes significant as the switch size increases. At lower values of switch size n, the
crosspoint reduction is minimal but as the switch size increases, it saturates at 25%.
Figure 33 shows a percentage change in the resource requirements for the proposed ar-
chitecture. For a switch size at (log n = 10) on the x-axis, the corresponding percentage
change about 10%. At (log n = 1000) the difference saturates at 25%. As a percentage,
the required number of middle stages required in the proposed architecture shows a de-
crease that saturates at 25%. When the switch size is smaller, the number of middle
stage required in the proposed architecture are more and thereby showing a negative
reduction. As the switch size increases, the difference becomes more pronounced and it
stabilises at one-quarter.

4.3 Summary

The major results of this chapter is that the number of middle stage switches required
to maintain the non blocking properties is drastically reduced. This is brought about
by the use of idle ports in the proposed architecture. As a result, cross points are re-
duced drastically by about 25%. It is also observed that for rearrangeably non blocking
switches, the number of rearrangements are reduced to 50%.

33

Akita University

Figure 32: Cross point comparison in conventional and proposed architecture

Figure 33: Overall percentage reduction in the number of middle stage switches required

34

Akita University

Chapter 5

Structure and non-blocking properties bidirectional

two stage switches

5.1 Brief introduction

Space-division multiplexing technology for scaling optical network capacity has received
serious attention recently [44]. Multistage space switch networks have become a key
component in creating high-port-count optical interconnects and cross-connects[45, 46].
While the three-stage Clos architecture remains to be a well-established and highly
practical design principle for scalable space switches [47], two stage networks (TSNs)
are emerging as a new design option for relatively small-capacity switches[48]. TSNs are
classified into two, folded and unfolded types. The folded is equivalent to a three stage
Clos network and its structure and non-blocking properties are well known [43]. On
the other hand the unfolded TSNs (UTSNs) are completely understood. A few types of
UTSNs exists all of which are RNB [21]. In this study, for the first time, a strictly
non-blocking UTSN is considered. A new design principle of UTSN which consists
of input and output switch modules (ISMs and OSMs) with bidirectional switching
capabilities and represented by B(n,m, r) where n,m and r are denote the number
of input ports to the ISM, the OSMs and the number of ISMs respectively, is firstly
presented. Secondly,the maximum number of rearrangements and minimum value of m
to satisfy the SNB condition is formulated. Finally the switch hardware complexity is
estimated.

5.2 Proposed structure of UTSN

The proposed UTSN B(n,m, r) with r ISMs and m OSMs each denoted by Ip, 1 ≤ p ≤ r
and Oq, 1 ≤ q ≤ m is shown in figure 33.
All the ISMs have n inputs and a the total number of inputs is given by N = Nr, while
every OSM has N outputs, of which the first and second halves are provided at the top
and bottom edges. every pair of an ISM and an OSM is interconnected with a pair of
internal links, i.e.each link between and outlet on the top of the ISM and an inlet on
the left of left side of the OSM. The other link between the bottom of the ISM and the
right side of the OSM. An ISM can be implemented by an n×m bidirectional crossbar
switch(BXS) and n× 2 switches as shown in figure 34.
Every input signal to the ISM may be switched to its outlet at either end of the column.
Let (i, k) be a connection between an input i, 1 ≤ i ≤ n, and an outlet k, 1 ≤ k ≤ 2m,
in the ISM. Similarly, let (l, j) be a connection between an inlet l, 1 ≤ l ≤ 2r, and an
outlet j, 1 ≤ j ≤ N ,in the OSM, which can be implemented by an r × N/2 BXS, as
shown in Figure 35.

Every jth outlet in the OSM is coupled in the jth output via a passive coupler, which is
shown as a dashed triangle in Figure 33. The passive coupler can be substituted by an
m× 1 switch at the cost of extra cross-points. Here, only one outlet of all the m OSMs

35

Akita University

Figure 34: Structure of B(n,m, r)

Figure 35: Design Example of ISM using bidirectional switching

may have an output signal at a time with the others remaining idle. As can be noted in
the figure 34, every input signal is routed to either a left or right inlet through a 1 × 2
switch, every row of ISMs takes only a single at most. It is clearly shown that every
column of ISMs and OSMs is shared by at most by two signals, i.e. one signal headed
for the top and the other down for the bottom.

5.3 Non-blocking properties of B(n,m, r)

Even though the main objective here is to derive the SNB condition for B(n,m, r), the
reaarangement process for B(n,m, r) which provides insights into the SNB condition
is first investigated. As was observed from figure 34, no blocking occurs in the ISMs

36

Akita University

Figure 36: Design Example of OSM using bidirectional switching

because the ISMs functions as incomplete n × 2m switch. Blocking can occur in the
OSM in the following worst case scenario: assume that n − 1 inputs from an ISM Ip1,
1 ≤ p1 ≤ r are already connected with n − 1 outputs. Also assume that these n − 1
inputs enter the OSMs on their left side inlets. Then the last connection request in ISM
Ip1, which is denoted by the dashed line in figure 36 is issued.

Figure 37: Worst-case scenario for rearrangement in B(n, n, r)

Here assume that the request has a destination output of j0, 1 ≤ p2 ≤ N/2, while
j0 = j0 +N/2 corresponds to Ip2, 1 ≤ P2 ≤ r as shown in figure 36 with an assumption
that p

′
= p2+r and all of the n inputs to the Ip2 are already in use. Note that the primes

mark denotes the inlets on the right side and the outlets on the top edge. Blocking occurs
in the j0th column in On. It can be seen that every j0 th column of OSMs except On,
is idle. If the new connection (p1, j0) is rerouted to the j0 th column in the OSMs Ob,
1 ≤ b ≤ n − 1, which is connected to Ip1 , an existing connection denoted by (p1, j1)
in Ob should be moved to On, only where inlet p1 is idle. However,this rearrangement
can cause blocking if the j1 th column in On is already used. Note that j1 = j0 holds
because the blocking in the j0th column has already been addressed. In other words,
each existing connection in On experiences a rearrangement only once. Because there
are r–1 existing connections in On, the rearrangement process will last r–1 times at most
between On and Ob. Let R1 be the number of rearrangements in this case.

Now, consider another rearrangement process that begins with p2 in On. If the new
connection (p1, j0) is provided in On, the existing connection (p2, j0) should be rerouted
to the j0 th column in Ob. However, blocking will occur in the OSM because there is

37

Akita University

another existing connection (p2, j2) or (p2, j2), with j2 6= j0 and j2 6= j0, which should be
moved to On, only where inlets p2 and p2 are idle. The second rearrangement process
also lasted r–1 times at most. Let R2 be the number of rearrangements in this case.
because the connections involved in R1 and R2 are different from each other, the following
relation holds:

R1 +R2 ≤ r − 1 (8)

Both R1 and R2 are integers and the minimum number of rearrangements is expressed
as :

min(R1, R2) ≤ b(r − 1)/2c (9)

where bxc denotes the largest integer less than or equal to x. Note that Ob was fixed
in the above discussion. By examining the number of rearrangements for every Ob, the
minimum number of rearrangements at large, denoted as R0, can be derived as follows
in a similar manner to the above derived equation (9) as:

R0 ≤
⌊ r − 1

2(n− 1)

⌋
(10)

where n ≥ r, there is more freedom to exchange the blocked connections (p1, J0) with
other existing connections. As it has been shown in figure 36, Ip1 and Ip2 have n − 1
and n connections under the worst case scenario. These assumptions allows for a choice
of an outlet, which is not included in the r–1 existing connections in On, out of the n
existing connections in Ip2. Accordingly, when the connection (p2, j0) can be moved to
an appropriate OSM, of which the j3 th column is occupied by an existing connection,
that is, (p2, j3) or (p2, j3), whereas the j3th column in On is idle. As a result, the number
of rearrangements is reduced to two at most.

Based on the above discussions, an SNB condition can be readily derived as follows:
When m = n, the blocked connection needs to be moved to another OSM, where blocking
can occur. However, if m is set such that m = n+ 1, the last connection request may be
provided in the (n+ 1)-th OSM, where both p1 and j0 are idle. Consequently, the SNB
condition for B(n,m, r) becomes

m ≥ n+ 1 (11)

5.4 Hardware complexity of B(n,m, r)

The total number of cross-points becomes large when m = n + 1. It is expressed as a
function of n as follows:

Cp(n) =
N2

2

(
1 +

1

n

)
+N (n+ 2) (12)

where the first and second terms in equation (12) corresponds to cross-points of the
OSMs and ISMs, respectively. Cp(n) is minimum at nopt =

√
N/2 as follows:

Cp(nopt) =
N2

2
+N

(√
2N + 2

)
(13)

Cp(nopt) converges to N2/2 as N → ∞. Some RBN UTSNs also have N2/2 cross-
points[21]. This bidirectional UTSN has achieved SNB properties with approximately
the same cross-points as RNB UTSNs.

