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Resonances in heavy-ion scattering of24Mg + 24Mg are studied by the use of a new molecular model, in which collective motions 
of the system are described in the rotating molecular frame of the di-nuclcar system. A stable configuration of the system is found 
to be a pole-pole one, due to the prolate shape of the 24Mg nuclei. Normal modes at the equilibrium arc solved and various 
molecular levels are obtained, which appear to be in good correspondence with experiment. 

1. Introduction 

Many isolated resonances have been observed in 
24Mg + 24Mg, 24Mg + 28Si and 28Si + 28Si scattering in 
a CM energy around 50 MeV [ 1-5]. The number of 
the resonance levels is much larger than the sequence 
of grazing partial waves. It is therefore expected that 
not only the relative motion but also many other de­
grees of freedom participate in formation of these 
resonance states. The resonances are surprisingly 
narrow and are observed correlatingly among the 
elastic and inelastic decay channels. Hence they are 
considered to be eigenstates of the whole compound 
system. Recent spin-alignment measurements gave an 
assignment of high spin, 36h, for the resonance at a 
CM energy equal to 45.7 MeV in the 24Mg+ 24Mg 
system [ 4]. Strong enhancements are observed in 
decays up to the 6 + channel and partial decay widths 
to these channels amount to approximately 30% of 
the total width of about 200 ke V [ 3]. It is also noted 
that fractions of a-transfer channels are an order of 
magnitude smaller than those of symmetric-mass de­
cay [3] which suggests a di-nucleus configuration in 
origin of the resonances. 

* Preliminary results were reported in ref. [ 1]. 

The stability of di-nucleus configuration was once 
studied by Broglia et al. with a macroscopic liquid­
drop model [ 6]. They obtained a stable configura­
tion, for example, for the 26Mg + 26Mg system with 
high spins, 40h-50h. For each total spin J, a single 
state is associated. On the other hand Nilsson­
Strutinsky calculations show secondary minima at 
high spins and at very large deformation, the struc­
ture of which appears to correspond to a di-nucleus 
configuration [ 7]. Recently Maass and Scheid inves­
tigated the stability of a similar configuration with 
the two-center-shell model, taking into account the 
liquid-drop energy and shell correction [ 8]. They also 
obtained stable di-nucleus configurations for several 
high spins. Furthermore, they partially considered 
vibrational modes around the equilibrium. The ex­
periments, however, indicate much dense levels 
compared with the sequence of grazing angular mo­
menta as stated above. Hence we have to investigate 
the dynamics of the di-nuclear system, including 
many degrees of freedom in addition to the relative 
motion of two nuclei. 

As a first step, we take up a system of two identical 
deformed nuclei with axial symmetry. Collective de­
grees of freedom of each deformed nucleus are the 
orientation of the symmetry axis, which is described 
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by the Euler angles (a, fl). We have to solve the dy­
namics of these degrees of freedom and of the rela­
tive motion. We introduce a rotating molecular frame, 
the z' -axis of which is parallel to the relative vector 
of two interacting nuclei. All the degrees of freedom 
of the system are transformed into the rotational mo­
tion of the total system and the internal motions re­
ferred to the rotating frame. Thus the Euler angles 
( ah fli) of each constituent deformed nucleus are no 
more rotational variables, but are a kind of internal 
collective variables, which are solved by the method 
of normal modes around the equilibrium configura­
tion. The new collective modes consisting of the above 
internal variables give rise to many excited states, 
which are expected to be responsible for the many 

· sharp resonances observed. The purpose of the pres­
ent paper is to propose a new molecular model for 
interacting di-nuclear systems and to clarify the 
mechanisms of the heavy-ion resonances observed in 
the heavier systems. 

2. Formulation 

First, we define a coordinate system of the molec­
ular model and give the kinetic energy operators in 
the coordinate system. We define the rotating molec­
ular axis z' of the whole system straightforwardly with 
the direction of the relative vector between two nu­
clei; the directions of the intrinsic axes of each de­
formed nucleus are defined referring to the molecu­
lar frame. For simplicity, constant deformation of the 
nuclei is assumed. We thus start with seven degrees 
of freedom as illustrated in fig. I, that is, the relative 
vector R= (R, 82 , 8t) and the Euler angles of the in­
teracting nuclei ( a~o fld and ( a 2 , fl2 ). The variables 
a 1 and a 2 are reconstructed into variables 
83= (a 1 +a2 )/2 and a= (a 1-a2 )/2. Then we have 
(qi) = (81, 8z, 83, a, R, fJI, flz), where the 8i are the 
Euler angles of the molecular frame with four other 
internal variables. 

