Akita J Med 48: 1-7, 2021

細胞分裂期における分泌停止メカニズムの解明

前田 深春,齋藤 康太

秋田大学大学院医学系研究科 情報制御学 · 実験治療学講座

(令和2年4月29日掲載決定)

Secretion from the endoplasmic reticulum is regulated in a cell cycle-dependent manner

Miharu Maeda and Kota Saito

Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University

Key words : Secretion, ER exit site, Mitosis, TANGO1, Sec16, CK18, PP1

はじめに

「分泌 (secretion)」は、細胞内で合成されたタンパ ク質が細胞外や細胞表面に出るまでの一連の過程であ る. インスリンなどのペプチドホルモンや、コラーゲ ンをはじめとする細胞外マトリックスなど、生体内の 多くの因子は分泌されて機能する. これらのタンパク 質は、小胞体内で合成された後、ゴルジ体へ輸送され、 トランスゴルジ網を経由して最終的に細胞膜表面へ到 達する.

この分泌システムは、ヒトだけでなく殆ど全ての真 核生物に共通する普遍的な生命現象であり、これまで 詳細に解析されてきた、同時に、分泌は栄養状態や細 胞外環境に応じて調節されることも明らかになってき た、特に、細胞分裂期において分泌が一時的に停止す る現象は 1980 年代から記述されているが¹⁰、細胞周 期依存的な分泌の制御メカニズムについては未解明な 点が多く残る. 我々は分泌経路の初期段階である小胞体-ゴルジ体 間のタンパク質輸送に着目してきた、小胞体からゴル ジ体へ分泌タンパク質を輸送する COPII 小胞は、小 胞体上の特殊な領域である "ER exit site" で形成され る. ER exit site には COPII 小胞の被覆因子である Sec23/24 複合体, Sec13/31 複合体が Sec16 依存的に 集積している²⁾.

我々はこれまで、高等真核生物の ER exit site に局 在する新規因子 Transport and Golgi organization 1 (TANGO1)の機能解析を行ってきた. TANGO1 はショ ウジョウバエ由来の S2 細胞を用いた分泌スクリーニ ングによって単離された膜貫通型タンパク質である³⁾. 脊椎動物では、長鎖 (TANGO1L)と短鎖 (TANGO1S) の2つのアイソフォームが存在し⁴⁾, TANGO1L は小 胞体内でコラーゲンと相互作用することでコラーゲン の積荷受容体として機能することが明らかになってい る⁵⁾. 一方, TANGO1 の両アイソフォームに共通する 細胞質側領域は、Sec16 と直接結合し、ER exit site の 場を決定するオーガナイザーとしての役割を有するこ とを明らかにしてきた⁶⁾.

本稿では、新たに Casein Kinase 1 δ (CK1 δ) と Protein Phosphatase 1 (PP1) によって TANGO1 のリン酸 化状態が制御されていること、TANGO1 のリン酸化 によって Sec16 との結合親和性が低下し、ER exit site 形成不全と小胞体からの分泌停止が惹起されることを 明らかにした. さらに、細胞分裂期においては PP1 の活性減弱により TANGO1 のリン酸化が亢進するこ

Corresponding Author : Miharu Maeda

Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-41 Hondo, Akita 010-8543, Japan

Tel: 81-18-884-6067

Fax: 81-18-836-2603

E-mail: mimaeda@med.akita-u.ac.jp

^{*} 令和3年2月17日秋田医学会学術奨励賞記念講演 (Web)

とから, TANGO1 が細胞周期依存的な分泌制御のス イッチとして機能する可能性を見出したので報告す る.

TANGO1 の PPS 領域におけるリン酸化修飾は TANGO1 と Sec16 の結合親和性を減弱させ, ER exit site を崩壊させる

我々はTANGO1の機能解析を行う目的で、翻訳後 修飾データベースである Phosphosite Plus を用いて TANGO1の各アミノ酸残基におけるタンパク質修飾 を調べた⁷⁾. その結果, TANGO1の細胞質側領域の一 部にリン酸化報告が多数存在する残基を見出した(図 1). この領域はTANGO1Lにおいては1651-1750アミ ノ酸領域, TANGO1Sにおいては529-628アミノ酸領 域に該当する. この領域を phosphorylation predicted sequences (PPS) として種間保存性を調べた結果, PPS 領域内の配列は他の領域に比較して種間保存性が 高いことが明らかになった. また PPS は Sec16 と TANGO1の相互作用領域である SIR (Sec16 Interaction Region)に極めて近い場所に位置している(図1)⁸⁾.