38

Akita University

5.5 Summary

The new design principle for UTSNs using bidirectional switches has been unveiled
herein. The non-blocking properties have been investigated starting from the RNB prop-
erties. The number of maximum arrangements have been studied from which the number
of OSMs required to obtain SNB have been derived. The hardware complexity has also
been investigated and it has been shown that the hardware complexity becomes minimal
at n =

√
N/2 and saturates at N2/2 as N → ∞. The two stage switch obtained in this

chapter can be applied to the first and third stages of the proposed bidirectional three
stage network shown in figure 12 in Chapter 3. The obtained Clos network becomes a 5
stage Clos network. The proposed TSCN can be scaled to increase the number of stages
by recursively replacing the first and last stages with the UTSN.In this case, the number
of stages will be scaled as 2k−1 where k is an integer starting from k = (2, 3, 4, ...). This
is illustrated in figure 37 below. The cross-points of the architectures obtained have not
been discussed here and have been left for future studies.

Figure 38: Modified TSCN with first and third stages replaced by two-stage switches

39

Akita University

Chapter 6

Design of parallel control algorithm

In setting up paths in RNB switching networks, one of the challenges has been to
find and set paths that are non-conflicting with any inputs and outputs in the switch.
Owing to the increased demand in the amount of traffic in communication networks,
Control algorithms that seek to set up non-conflicting paths at a fast rate are required
in modern switches. Control algorithms vary depending on the type of connection to be
established. These types could be unicast, multicast or broadcast. A unicast connection
is when one input terminal connects to one output terminal. A multicast connection is a
connection from one input terminal to several output terminals. Broadcast involves an
input terminal sending messages to all or most of the output terminals. In the past few
decades, several switching algorithms have been developed. These include the sequential
and parallel algorithms. Sequential algorithms have consecutive steps of instructions that
are executed in a chronological order to set up paths in the switching network. On the
other hand, parallel algorithms divide the process of setting up routes into smaller sub
tasks and these are executed in parallel to obtain individual outputs which are combined
to obtain a final desired output. Relative to sequential algorithms, parallel algorithms
have a faster processing time. Parallel control algorithm is the key to improving the
performance of switching networks. This section focuses on the design of a parallel
switch setting algorithms in Benes and Clos networks.

6.1 Benes Network

The BNW has been used in many areas such as interconnections of parallel computers and
networks-on-chip (NoC). Several connecting paths exist in switching fabrics. A random
connection can be made through any of these arbitrary paths. However, to preserve the
properties of the Benes switching fabric such as non-blocking property, a specific path
must be used to connect an input to an output. Algorithms to set up such connections
are referred to as path searching algorithms. Let’s consider the parallel construction of
the BNW. Fig.38 shows a primitive model of an N × N BNW in a three stage structure
where a parallel pair of half-sized (i.e. N/2 × N/2) matrices are in between two sets of
N/2 SEs. Each N/2 × N/2 matrix may be replaced in a three-stage BNW with a pair
of N/4 × N/4 matrices. The reduction proceeds until the minimum size matrices, i.e.
2 × 2 SEs appears in the centre stage. As a result, a complete BNW can be obtained
as shown in Fig.39, where each SE has two connection modes, i.e. bar (=) and cross
(×), flipped by a SCB. Note that Sp,q represents the q-th top SE at the p-th stage from
the left, where 0 ≤ p ≤ 2n − 2 and 0 ≤ q ≤ N/2 − 1. Assume sp,q ∈ {0, 1} indicates
its status, and sp,q of 0 and 1 makes Sp,q bar and cross. As can be seen in figure 39,
the BNW is equivalent to a back-to-back concatenation of two baseline networks. The
routing algorithm proposed in this study is broken down into two parts similar to the
BNW structure. The first part is the division of the permutations recursively into half
while satisfying the SDR constraints as shown in figure 39. The division is the same as
that of the classical looping algorithm [2],[49].

40

Akita University

Figure 39: Primitive three–stage structure of N × N BNW (N = 8)

Consider a set of permutations (i, o) as shown in figure 38, where i is the input port
and o represents the output port to which a specific connection needs to be established.
Initially all inputs and outputs are unconnected. The looping algorithm is performed as
follows;
1). Select an unconnected set (i, o) and set the connection from input to output switch.
If no such input exists, the algorithm ends since all the connections are set.
2). The selected unconnected input i is connected to the unconnected output o through
the upper subnetwork of the center stage.
3). Then connect the other corresponding output o at the output stage to a corresponding
input in the input stage through the lower subnetwork of the center stage.
4). If the corresponding input is not connected to an output, then repeat the procedure
by going back to step 2.
The looping algorithm works by traversing the network from the inputs to the outputs
and back until it reaches its starting point thereby forming a loop. This is shown in
figure 40 below.

The looping algorithm is a sequential algorithm and therefore it takes O(N) time
since N calls must be set up. Let i and j, where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1, be
the input and output port numbers in an N × N BNW. Firstly, a full permutation π0
is considered as follows:

π0 =

(
0, 1, ...i, ...N − 1

0, j1, ...ji, ...jN−1

)
(14)

where ji is the designated output at input i.

41

Akita University

Figure 40: Full picture of N × N BNW (N = 8)

As an example, the following permutation π0 is assumed in figure 38 & 39.

π0 =

(
0 1 2 3 4 5 6 7

7 5 2 0 6 3 4 1

)
(15)

A duplet is expressed as (i : j) corresponding to a pair of input i and output j. Let b(j)
be the binary address of output j, which is defined by

b(j) = (bn−1
j , bn−2

j , ..., b0j) (16)

where btj, 0 ≤ t ≤ n− 1, with

b(j)MSB = bn−1
j ,

b(j)LSB = b0j .
(17)

All SEs in the last stage in figure 39 has a pair of outputs j and jc, of which b(j)LSB
and b(jc)LSB are different and herein referred to as complementary. m(j) is defined as
the output SE number with j, where 0 ≤ m(j) ≤ N/2− 1, and

m(j) = m(jc) (18)

Let b(j) be the truncated binary address of b(j), defined by

b(j) = (bn−1
j , bn−2

j ,, b1j) (19)

The following expression is obtained;

b(j) = (bjc) (20)

42

Akita University

Figure 41: Conventional looping algorithm in Benes network

Similar relationships hold between i and ic in an input SE, which has a pair of duplets
i : j and ic : ja, where ja is the associated destination output in the input SE. Note that
j and jc together with (i and ic) are used interchangeably. The original permutation π0
is divided into a pair of sub-permutations as follows:

π0,u0 = {u00, u01, ..., u0N/2−1},
π0,ud = {d00, d01, ..., d0N/2−1}.

(21)

where u0l and d0l (0 ≤ u0l ≤ N/2 − 1 and 0 ≤ d0l ≤ N/2 − 1 for 0 ≤ l ≤ N/2 − 1) are
output SE numbers to which a designated output j belongs, as shown in figure 38.
Previous research referred to a sub-permutation as a complete residue system [50] or as
an equivalent class [31]. In this study, sub-permutations are referred to as SDR because
they constitute systems of distinct representative (SDR) [51, 52].

Assume that the three-stage structure shown in figure 38 is the 0th reduction. Gen-
erally, at the k-th reduction, with 0 ≤ k ≤ n − 2, there are 2k sub-permutation pairs
(πk,u0 , πk,d0), ..., (πk,u2k−1 , πk,d2k−1), where each sub-permutation has N/2k+1 elements.
The width of the binary address of these elements is given by n − k − 1. Note that,
an output address of n bits is transferred to the next sub-permutation as it is, while the
region of interest in the address at the k-th reduction, denoted by R(b(j), k), is reduced

43

Akita University

to n− k − 1 bits, truncated by one bit at each reduction, and is expressed as follows:

R(b(j), k) = (bn−1
j , bn−2

j , ..., b
n−(n−k−1)
j) (22)

The division process is the same as that of the looping algorithm. It is briefly described
here so as to provide an introduction to the parallel algorithm. Because the algorithm
is recursive in nature, the primary focus is only on the first stage so as to illustrate how
the permutation π0 is divided into π0,u0 and π0,d0 .
Consider the permutation in equation (15) above.

i. Select an arbitrary SE that is not set yet and set it to bar state by default. In
the initial state, S0,0 is selected and set as S0,0 = 0. Let the upper duplet be i : j (0 : 7
in figure 38). At this point, π0,u0 = {3} and π0,d0 = {2} are obtained.

ii. Search for an SE to which jc belongs (jc = 6 in figure 38) and find jc in S0,2.
Here a pair of outputs j = 7 and jc = 6 shares S4,3, and therefore must be distributed to
different sub-permutations due to the SDR constraints. As m(j) = 3 has already been
included in the π0,u0 at step i, m(jc) = 3 must be in π0,d0 . As a result, S0,2 is set equal
to 1. At this point, π0,u0 = {3, , 1} and π0,d0 = {2, , 3} are obtained.

iii. Next, identify ja = 3 in S0,2 as the associate of jc = 6. Because jc = 6 was set
in the lower sub-permutation, ja is taken to the upper permutation. A pair of outputs
j = 3 and jc = 2 share S4,1, these must also be distributed to different sub-permutations.
This process repeats until the cycle terminates. The following permutations are obtained;
π0,u0 = {3, 0, 1, 2} and π0,d0 = {2, 1, 3, 0}. It is worth noting that the status of some SEs
like s0,0 and s0,3 are equal because the relative input positions of the pair of duplets
including j = 5 and jc = 4 differ [31], i.e., one sits at the upper inlet in one SE and the
other on the lower in the other SE.

The second part of the proposed routing algorithm is the destination-tag routing
(DTR). This correlates to a superposed binary tree structure of the reverse baseline
network (RBN) [53] shown in figure 39. Here, assume d(i) to be a binary destination
output imposed at the i-th input of the RBN as follows.

d(i) = (dn−1
i , dn−2

i , ..., d0i) (23)

where dti ∈ {0, 1}, 0 ≤ i ≤ N − 1 and 0 ≤ t ≤ n− 1. Each pair of outlets of SEs in the
RBN is labelled with 0 and 1, as can be seen in figure 39. A route can be traced from i
to d(i) as follows; When d(i) appears at an input of Sp,q, it is forwarded to either outlet
0 or 1 of the Sp,q depending on whether d2n−2−p

i = 0 or 1. This operation is realized in
time of order O(1). The detailed description of the DTR processing and its hardware
implementation have not been included in this thesis.

44

Akita University

6.2 Design of parallel processing elements

6.2.1 Design overview

In this study, a design of parallel distributed architecture of processing elements (PEs)
is proposed. As can be seen in figure 41, the upper half is a switch body of size N × N
BNW and the lower half is the proposed Parallel control Unit (PCU). The PCU accepts
address information represented by Ain slot by slot, then it computes routes based on
these addresses, then it generates switch control bits (SCBs) stage by stage in parallel.
The design of the PEs is such that a PE at a stage is connected to a pair of other PEs
in the next stage in the same manner as the counterpart SEs in the upper BNW switch
body. A PE receives a pair of addresses and transfers them to the next PEs in the same
mode (i.e. bar or cross) as the SE. The PCU has upto O(N log2N) PEs and is similar
to a massively paralleled system. The PEs can comprise several kinds of primitive logic
circuits and memories such as comparators, multiplexers and registers unlike [35] and
[39] in which the shared memories and arithmetic units were required.

Figure 42: Proposed Design overview of the parallel control unit with the switch body

As can be seen in figure 41, there are two types of PEs, i.e. PEk,h in the first part,
with (0 ≤ k ≤ n − 2) and 0 ≤ h ≤ N/2 − 1 and PEk′ ,h in the second part, where

(n − 1 ≤ k
′ ≤ 2n − 2) and (0 ≤ h ≤ N/2 − 1), according to the earlier mentioned

two parts of routing algorithm. The first stage of the PCU corresponds to the index
of k = 0. Note that PEs in the first k-th (0 ≤ k ≤ n − 2) stage are divided into 2k

independent groups. Therefore, a PE group in the k-th stage has a total of N/2k+1 PEs
and accepts a total of N/2k addresses, of which the bit width of the region of interest
becomes n − k − 1. All the PEs within a group are interconnected with N/2k+1 buses
to communicate within the group. These are shown as bold lines in the first stage of
the PCU in figure 41. In the first part of the proposed routing algorithm, the division
process of sub-permutations is common to all the groups, although the number of PEs in

45

Akita University

a group (i.e. size of sub-permutations) decreases with stage. In the second part, all the
PEs have uniform, low complexity. Because of this, the PEs in the first stage of the PCU
have the most complex hardware. It takes O(log2(N/2

k)) processing time for a PE group
in the k-th reduction, where (0 ≤ k ≤ n − 2). All the PEs in the second part require
small constant time of O(1). As a result, the processing time and hardware complexity
are most critical in the first stage of the PCU. In the next section, the proposed parallel
algorithm is described in detail. This study focuses on the PEs in the first stage as in
Ref. [37].

6.2.2 Design of PEs for Full permutation

The first stage of the PCU has a single group of N/2 PEs interconnected to each other
via a number of buses Bb(r) (e.g. B00), where (0 ≤ r ≤ N/2 − 1) as shown in figure 42
(a). Binary suffixes are assigned to the N/2 PEs as PEb(p) (e.g PE00), where (0 ≤ p ≤
N/2− 1). Note that the status of N/2 SEs are also re-assigned with binary suffixes (e.g.
S00).

We assume a full permutation in figure 42 (a) as follows:

π0 =

(
0 1 2 3 4 5 6 7

3 4 5 0 2 6 7 1

)
(24)

Figure 43 shows a simplified functional block diagram of the PEs. The function of each
block is described as follows. During the division process,each PEb(p) sends out its own

data, e.g. b(j), b(jc) and b(p), to the bus Bb(p). Here, b(p) is a PE suffix that is identical to
b(p) for full permutations and will later be redefined in the partial permutations section.
Each bus comprises the data information of n − 1 bits and a data valid flag (fv) of 1
bit. At most one pair of eligible data is accepted by each PE through multiplexers in
the bus interface (BIF) of figure 43 even though each PE is capable of receiving multiple
data simultaneously. Thus, the internal processing speed of the PEs remains constant,
independent of the PE group size. In the full permutation, the division process has three
phases, which are described in the following section.
i). First phase
The first phase of the process is the parallel process for neighbour search. The PEb(p)
is assumed to have two destination addresses b(j) and b(ja), as shown in Fig. 43. The
neighbour search is performed to find PEs with truncated addresses b(j) and b(ja). If
b(j) = b(ja) holds in a PE, the neighbour PE is identical to the original PE, and no
addresses are launched onto the bus. Otherwise, b(j) and b(ja) are broadcast in series
onto Bb(p). The other PEs compare their own truncated addresses with the incoming
b(j) and b(ja). This is done by using the comparators in the BIF. As shown in fig.42(b),
PE00 first broadcasts 01 from its upper inlet to bus bar B00, the other PEs compare
their truncated addresses to 01. PE10 realizes PE00 as a neighbour because it has 010
at its upper inlet. Here, both 011 and 010 are at upper inlets of the two neighbour PEs.
This means that they must be in different sub-permutations; and therefore, the status
of PE10 and corresponding S10 is not equal to PE00 which also corresponds to s00 (Fig.
42 (c)). Similarly, when PE00 launches 10 from its lower inlet, PE01 discovers PE00 as
a neighbour, the status of PE01 (S11) is set equal to PE00 (s00) because PE01 has 101
at its upper inlet.

46

Akita University

Figure 43: Bus-connected PE array and its operation: (a) each PE accepts address
information and interchanges switch control data via multiple buses in parallel; (b) link
status after first phase; (c) link diagram in a cycle; (d) implementing link diagram in
FPGA using inverting and non-inverting gates

The ‘equal to’ and ‘not equal to’ relations are shown in figs. 42 (b) and 42 (c)
by solid and dashed links, respectively. Here, we refer to both relations as link status
collectively. The status of each PE corresponds to the SE status. Link status flag (fs)
and neighbour PE suffixes are saved in registers, shown in fig. 43. In practice, a pair
of counter-rotating links is implemented with a portion of each bus in the third phase.
Inverting and noninverting gates shown in fig. 42 (d) are used to implement the link
status relationship between two adjacent PEs in FPGA, where the link originates and
terminates at PE11, as the result of the following second phase. The neighbor search
process is realized in parallel, and the time complexity is O(1).