次に, TANGO1S の PPS 内におけるリン酸化候補残 基にアラニンを置換した非リン酸化変異体 (SA 変異 体)および, グルタミン酸に置換したリン酸化模倣変 異体 (SE 変異体)を作出し (図 2A), Sec16 との結合 親和性を検討した. その結果, SE 変異体の結合親和 性は野生型 TANGO1S に比べて大幅に減弱していた一 方で, SA 変異体は野生型よりも Sec16 との結合量が 増加していた(図 2B). したがって TANGO1 の PPS 領域がリン酸化されることで Sec16 と TANGO1 の結 合親和性が減弱することが明らかになった.

我々は以前の解析から、TANGO1とSec16の結合 はER exit site を形成するのに必要であることを明ら かにしている⁸⁾. そこで次に、TANGO1S 各変異体、 あるいは野生型 TANGO1S を、内在の TANGO1L およ び TANGO1S を発現抑制した細胞にそれぞれ発現させ た際の ER exit site の形成能を評価した. その結果、 野生型 TANGO1S や SA 変異体は Sec16, Sec31 と同 じ場所に局在し、通常と同様の ER exit site が観察さ れるのに比べて、SE 変異体は小胞体膜上に拡散し、 ER exit site 構成因子も解離していた(図 2C). また、 SE 変異体を発現する細胞では小胞体からの VSVG の 輸送が遅延していた(図 2D). 以上の結果は、 TANGO1の PPS 領域がリン酸化されることで、Sec16 との結合親和性が減弱し、ER exit site の崩壊と分泌 の阻害が生じることを示唆している。

CK18 は TANGO1 を直接リン酸化し, ER exit site を崩壊させる

次に, TANGO1 の PPS 領域をリン酸化するキナー ゼを探索した. 先行知見として CK1δ が小胞体-ゴル

図1. TANGO1の各アミノ酸残基におけるリン酸化の報告数と PPS 領域の種間保存性

Akita University

図2. TANGO1 のリン酸化模倣変異体は、Sec16 との結合量が低下し ER exit site を崩壊させる

ジ体間のタンパク質輸送に関与することが明らかに なっていたため⁹⁾, CK1δ が TANGO1 を直接リン酸化 するかを γ^{32} P-ATP を用いた in vitro の評価系で検証 した. TANGO1 は PPS 領域を含む C 末端 257 アミノ 酸領域部分をリコンビナントとして調製し, CK18 は 自己リン酸化による活性減弱を防ぐため, 触媒ドメイ ン部分のリコンビナントを調製して用いた. 結果とし て, TANGO1 は CK18 存在下でリン酸化されたが, TANGO1 の SA 変異を含むリコンビナントにおいて ³²P はほとんど検出されなかった (図 3A). 以上の結 果より, CK18 によって TANGO1 の PPS 領域が直接 リン酸化されることが明らかになった.

さらに、CK1 δ が ER exit site の構成や形態に与え る影響を評価した。CK1 δ を過剰発現させた細胞では Sec16 と Sec31 は解離し、TANGO1S の SE 変異体を 発現させた際と同様の表現型が観察された。一方、キ ナーゼ活性を有さない CK1 δ K38R 変異体を発現させ た細胞では, ER exit site の乖離は認められなかった (図 3B). また, CK18 の阻害剤である IC261 を添加 した細胞において, ER exit site は肥大化していた(図 3C). 以上の結果より, CK18 がそのキナーゼ活性に より ER exit site の形態に影響を与え得ることが明ら かになった.

(3)

TANGO1 は PP1 によって脱リン酸化される

続いて我々は、TANGO1の脱リン酸化メカニズム について、プロテインホスファターゼ(PP)ファミリー を中心に、各種阻害剤を用いて検討を行った。その結 果、PP2A 特異的阻害剤であるエンドサールを添加し た細胞では、ER exit site の形態変化はほとんど認め られなかったが、PP1と PP2A 両方の阻害剤であるオ カダ酸を処理した細胞では Sec16と Sec31 の共局在率 が有意に低下していた(図4A).さらに siRNA により PP1 を発現抑制した際にも、Sec16と Sec31 の共局在

図 3. CK18 は TANGO1 を直接リン酸化し, ER exit site を崩壊させる

率が有意に低下していた (図 4B).

次に、PP1 が TANGO1 のリン酸化状態にどのよう な影響を与えるか調べる目的で TANGO1S-FLAG の安 定発現株にオカダ酸を添加し、phos-tag を用いて TANGO1S のリン酸化を定量する解析を行った¹⁰⁾. そ の結果、野生型 TANGO1S のリン酸化はオカダ酸存在 下で亢進していたが、一方で TANGO1S SA 変異体を 用いた場合にはオカダ酸添加時もリン酸化の亢進は認 められなかった(図 4C). また TANGO1S SA 変異体 の安定発現株では、オカダ酸添加による ER exit site の崩壊も抑制されていた(図 4D). 以上の結果は、 PP1 による TANGO1 の PPS 領域の脱リン酸化が ER exit site の形成に必要であることを示している.