47

Akita University

Figure 44: Simplified functional diagram of PE with binary suffix b(p)

ii). Second Phase
The second phase involves an iterative process to select a representative element PE in
each cycle. In a cycle (fig. 42(c)) each PE is correlated with each other and a system
of relations is referred to as the initialization equation. The proposed solution for the
initialization equation is based on the fact that if we appoint a PE (E.g. PE11 in Fig.42
(c) as a representative element in the link diagram and set SE to the default state, the
status of the other SEs is generated automatically in the link diagram which cannot be
easily implemented with only software. Therefore, it is necessary to have a representative
element for determining the status of other SE based on this representative element. The
proposed design assumes the representative PE to be the one with the maximum suffix
in a cycle (e.g. PE11 in the fig. 42(c)). The iterative procedure is as follows; in the
initial state, each PE in a cycle is a candidate for a final representative, whose status is
indicated as a double circle in Fig. 44(a), where only binary suffixes of PEs, i.e., b(p), are
shown for simplicity. In the first step, each PE sends its suffix to two neighbouring PEs,
as shown in Fig. 44(a), and each PE compares its own suffix y0 to the incoming suffixes
y1 and y2. Note that a similar situation occurs in the subsequent steps, and there are
three possible cases.
(i). If (y0 < y1) ∪ (y0 < y2), the PE loses the competition, y1 and y2 are transferred to
the next neighbour PEs, e.g. PE00 and PE01 in Fig. 44(b), and PE10 in Fig. 44(c),
lost competition and are shown by dashed circles. Note that the PEs that loses become
transparent in the subsequent steps.
(ii). If (y0 > y1) ∩ (y0 > y2), the PE remains as a potential representative and discards
both y1 and y2, e.g. PE11 and PE10 in Fig. 44(b).
(iii). If y0 = y1 = y2, the PE becomes a final representative and goes to the third phase,
e.g. PE11 in Fig. 44(d).

PEs that lost the competition bypass incoming data through simple transfer switches
embedded in BIF; thus, the bypass delay is negligible. The comparison result at each

48

Akita University

PE is updated in a representative flag (fr), as shown in fig. 43. Neighbour PE suffixes
are referred to by the BIF to specify a bus to receive the suffix data from. Note that
each individual cycle has a maximum suffix, and there can be several representatives in
a stage, e.g. S0,0 and S0,3 (each corresponding to PE00 and PE11 respectively) as shown
in Fig. 38. As a result, the number of candidates for a representative is reduced to
one-half after each iteration; thus, the second phase for the first stage completes in at
most O(log2N) time.

Figure 45: Iterative steps to determine representative PE in the second phase: (a) each
PE is eligible for representative in the initial state; (b) the PE receives two suffixes
and compares its suffix to them and surviving PEs are reduced to one-half and lost PEs
become transparent and bypass incoming data; (c) the competition process is repeated in
subsequent iterations; (d) maximum suffixes return to the originating PE in the final
iteration

(iii). Third Phase
The third phase is performed to determine the status of each SE in each cycle according
to the direction of a representative and pass addresses on to the next stage. For example,
PE11 in Fig. 42(d) sets an initial value of s11 = 0, which also serves as a trigger to the link
diagram. Note that each link between neighbour PEs has already been established over
buses in the beginning of the third phase. In addition, inverting and non-inverting gates,
which reside in an SCB generator in Fig. 43, have been configured according to fs. Here,
a pair of input addresses b(j) and b(ja) is transferred to PEs in the next stage through a
2 × 2 switch (Fig.43), which is set to bar or cross by an SCB. The propagation delay in
the link diagram is very small compared to a clock period; therefore, the time complexity

49

Akita University

of the third phase is estimated as O(1). To summarize, the total processing time in the
first stage is O(log2N) Generally, the total processing time in the k-th reduction, where
0 ≤ k ≤ n− 2, is O(log2N/2

k), because the size of permutation in the k-th reduction is
given by O(log2N/2

k). It is clear that the first stage has a maximum processing time,
and it decides the maximum throughput of the pipelined PCU.

6.2.3 Design for partial permutations Unified Parallel algorithm for full and
partial permutations

At some instances during the operation of the switch, some inputs may not have a
connection request. These inputs without a connection request are referred to as idle
connections. In this section, idle connections and their effect on the proposed algorithm
are investigated. A partial permutation as follows is assumed;

π0 =

(
0 1 2 3 4 5 6 7

3 4 5 0 x 6 7 1

)
(25)

where x indicates an idle address. Similar to the full partial permutation in the previous
section, the fifth address element has been changed to x.

As can be seen in fig. 45(a) and (b), no links exist between PE00 and PE10 due the
idle connection in PE10. A representative element cannot be determined this way because
neighbour prefix information y1 and y2 cannot be shared due to missing links. There are
two design options to tackle this problem. The first one is a structural adaptation to
loop back the disconnected links at the two end PEs so that they can each have a pair
of neighbours like in a full permutation. This loopback does not change the comparison
operation for the selection of a representative element, however, it almost doubles the
length of a cycle thereby increasing the processing time. The other option is to mask
the disconnection by blocking the received suffix data at the two end PEs. To do this,
b(p) is first redefined as follows:
If a PE has a single neighbour for example PE00 and PE10, which sits at both ends as
shown in fig.45 (b) then the suffix b(p) is obtained by modifying it as:

b(p) = (1, bn−1
p , bn−2

p ,, b1p) (26)

If a PE has two neighbours like PE01 and PE11 which sits in between two end nodes,
then b(p) is modified as follows:

b(p) = (0, bn−1
p , bn−2

p ,, b1p) (27)

From the two equations above, it is very clear that the suffixes of the two end nodes are
greater than those of the intermediate PEs. This immediately makes the two PEs to
survive the competition to the final iteration. The two nodes eventually exchange suffix
information over the available link and either becomes the final representative. A pair
of terminating conditions must be added to step iii of section 6.1 as follows. Note that
if b(y)MSB = 1 it means that PEb(y) is an end node.

iv. If b(y)MSB = 1 ∩ (y0 < y1), one end PE losses the competition and the procedure

50

Akita University

Figure 46: Example of partial permutation and modified link diagrams against disconnec-
tion: (a) input address 010 in Fig. 42 a becomes idle and is represented as x; (b) the link
diagram is disconnected between PE00 and PE10; (c) the disconnection is protected by
the loop-back mechanism (similar to self-healing ring networks); (d) alternatively, each
PE is provided with an extended suffix to mask disconnection

halts, e.g. PE100 in Fig. 45(d).
v. If b(y1)MSB = 1)∩(y0 > y1), the other end PE becomes a final representative and goes
to the third phase, e.g. PE110 in Fig. 45(d). It is worth noting that the second design
option incurs very little additional processing time and hardware while maintaining the
comparison operation for full permutation. The PCU developed in this thesis, uses the
second design option to realise high speed and low hardware complexity.

51

Akita University

6.3 FPGA Design and Experimental Results for Benes network

6.3.1 Design environment

FPGAs are an efficient hardware design target for rapid prototyping [54]. In this
study, a Xilinx midrange FPGA (XC6SLX45), which has 6,822 configurable logic blocks
(CLBs) operating at 100 MHz was used. The ISE Design Suite 14.7 development
tool for Windows 10 was used for writing the code for PEs in VHDL with the IEEE
Std Logic 1164ALL package. Synthesis options were set to defaults, i.e. the speed pri-
ority mode, normal optimisation effort, etc. A constraint file was used to allow internal
signals, e.g., counter outputs, fr and SCB, to be output to I/O pins to monitor their
logic status and measure delay time. In addition, the input addresses were generated
within the FPGA. Note that each time the permutations pattern changed, the FPGA
needed to be redesigned. For this however, external digital pattern generators were not
required. The total hardware amount was estimated according to the number of oc-
cupied slices in the summary report in order to analyse device utilisation. Note that
each PE in a given stage operates synchronously to a common clock. In the proposed
algorithm, three processing steps operate synchronously. The first step is an initializing
process, where destination addresses are imported and flags and registers are reset. The
second step is composed of the three phases described in Section 6.2.2. The third step
is a terminating process, where SCBs and addresses are exported. In order to increase
the processing speed, asynchronous hardware operation was introduced in part as fol-
lows, without making any change to the parallel algorithm described in Section 6.2.2
and shown in Fig. 46 below. In the first part of the PCU, the iterative procedure to
find a representative (Section 6.2.2), can operate asynchronously by referring to the fv
flags and comparison results. Here, an additional set of buses as shown in Fig. 42(a)
were added for this purpose, and each pair of input addresses at PEs was processed
simultaneously. DTR for the second part was implemented asynchronously by referring
to a specified routing bit given by Eq. (17). All these asynchronous operations were de-
scribed in VHDL code using if-statements, and the synchronous operations were realized
using when-statements. The combined synchronous operation is as shown in Fig. 47.

6.3.2 Experimental results and discussion

Figure 48 shows the number of occupied slices in the first and second parts of the
PCU for switch size N = 4 to N = 32 denoted by HW1 and HW2, respectively. As
explained in section 6.2.1, the first part accounts for a larger portion of the PCU hard-
ware, whereas the second part requires a significantly less amount of hardware than
the first part. The hardware amount of a single PE was estimated in the first part
(Fig.41) as O(log2N) because most parts of a PE have a dimension of log2N . Re-
member that a single stage comprises N/2 PEs; therefore the hardware complexity per
stage is O(N(log2N)). This results in the total hardware complexity denoted by HW1,
of O(N(log2N)2) over log2N − 1 stage.Similarly, the total hardware complexity of the
second part, denoted by HW2, is also given by O(N(log2N)2). As can be seen from
Fig.47, the experiment results agree with the theoretical estimation, i.e., O(N(log2N)2).

52

Akita University

Figure 47: Asynchronous operation of the proposed structure

From the experimental results, it has been demonstrated that the occupied CLBs were

Figure 48: Number of occupied slices in FPGA vs. switch size

less than 1,000 when N = 32.This is approximately 15% utilisation of CLB which was
estimated to be approximately 6,400 cells [55]. Note that the conventional hardware
complexity increases as O(N2]) in [35].The number of cells for N = 32 is up to 36,200
cells (approximately six times greater than this proposed design). These results indicate
that the proposed design is significantly more efficient relative to hardware costs com-
pared to existing methods. As for time complexity, we focus on the processing time in
the first stage because it has a largest portion and correlates with the total processing

53

Akita University

time as described towards the end of Section 6.2. Specifically, focus was given to the
processing time in the second phase (Section 6.2.2), denoted by tf , which shares most of
the processing time in the first stage. Fig.48 shows the processing time tf vs. switch size
N for the first part of the proposed design. From the Fig. 48 tf remains less than a clock

Figure 49: Processing time tf vs. switch size N for the first part in the proposed design

period (10 ns) up to a certain switch size due to the asynchronous operation. It increases
in approximately O(log2N

0.16). It was also found that the asynchronous operation causes
a dramatic decrease in processing time. It is worth noting that the attenuating effect
given by α depends on FPGA devices and tf can be generalized as (log2N

α), α < 1. In
Fig. 48, it can be observed that tf for the special case of N = 4 indicates a sharp drop.
This is because the 4×4 BNW only has two SEs in the first stage, and therefore it is very
easy to fix a representative quickly without much time. This tendency to have a sharp
drop in the processing time at N = 4 was also observed in a previous study [35]. Fig. 49
also shows the processing time for the DTR in the second part of the proposed design,
denoted by ts. As can be seen, ts is also less than a clock period due to the asynchronous
DTR operation. It is significantly less than tf due to the simplicity of the DTR and is
negligible compared with tf as suggested at the end of Section 6.2. It is worth observing
that tf and ts have the same approximation curve as O(log2N

0.16). Recall the time com-
plexity in the first stage is given by O(log2N) as described at the end of Section 6.2.3.
The processing for DTR in the second part takes O(1) time per stage as described at the
end of Section 6.2. Since the second part has log2N stages, the total processing time
complexity is also given by log2N . However, both processes of complexity were reduced
to O(log2N

0.16) due to the asynchronous operation, as predicted in Section 6.3.1 and
shown in fig. 49. The conventional algorithm [36] for the first stage requires O(log2N)
clock times, while the proposed design demonstrated O(1) clock time until N = 128,
because the most time-consuming process for the proposed algorithm completes within a
single clock cycle as shown in Fig. 50. In fact, the proposed algorithm requires 5 clocks,
whose breakdown is as follows: one clock for the initializing step, three clocks for the first
to third phases, and the last clock for the terminating step described in Section 6.3.1.
For example, in the N = 16 case, the proposed design is at least three times faster than

54

Akita University

Figure 50: Processing time (ts) vs.switch size N for the Second part (DTR) in the pro-
posed design

Figure 51: Total clock cycles vs. switch size for the first stage in the first part

the previous method, and the performance difference increases with increasing N . It is
worth noting that the number of clock cycles for N > 128 is estimated to increase by only
one clock cycle because of the asynchronous operation introduced. As a result, the pro-
posed design has clock cycles that are several times faster than the previous method [36].

55

Akita University

6.3.3 Summary

Table 3 shows a summary of the technique proposed, its implementation, the hardware
complexity and the time complexity of the algorithm

Table 3: Summary of the performance of the algorithm

Technique proposed:
Parallel distributed Pipelined

architecture of PEs

Implementation:
Synchronous and Partially asynchronous

operation of several steps introduced
Hardware complexity O(log2N

2)

Time complexity
1st part requires only one clock per stage as a result

total complexity becomes O(log2N)

56

Akita University

6.4 Clos Networks

6.4.1 Outline of the proposed routing algorithm in TSCN

A three stage Clos network (TSCN) is a fundamental multistage switching network and
has been used widely in many communication and interconnection networks. Time-
division multiplexed TSCNs used in data centers require high-speed switching capabil-
ities i.e. several nanoseconds to route or set up calls within the switch. Conventional
sequential algorithms have longer processing time and therefore a need to implement
parallel processing algorithms to speed up routing. There have been no reports of hard-
ware implementation of parallel algorithms developed earlier for TSCN in which takes
advantage of the switch size of a power of two. However, parallel algorithms for Benes
networks whose switch size is inherently given N = 2k where k is an integer have al-
ready been developed. Here a new parallel algorithm to set up a TSCN using a routing
algorithm for Benes network is proposed and implemented in hardware using FPGA.
Consider a Clos switch of size N × N represented by C(n, n, r) shown in fig. 51 below,
in which the first and third stage consists of r n × n switches while the third stage
consists of n r × r switches.

Figure 52: Three stage Clos network C(4, 4, 2)

Each of the switch size is restricted to be that of a power of two i.e. n = 2k1 and r = 2k2

with both k1 and k2 being positive integers. As can be seen in the figure 51, an input i
has a total n possible routes to an output j, where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1
and each is uniquely designated by assigning the route with a middle stage switch as a
transit point. The details of the operations are shown in figure 52. The figure shows the
first cycle of the proposed algorithm for a clos network of switch size c(4, 4, 2). The out-
put addresses at each of the input ports denote the binary expression of the destination

57

Akita University

addresses to which the signal wishes to travel (e.g., 100, 011, 010, 000, 101, 110, 111, 001).
The proposed algorithm for TSCN is as follows: firstly, input switches are virtually di-
vided into N/2 2 × 2 to obtain a structure similar to Benes network as shown in dotted
red line in fig.52. Then a pair of adjacent output addresses are obtained at each virtually
divided 2 × 2 switch. Next, the output addresses are then divided into two sets using
the looping algorithm for the Benes network. Note that a pair of addresses with least
significant bits (LSB) of the addresses are complimentary while the other bits are iden-
tical, e.g.,100 at the first input and 101 at the fifth input are divided into different sets.
It is worth noting that every LSB is eliminated after the division. Two sets of truncated
addresses (10, 00, 01, 11) and (01, 10, 00, 11) are obtained as shown in figure 53. Each set
of these addresses goes through the upper or lower set of two middle stage switches. The
second part of the algorithm is that of Applying Destination tag routing (DTR). And
in this part, each set of the truncated addresses is processed independently in the same
way as the first cycle, however, the number of address elements reduces to one-half and
their width reduces by a single bit. It can be seen that the algorithm can be completed

Figure 53: Proposed routing principle with iterations

in the log2N − 1 cycles.