細胞分裂期における TANGO1 の リン酸化亢進によって ER exit site は崩壊する

細胞分裂期において、分泌の停止に伴って ER exit site も崩壊し、Sec16 と Sec31 は分裂前期から後期に かけて局在が解離することが報告されている^{11,12)}. し かし、この一時的な ER exit site 崩壊の分子メカニズ ムは不明だった. Sec16 と Sec31 の解離は TANGO1 のリン酸化模倣変異体発現時や、CK16 の過剰発現時、 PP1 の活性抑制時においても観察されたこと、PP1 は 細胞分裂期に一時的に活性低下することから、我々は 細胞分裂期において TANGO1の PPS 領域における リン酸化が亢進し, Sec16との結合が外れることが ER exit site の崩壊の契機となる仮説を考え, その検 証を行った.まず,間期と分裂期それぞれにおける TANGO1Sのリン酸化量を phos-tag により定量した. その結果, nocodazole で細胞分裂期に同調させた培養 細胞において野生型 TANGO1Sのリン酸化量は増加し ていたが,一方で TANGO1S SA 変異体は細胞分裂期 においてもリン酸化量が変化しなかった(図 5A).し たがって,細胞分裂期には TANGO1の PPS 領域にお いてリン酸化が亢進することが明らかになった.

さらに、野生型 TANGO1S あるいは TANGO1S SA 変異体を発現する安定発現株での細胞分裂期における ER exit site の様子を観察した。野生型 TANGO1S を 発現する細胞では、親株の HeLa 細胞と同様に、分裂 中期において Sec16/Sec31 の局在が解離していた。一 方、TANGO1S SA 変異体を発現する細胞では、分裂 中期においても Sec16 と Sec31 が共局在する点が多数 認められた(図 5B).この結果は、細胞分裂期におけ る ER exit site の崩壊には TANGO1 の PPS 領域にお けるリン酸化が必要であることを意味している。

さらに、細胞分裂期における ER exit site の崩壊に CK1δ が関与する可能性を検討するため、CK1δ/ε を発 現抑制した細胞での ER exit site を観察した. その結 果、TANGO1S SA 変異体安定発現株と同様、CK1δ/ε

Akita University

秋田医学

図 4. PP1 による TANGO1 の脱リン酸化によって ER exit site が形成される

図5. 細胞分裂期における ER exit site の崩壊には CK16 による TANGO1 のリン酸化が必要である

を発現抑制した細胞においては Sec16 と Sec31 の共局 在率が有意に増加していた(図 5C).以上の結果から, 細胞分裂期における ER exit site の崩壊は CK18 によ る TANGO1 PPS 領域のリン酸化によって生じる可能 性が強く示唆された. 細胞分裂期における分泌停止メカニズムの解明

図 6. 細胞周期依存的な ER exit site の形成・崩壊は TANGO1 のリン酸化状態によって制御される

さいごに

本研究により, TANGO1の PPS 領域を CK1δ がリ ン酸化し, PP1 が脱リン酸化することが明らかになっ た. CK1δ の活性は細胞周期を通じて一定であるが, PP1 の活性は細胞分裂期に Cdk1-CyclinB1 複合体に よってリン酸化されることで減弱する¹³⁾. したがって 間期において TANGO1 のリン酸化状態は, CK1δ によ るリン酸化と PP1 による脱リン酸化の平衡状態にあ るが, 細胞分裂期においては PP1 の脱リン酸化活性 のみが低下するために, TANGO1 のリン酸化が亢進 すると考えられる (図 6)^{14,15)}.

また ER exit site は細胞外環境や概日リズムに応じ てその数や大きさを変化させ、分泌を調節することが 報告されている¹⁶⁾. TANGO1 と Sec16 の結合は ER exit site の形成起点となることから、細胞分裂期以外 の ER exit site の適応メカニズムにおいても今回得た 知見と同様の制御機構が関与する可能性が考えられ る.

さらに、最近になって Sec16 は T 細胞の活性化、 糖尿病、パーキンソン病などの様々な疾患と関連する ことが報告されている¹⁷⁻¹⁹⁾.また、TANGO1 の PPS 領域におけるリン酸化亢進は一部腫瘍で多く検出され ていることから²⁰⁾、本研究で着目した TANGO1/Sec16 がこれらの疾患の治療標的あるいは新たな疾患マー カーとなり得る可能性が考えられる、今後は、ER exit site 関連因子の臨床応用への有用性についても検 討を行っていきたい.

謝 辞

本研究にあたり,情報制御学・実験治療学講座 齋 藤康太 教授,小松幸恵 技術専門職員をはじめ多くの 先生方にご協力を賜りました.心より感謝申し上げま す.