6.4.2 Hardware Implementation of the proposed algorithm

Here, a brief introduction of the design and operation of parallel processor elements (PE)
for the proposed algorithm is introduced. The design is based on the use of parallel and

58

Akita University

Figure 54: Routing principle with iterations of the proposed algorithm

distributed PE designed for the Benes network [37]. The proposed algorithm is recursive
in nature and therefore focus is restricted to the first cycle. The hardware implementa-
tion of this design principle is as follows;
N/2 PEs are interconnected to multiple buses e.g. b00 to b11 as shown in Fig. 54(a).
The first two PEs control the upper virtually divided switch of the first stage and the
other two PEs control the lower virtually divided switch. Each of the PE is assigned
with a unique binary suffix number and is represented as PEb(p) where 0 ≤ p ≤ N/2−1,
and b(p) is the binary expression of p. The proposed parallel algorithm consists of three
phases.
(i).First phase
The first phase involves searching for a neighbor PE and is performed in parallel. The
process is performed to find PEs with the same truncated address. This process begins
by a PEb(p) which broadcasts its addresses onto Bb(p) in series. The PEs compare their
own truncated addresses with the incoming addresses using comparators that are inbuilt
in them. As shown in the figure 54 PE00 broadcasts its truncated address 10 from its
upper inlet to the bus B00. PE10 discovers it as a neighbor because it contains 101 at its
upper inlet. The underlined part indicates the range of truncated addresses. The two
addresses 100 and 101 both sit on the upper inlets of the two PEs. These two addresses
must be routed to separate middle stage switches. As a result, the virtual 2 × 2 switches
must be set in different modes (i.e., bar(0) and the other cross (1)). This gives the link
relationship of ‘not equal to’, that is the PE00 is ‘not equal’ to PE10. However, when
PE00 broadcasts its 01 from its lower inlet, the PE01 discovers it as a neighbor because

59

Akita University

Figure 55: Arrangement and operation of parallel processing elements (a)PEs con-
nected to bus bars (b) Neighbour search establishment (c) Link relationship status
(d)Implementation of link status using Inverting and non inverting gates

it has 010 on its upper inlet. Here, the state of PE00 can be set ‘equal to’ the state of
PE01. The link relation status for all the other PEs is obtained and represented in figure
54 (b) and (c) with solid lines representing the ‘equal to’ relation while the dotted line
represents ‘not equal to’ relation. Practically, the link status relationship between PEs
can be implemented in FPGA using inventing and non inverting gates. The process of
neighbor search is realized in parallel and the time complexity is that of O(1).
(ii). Second phase
The second phase involves choosing a representative PE. The process to choose a repre-
sentative PE is an iterative process. It is important to choose a representative element
because it acts as a starting point for setting the status of the other PEs from the link

60

Akita University

relation status obtained in phase one. At the beginning of the process, each PE is a
potential candidate and its status is shown using a double circle in Fig. 55. Each PE
is related to the others and a system of relations that exists between them is referred
to as initialization equations. These equations are solved in [34] in a relatively com-
plex manner. The proposed solution in this study is based on the principle that if we
appoint a PE as a representative in the link diagram obtained, and set its status, the
status of the other PEs will be generated automatically based on the link status rela-
tion in the link diagram. For example, if we choose PE11 as the representative element,
and set it to a default state such as bar, the status of the other PEs will be generated
automatically in the link diagram. The selection of a representative element is done
through a tournament process i.e., a PE with a larger binary suffix information yi will
win the tournament to those with a lower suffix. The iterative process begins by each
PE broadcasting its binary suffix information to the two neighboring PEs. Each PE
then compares its own suffix y0 with incoming suffixes y1 and y2. This process happens
consecutively if the number of PEs are more than two. Hence there are three possible
cases. (a) If (y0 < y1)∪ (y0 < y2), then a PE will lose the completion and it will become
transparent transferring the information y1 and y2 to its opposite neighbors. As can be
seen in Fig. 55(b) PE00 and PE01 loses the tournament and are shown with a dashed
line in the figure.

(b) If (y0 > y1)∩ (y0 > y2), then a PE will remain as a potential representative. Both
y1 and y2 will be discarded.

(c) Finally, if y0 = y1 = y2, then PE becomes a final representative and the process
halts as shown in Fig. 55(d).

Figure 56: Iterative procedure for determining the representative PE

61

Akita University

PEs that lose, bypass incoming data through simple switches embedded in the PEs.
This means that the bypass delay is negligible. This tournament comparison result is
updated and stored using the representative flag (fr). In order to specify the bus through
which the suffix information can be received through, the suffix of the neighbor PEs are
referred to. After each iteration, the number of candidates for a representative is reduced
to less than half of each iteration. It is observed that the second phase is completed in
time of order of at most O(log2N). In general, several loops can exist, and each of those
loops will have to specify a representative. Here, for simplicity sake, an example with
only a single loop is given.

(iii). Third phase
The third phase is performed to determine the status of each PE and pass address infor-
mation to the next stage based on the directive of the representative element. As can be
seen in Fig. 56(a), PE11 sets an initial state of bar(0). This state becomes the trigger
for the link diagram to set the other status of the PEs as shown in fig. 56(b). Switch
control bits (SCB) are sent to the switch elements in the switch body. These links were
already established through buses at the start of the third phase. The inverting and
non-inverting gates are configured based on the flag bit status (fs). Once the status of
the PEs is set, the pair of input addresses are transferred to the next group of PEs in
the next stage. The third phase completes the process in time of O(1). It is clear that
the critical time for the first stage is that of the phase for choosing the representative
element i.e. second phase and it is given by O(log2N).

Figure 57: Determination of link status of each PE (a).Representative PE initially setting
its status to bar triggering the other PE status (b). The link status implementation using
inverting and non-inverting gates

62

Akita University

6.4.3 FPGA design and experimental results

The TSCN was implemented in FPGA in a similar manner as that of the Benes switch
described in section 6.3. Fig. 57 shows the experimental results of the processing time
for the first part of the processing with respect to the TSCN size of N.

Figure 58: Experimental processing time for the first part of the algorithm

Figure 57 above also shows the processing time for the conventional parallel algorithms
estimated from reference [29] and the processing time obtained from the proposed method.
Note that the O(1) processing time for phases 1 and 3 are neglected. From the results, it
can be seen clearly that the proposed algorithm has significantly reduced processing time
than the conventional method. Experimentally estimated processing time for the first
part of the algorithm is approximated as O(log2N

0.16). This means that only a single
clock cycle of 10 ns is required for switch sizes of upto N = 128. The processing time in
terms of clock cycles reduces by several times than conventional algorithms. Generally,
the processing time of the proposed algorithm will be reduced to log2N

α/2t−1 at the
t-th iteration and t range from 1 to log2N and α < 1. α depends on the FPGA device
used. Various types of FPGAs have different values. The total time complexity of the
proposed algorithm becomes O(log2N) upto a certain switch size N .

63

Akita University

6.4.4 Summary

The proposed fast parallel algorithms for setting up TSCN has been implemented in
FPGA. The performance of the algorithm was investigated using the prototype built
in FPGA consisting of parallel PEs for a switch size ranging from N = 8 to N = 64.
The results obtained demonstrate that the proposed design outperforms the conventional
methods because the time complexity of the proposed algorithm is reduced to O(log2N)
from O((log2N)2) up to a certain switch size N due to the asynchronous operation that
was introduced.

64

Akita University

Chapter 7

Conclusion and Future works

In this dissertation, a new three stage Clos network with modified crossbar switches
which has extra inlets and outlets is proposed and investigated.
In chapter 1,

� The need for switching in communication systems is briefly introduced.

� A background on the switching fabrics , their architecture and control algorithms
is introduced.

In chapter 2, related works and literature review is given with a focus on

� Conventional Clos structure and its properties.

� Recent routing algorithms in Benes and Clos switches.

� And a summary of the contributions for the Benes and Clos routing proposed in
this thesis.

In chapter 3, the proposed design and operation of the new three stage Clos architecture
is discussed.

� Firstly, Conventional crossbar switches which has idle ports on the upper and right
side are modified and used in the proposed architecture.

� The idle ports are modified and used as extra inlets and outlets, then these are
applied to the TSCN to form a new architecture.

� The extra inlets and outlets provides extra routes within the switch thereby in-
creasing the number of routes while maintaining the same cross point count.

� The modified XBS allow signals to flow through them in two directions, i.e., a
signal can enter from left traveling to the right and turning bottom or a signal can
enter from the right side traveling to the left and turning top.

� This allows a single XBS in the first stage to connect to each of the middle stage
XBS using two links as opposed to a single link that exists in the conventional
TSCN.

� The extra routes provided by idle ports brings about a reduction in the number of
middle stage switches required to maintain both SNB and RNB properties of the
TSCN.

In chapter 4, the performance of the new architecture was investigated through computer
simulations.

65

Akita University

� The connection status of the switch was simulated, i.e. connection or disconnection
of a connection request using C programming.

� The XBSs inlets and outlets were represented as arrays.

� By varying the number of middle stage switches, connection routes were searched by
prioritization of row/column pairing. If routes were found, a setup was initiated and
a new disconnection was performed to test other connection patterns. If no routes
were found, it was concluded that blocking happened and the search terminated.

� The number of middle stage switches were increased and the procedure repeated.
It was revealed that a new lower bound on m for the RNB property was obtained

as
⌈
3n
4

⌉
which is smaller by 25% that of the conventional Clos.

� This reduction is brought about by the row/column sharing technique.

� It was further demonstrated that when m = n, the number of rearrangements is
reduced to one at most regardless of the value of n and r compared to the r − 1
rearrangements required in the worst case of the conventional TSCN.

� Further more, a special WSNB was developed from the conventional SNB TSCN.
It was demonstrated that the bidirectional WSNB condition can be expressed as

m =
⌈
3n
2

⌉
+ 1 which is smaller than m = 2n–1 for conventional Clos by 25%.

� The proposed switch is referred to as WSNB because of the row/column sharing
that is being followed when setting up calls or connection requests in the switch.
The validity of the preposition was also tested through simulations.

� The proposed architecture can be used to reduce the number of middle switches
especially in those switches which have larger middle stage switches than their
input and output switches. Though the viability of the bidirectional TSCN was
shown through simulations, to realize these switches fully, a detailed experimental
analysis is necessary. The actual experimental analysis is left for future study.

In Chapter 5, a new design principle of unfolded two stage switches using bidirectional
switches was introduced.

� A new architecture composed of Input switch modules (ISM) connected to Output
switch modules (OSM) is proposed. Half of the outputs to the switch are taken
from the upper side of the OSMs and the other half on bottom part.

� The non-blocking properties were investigated by firstly determining the number
of rearrangements and then proposing the number of OSMs required to obtain a
strictly non-blocking switch.

� For the first time it has been proposed that UTSNs requires only a total of m ≥
n+ 1 number of middle stage switches to have a strictly non blocking.

� The switch complexity becomes minimum when n =
√
N/2 and saturates at N2/2

as N →∞.

66

Akita University

In Chapter 6, a new parallel routing algorithm was designed based on parallel and
distributed PEs to set up permutations in Benes networks.

� The algorithm can handle both full and partial permutations in a unified manner
with little overhead time and additional hardware costs.

� The proposed design has a reduced hardware complexity of O(N(N log2N)2) from
that of a sequential algorithm of O(N2).The reduction is as a result of the dis-
tributed architectural design of the proposed method.

� The proposed pipe-lined architecture further reduces the time complexity from that
of O((log2N)2) to O(log2N).

� To increase the processing speed,the iterative search for the representative element
in the first part of the algorithm and the DTR in the second part were allowed
to proceed asynchronously.This reduced the time complexity to O(log2N

α), where
α < 1 and α is dependent on the type of FPGA used.

� Only a single clock cycle of 10 ns is required for processing up to a switch of size
N = 128 in the second phase of the first part.

� The result of this study revealed that the proposed design requires as few as five
clocks for the first part only, compared to those of 17 clocks in a recent method.

� The parallel and distributed PE prototype was built in FPGA. Experimental re-
sults revealed that the proposed design occupied less FPGA resources about six
times less than the conventional method.This method outperforms conventional
methods by several times in terms of hardware resource usage and processing time
complexities.

� A fast parallel algorithm to set up a three stage Clos network which has a switch
size of a power of two was proposed and implemented in FPGA. A similar re-
sult obtained confirmed that the proposed method outperforms the conventional
methods.

The implementation of the algorithm for larger switches of size N ≥ 128 is needed for
further verification, since in this study the increment was only estimated to increase by
a single clock. Another unresolved issue is that switches with a switch size that is not
of a power of two have no optimized parallel control algorithm. The proposed algorithm
and design will expand the applicability of both the Benes and Clos networks. The
fast parallel algorithm can be used to develop a re-configurable switching fabric with
nanosecond speed processing.

67

Akita University

References

[1] Cisco Visual Networking, “The zettabyte era-trends and analysis, cisco whitepaper,”
(2017).

[2] J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, vol. 91.
Springer Science & Business Media, 2012. doi:10.1007/978-1-4615-3264-4.

[3] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in
optical technologies for data centers:a review,” Optica, vol. 5, no. 11, pp. 1354–1370,
2018. doi:10.1364/OPTICA.5.001354.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data center network,”
in Proceedings of the ACM SIGCOMM 2009 conference on Data communication,
(New York, NY, USA), pp. 51–62, Association for Computing Machinery, 2009.
doi:10.1145/1592568.1592576.

[5] T. Anttalainen, Introduction to telecommunications Network Engineering. Artech
House, 2003.

[6] B. Parhami, Introduction to parallel processing: algorithms and architectures.
Springer Science & Business Media, 2006. doi:10.1007/b116777.

[7] W. Kabacinski, C.-T. Lea, and G. Xue, “Guest editorial-50th anniversary of clos
networks,” IEEE Communications Magazine, vol. 41, no. 10, pp. 26–27, 2003.
doi:10.1109/MCOM.2003.1235590.

[8] Q. Cheng, M. Bahadori, Y.-H. Hung, Y. Huang, N. Abrams, and K. Bergman,
“Scalable microring-based silicon Clos switch fabric with switch-and-select stages,”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, pp. 1–11,
2019. doi:10.1109/JSTQE.2019.2911421.

[9] L. Wang, T. Ye, and T. T. Lee, “A parallel route assignment algorithm for fault-
tolerant clos networks in OTN switches,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 5, pp. 977–989, 2018. doi:1109/TPDS.2018.2880782.

[10] O. T. Sule and R. Rojas-Cessa, “TRIDENT: A Load-Balancing Clos-Network
Packet Switch With Queues Between Input and Central Stages and In-Order For-
warding,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 6885–6896,
2019. doi:10.1109/TCOM.2019.2926730.

[11] D. M. Marom, P. D. Colbourne, A. Derrico, N. K. Fontaine, Y. Ikuma, R. Proi-
etti, L. Zong, J. M. Rivas-Moscoso, and I. Tomkos, “Survey of photonic switching
architectures and technologies in support of spatially and spectrally flexible opti-
cal networking,” Journal of Optical Communications and Networking, vol. 9, no. 1,
pp. 1–26, 2017. doi:10.1364/JOCN.9.000001.

[12] S. Ohta, “The number of rearrangements for Clos networks–new results,” Theoretical
Computer Science, vol. 814, pp. 106–119, 2020. doi:10.1016/j.tcs.2020.01.2018.

[13] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Jour-
nal, vol. 32, no. 2, pp. 406–424, 1953. doi: 10.1002/j.1538-7305.1953.tb01433.x.

68

Akita University

[14] M. Paull, “Reswitching of connection networks,” Bell System Technical Journal,
vol. 41, no. 3, pp. 833–855, 1962. doi:10.1002/j.1538-7305.1962.tb00478.x.

[15] D. Smith, “Lower bound on the size of a 3-stage wide-sense nonblocking network,”
Electronics Letters, vol. 13, no. 7, pp. 215–216, 1977. doi:10.1049/el:19770156.

[16] K.-H. Tsai, D.-W. Wang, and F. Hwang, “Lower bounds for wide-sense nonblocking
Clos network,” Theoretical computer science, vol. 261, no. 2, pp. 323–328, 2001.
doi:10.1016/S0304-3975(00)00147-X.

[17] F. Chang, J. Guo, F. K. Hwang, and C. Lin, “Wide-sense nonblocking for symmetric
or asymmetric 3-stage Clos networks under various routing strategies,” Theoretical
computer science, vol. 314, no. 3, pp. 375–386, 2004. doi:10.1016/j.tcs.2003.12.021.

[18] A. Jajszczyk and G. Jekel, “A new concept-repackable networks,” IEEE transactions
on communications, vol. 41, no. 8, pp. 1232–1237, 1993. doi:10.1109/26.231967.

[19] H. Obara, “Strictly non-blocking three-quarter crossbar switch with simple
switch control,” Electronics Letters, vol. 52, no. 25, pp. 2051–2053, 2016.
doi:10.1049/el.2016.3561.