参考文献

- Warren, G., Featherstone, C., Griffiths, G. and Burke, B. (1983) Newly synthesized G protein of vesicular stomatitis virus is not transported to the cell surface during mitosis. *J. Cell Biol.*, **97**(5 Pt 1), 1623-1628. (In eng). DOI: 10.1083/jcb.97.5.1623.
- Miller, E.A. and Schekman, R. (2013) COPII a flexible vesicle formation system. *Current Opinion in Cell Biology*, 25 (4), 420-427. DOI: 10.1016/ j.ceb.2013.04.005.
- Bard, F, Casano, L., Mallabiabarrena, A., *et al.* (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. *Nature*, 439 (7076), 604–607. DOI: 10.1038/nature04377.
- 4) Maeda, M., Saito, K. and Katada, T. (2016) Distinct isoform-specific complexes of TANGO1 cooperative-

秋田医学

ly facilitate collagen secretion from the endoplasmic reticulum. *Mol. Biol. Cell*, **27**(17), 2688-2696. (In eng). DOI: 10.1091/mbc.E16-03-0196.

- Saito, K., Chen, M., Bard, F., et al. (2017) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. *Cell*, **136**(5), 891-902. (In eng). DOI: 10.1016/j.cell.2008.12.025.
- Maeda, M., Katada, T. and Saito, K. (2017) TAN-GO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. *J. Cell Biol.*, 216(6), 1731-1743. (In eng). DOI: 10.1083/jcb.201703084.
- Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V. and Skrzypek, E. (2015) Phospho-SitePlus, 2014 : mutations, PTMs and recalibrations. *Nucleic Acids Res.*, 43 (Database issue), D512-520. (In eng). DOI: 10.1093/nar/gku1267.
- Maeda, M., Katada, T. and Saito, K. (2017) TAN-GO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. *J. Cell Biol.*, 216(6): 1731-1743. DOI: 10.1083/jcb.201703084.
- Lord, C., Bhandari, D., Menon, S., et al. (2011) Sequential interactions with Sec23 control the direction of vesicle traffic. *Nature*, **473** (7346), 181-186. DOI: 10.1038/nature09969.
- 10) Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. and Koike, T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. *Mol. Cell. Proteomics*, 5(4), 749-757. (In eng). DOI: 10.1074/ mcp.T500024-MCP200.
- Farmaki, T., Ponnambalam, S., Prescott, A.R., et al. (1999) Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures. J. Cell Sci., 112 (Pt 5), 589-600. (In eng).
- Hughes, H. and Stephens, D.J. (2010) Sec16A defines the site for vesicle budding from the endoplasmic reticulum on exit from mitosis. *J. Cell Sci.*, 123 (23), 4032-4038. DOI: 10.1242/jcs.076000.

- Dohadwala, M., da Cruz e Silva, E.F., Hall, F.L., et al. (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc. Natl. Acad. Sci. U S A, 91 (14), 6408-6412. (In eng). DOI: 10.1073/pnas.91.14.6408.
- Maeda, M., Komatsu, Y. and Saito, K. (2020) Mitotic ER Exit Site Disassembly and Reassembly Are Regulated by the Phosphorylation Status of TANGO1. *Dev. Cell*, 55 (2), 237-250.e5. (In eng). DOI: 10.1016/j.devcel.2020.07.017.
- 15) Maeda, M., Komatsu, Y. and Saito, K. (2020) Mitotic ER exit site dynamics : insights into blockade of secretion from the ER during mitosis. *Mol. Cell. Oncol.*, 7(6), 1832420. (In eng). DOI : 10.1080/23 723556.2020.1832420.
- Centonze, F.G. and Farhan, H. (2019) Crosstalk of endoplasmic reticulum exit sites and cellular signaling. *FEBS Lett.*, **593** (17), 2280–2288. (In eng). DOI: 10.1002/1873-3468.13569.
- Bruno, J., Brumfield, A., Chaudhary, N., Iaea, D. and McGraw, T.E. (2016) SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. *J. Cell Biol.*, **214**(1), 61-76. (In eng). DOI: 10.1083/jcb.201509052.
- 18) Cho, H.J., Yu, J., Xie, C., et al. (2014) Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export. The EMBO Journal, 33 (20), 2314-2331. DOI: 10.15252/embj.201487807.
- Witte, K., Schuh, A.L., Hegermann, J., et al. (2011) TFG-1 function in protein secretion and oncogenesis. *Nat. Cell Biol.*, 13(5), 550-558. (In eng). DOI: 10.1038/ ncb2225.
- Mertins, P., Yang, F., Liu, T., *et al.* (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. *Mol. Cell. Proteomics*, 13 (7), 1690–1704. (In eng). DOI: 10.1074/mcp. M113.036392.