[20] K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Novel PILOSS
Port Assignment for Compact Polarization-Diversity Si-Wire Optical Switch,” in
Optical Fiber Communication Conference, p. M3I.6, Optical Society of America,
2016. doi:10.1364/OFC.2016.M3I.6.

[21] H. Obara, “Cascaded versus parallel architectures of two-stage optical crossbar
switches with an extra set of inputs and outputs,” IET Optoelectronics, vol. 12,
no. 4, pp. 196–201, 2018. doi:10.1049/iet-opt.2017.0096.

[22] K. Goossens, L. Mhamdi, and I. V. Senin, “Internet-router buffered crossbars
based on networks on chip,” in 2009 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, pp. 365–374, IEEE, 2009.
doi:10.1109/DSD.2009.211.

[23] L. Mhamdi, K. Goossens, and I. V. Senin, “Buffered crossbar fabrics based on net-
works on chip,” in 2010 8th Annual Communication Networks and Services Research
Conference, pp. 74–79, IEEE, 2010. doi:10.1109/CNSR.2010.18.

[24] F. Hassen and L. Mhamdi, “Congestion-aware multistage packet-switch architec-
ture for data center networks,” in 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–7, IEEE, 2016. doi:10.1109/GLOCOM.2016.7841681.

[25] F. Hassen and L. Mhamdi, “High-capacity clos-network switch for data center net-
works,” in 2017 IEEE International Conference on Communications (ICC), pp. 1–7,
2017. doi:10.1109/ICC.2017.7997147.

[26] W. Nicolas, “MEMS Jumpstart Series: Creating an Optical Switch,” Eureka mag-
azine, Design Engineering Whitepapers, vol. Whitepaper, pp. 1–8, 2016.

[27] T. S. El-Bawab, Optical switching. Springer Science & Business Media, 2008.

69

Akita University

[28] A. Waksman, “Corrigendum: A Permutation Network,” Journal of the ACM
(JACM), vol. 15, no. 2, p. 340, 1968. doi:10.1145/321439.321449.

[29] E. Lu and S. Zheng, “Parallel routing algorithms for nonblocking electronic and pho-
tonic switching networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 8, pp. 702–713, 2005. doi::10.1109/TPDS.2005.95.

[30] G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm for routing in
permutation networks,” IEEE transactions on Computers, vol. 100, no. 2, pp. 93–
100, 1981. doi:10.1109/TC.1981.6312171.

[31] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes permutation
network,” IEEE Computer Architecture Letters, vol. 31, no. 02, pp. 148–154, 1982.
doi:10.1109/TC.1982.1675960.

[32] T. Jain and K. Schneider, “Routing partial permutations in interconnection net-
works based on radix sorting,” in 2018 13th International Symposium on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–10, IEEE, 2018.
doi:10.1109/ReCoSoC.2018.8449372.

[33] C.-Y. Lee and A. Y. Oruç, “A fast parallel algorithm for routing unicast assignments
in Benes networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 6,
no. 3, pp. 329–334, 1995. doi:10.1109/71.372780 .

[34] T. T. Lee and S.-Y. Liew, “Parallel routing algorithms in Benes-Clos networks,”
IEEE transactions on communications, vol. 50, no. 11, pp. 1841–1847, 2002.
doi:10.1109/TCOMM.2002.805258.

[35] Y. Jiang and M. Yang, “Hardware Implementation of Parallel Algorithm for Setting
Up Benes Networks,” in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), p. 10, The Steering
Committee of The World Congress in Computer Science, Computer , 2016. doi:.

[36] Y. Jiang and M. Yang, “Hardware design of parallel switch setting algorithm for
Benes networks,” International Journal of High Performance Systems Architecture,
vol. 7, no. 1, pp. 26–40, 2017. doi:https://doi.org/10.1504/IJHPSA.2017.083645.

[37] Y. Kai, K. Hamada, Y. Miao, and H. Obara, “Design of partially-asynchronous
parallel processing elements for setting up Benes networks in O(log2N) time,” in
2009 International Conference on Photonics in Switching, pp. 1–2, IEEE, 2009.
doi:10.1109/PS.2009.5307812.

[38] S. Andresen, “The looping algorithm extended to base 2t rearrangeable switching
networks,” IEEE Transactions on communications, vol. 25, no. 10, pp. 1057–1063,
1977. doi:10.1109/TCOM.1977.1093753.

[39] S.-Q. Zheng, A. Gumaste, and E. Lu, “A practical fast parallel routing archi-
tecture for clos networks,” in Proceedings of the 2006 ACM/IEEE symposium
on Architecture for networking and communications systems, pp. 21–30, 2006.
doi:10.1145/1185347.1185351 .

[40] H. Obara, “Reduced crossbar switch with minimum number of switching cells,”
Electronics Letters, vol. 44, no. 14, pp. 888–889, 2008. doi:10.1049/el:20083528.

70

Akita University

[41] H. Obara, “Design of optical multi/demultiplexers composed of bidirectional 2 × 2
switch elements for reducing component count,” Electronics Letters, vol. 51, no. 15,
pp. 1182–1184, 2015. doi: 10.1049/el.2015.1526.

[42] V. E. Beneš, Mathematical theory of connecting networks and telephone traffic. Aca-
demic press, 1965.

[43] W. Kabacinski, Nonblocking electronic and photonic switching fabrics. Springer
Science & Business Media, 2005.

[44] M. Jinno, “Spatial channel network (SCN): opportunities and challenges of intro-
ducing spatial bypass toward the massive SDM era,” Journal of Optical Communica-
tions and Networking, vol. 11, no. 3, pp. 1–14, 2019. doi: 10.1364/JOCN.11.000001.

[45] M. Fiorani, M. Tornatore, J. Chen, L. Wosinska, and B. Mukherjee, “Spatial divi-
sion multiplexing for high capacity optical interconnects in modular data centers,”
Journal of Optical Communications and Networking, vol. 9, no. 2, pp. A143–A153,
2017. doi:10.1364/JOCN.9.00A143.

[46] M. Jinno, “Architectures of spatial add/drop multiplexer and cross-connect for spa-
tial channel networks,” in 2020 International Conference on Optical Network Design
and Modeling (ONDM), pp. 1–3, 2020. doi:10.23919/ONDM48393.2020.9132997.

[47] I. White, M. Ding, A. Wonfor, Q. Cheng, and R. Penty, “High port court
switch architectures for data center applications,” in Photonic Networks and De-
vices, pp. NeW1B–2, Optical Society of America, 2017. doi: 10.1364/NET-
WORKS.2017.NeW1B.2.

[48] C.-T. Lea, “Expanding the switching capabilities of optical crossconnects,”
IEEE Transactions on Communications, vol. 53, no. 11, pp. 1940–1944, 2005.
doi:10.1109/TCOMM.2005.858662.

[49] D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks
part i: Control algorithm,” The Bell System Technical Journal, vol. 50, no. 5,
pp. 1579–1600, 1971. doi:10.1002/j.1538-7305.1971.tb02569.x.

[50] K. Y. Lee, “A new Benes network control algorithm,” IEEE Transactions on Com-
puters, vol. 100, no. 6, pp. 768–772, 1987. doi: 10.1109/TC.1987.1676970.

[51] P. Hall, “On representatives of subsets,” in Classic Papers in Combinatorics, pp. 58–
62, Springer, 2009. doi: 10.1007/978-0-8176-4842-8 4.

[52] F. K.-M. Hwang, The Mathematical Theory Of Nonblocking Switching Networks,
vol. 15 of Series On Applied Mathematics. World Scientific Publishing Company.

[53] C.-L. Wu and T.-Y. Feng, “On a class of multistage interconnection net-
works,” IEEE transactions on Computers, vol. 100, no. 8, pp. 694–702, 1980.
doi:10.1109/TC.1980.1675651.

[54] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E. Gaillardon, “OpenF-
PGA: An Open-Source Framework for Agile Prototyping Customizable FPGAs,”
IEEE Micro, vol. 40, no. 4, pp. 41– 48, 2020. doi:10.1109/MM.2020.2995854.

71

Akita University

[55] “Xilinx: Spartan-6 family overview. https://www.xilinx.com/support/ documen-
tation/data sheets/ds160.pdf, (2020). accessed december 2020,” pp. 1–20, 2020.
doi:https://www.xilinx.com/support/documentation/datasheetds160.pdf.

72

Akita University