Hess et al. also investigated the molecular spec­
trum of a di-nuclear system in connection with 
anomalous e ± production in 238U + 238U collisions 
[ 9]. They however restricted themselves to certain 
configurations such as the pole-pole one. In the pres­
ent study we performed a quantization with full de­
grees of freedom of the system. 

z; 

Fig. 1. The coordinates in the rotating molecular frame. 

In the laboratory frame the kinetic energy of the 
system consists of the relative motion between the two 
nuclei and the rotational energies of the constituent 
nuclei. It can be easily transformed into the rota­
tional energy of the total system and the kinetic ener­
gies of internal motions referred to the molecular 
frame. After expressing three sets of the angular ve­
locities with the time derivatives of the correspond­
ing Euler angles, we obtain a classical kinetic energy 
expression ! 'igiJA.j. and then quantize the system by 
the usual prescription. 

The kinetic energy operator obtained can be di­
vided into three parts, that is, a rotational operator 
!fi2

• 'if.lul:J) for the Euler angles 8i> operators for the 
internal variables, and Coriolis coupling terms. As is 
shown later, the dependence of an interaction poten­
tial on the a-degree offreedom is fairly weak and thus 
we consider the motion related to this variable as an 
internal rotation. Accordingly, we obtain Trot for the 
Euler angles 8i and the variable a. The remaining 
parts are the operators Tvib and Tc for the internal 
variables R, fl~> jJ2 and the Coriolis coupling terms. 
Since the kinetic energy operators are not simple yet, 
the nondiagonal parts J;Jj of Trot with small coeffi­
cients are rearranged into Tc, that is, cross terms be­
tween J:u 1;. and J;, J;, are moved to Tc but the term 
J~ · J;, is k~pt in Trot· Then, T = T' + T'c with T' = 
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T~ib + T~ot· In the following, we restrict our discus­
sion to rotation and vibration terms expressed by T'. 
The effects of the remaining terms T'c will be dis­
cussed elsewhere. Consequently, with the coordinate 
system, we introduce a rotation-vibration type wave 
function as basis one, 

{l) 

The kinetic energy operator T' is again divided into 
three parts, T' = T ~ib + T ~01 = reib + T~ot ( J, K, v) + 
T mode-mode with 

(2) 

(K- v)
2
-l _ !)] 

+ 4' 2[3 2 ' Sill 2 
(3) 

Tmodc-modc= 2~~ 2 [ [exp(2ia) +exp( -2ia)] 

( a2 
1 

A 
2 fJ ) X - ap

1 
a{Jz + 4 (J~ + 1) COt 1 COt fJz 

- ! J~[exp(2ia) 

+exp( -2ia) ]1~ cot[J1 cotfJz J, (4) 

where f1 denotes the reduced mass of the two nuclei 
and I denotes the moment of inertia of a single con­
stituent nucleus. In the expression T~ot (J, K, v) of eq. 
( 3), we use the eigenvalues K and v instead of J~ and 
J~. Terms corresponding to the additional potential 
in the nuclear collective model are included in 
T~ot(J, K, v) and Tmodc-mode for convenience. Ac­
cordingly, the wave function XK(R, fJ~> [32 ) is defined 
so as to contain the square root of the volume ele­
ment RJsin [31 sin [32 • 

The potential energy Vint between two deformed 
nuclei is calculated by the double-folding model 
[ 10, 11]. We expand the density of each deformed 

30 

nucleus in the body-fixed frame as p8 (r) = 
'iPtm(r) Yi,,(f), with p(r) = 'iPtm(r)D~m Yiv(i') in 
the laboratory frame. Vint is expressed in the molec­
ular frame as 

Vint (R, fJ~> fJz, a) 

=I (2n)-3ji'-I"-I['[n(l'l"OOI!O) 
/'I" I 

Ftr,(R)= f dqq 2j,(qR)v(q)f5t(q)f5t..(q), 

Gn·AfJI,fJ2, a) 

=I (l'l"m-mllO)d;~,o(fJdd':..m,o(fJz) 
m 

X exp(2ima), 

(5) 

(6) 

(7) 

where [51( q) and v( q) denote the Fourier transforms 
of the nuclear density and of the nucleon-nucleon in­
teraction, and l=J (2!+ 1 ). A density profile of 
p8 (r) is assumed to be a Fermi distribution, and the 
radius of the deformed nucleus is taken to beRN 

R0 ( 1 + [JY20 ), R0 being 1.1 A l 13 fm. The deformation 
parameter[J of 24Mg is determined to be 0.535 with 
the B ( E2) value of the ground-state band. The dif­
fuseness parameter aN is adjusted to be 0.385 fm by 
reproducing the RMS radius of the ground state. The 
M3Y potential is used as a folded nucleon-nucleon 
interaction with a knock-on exchange term of strength 
-262 MeV fm 3 [ 11]. 

It should be noted that the simple folding-model 
potential is not accurate in the fully overlapping re­
gion. We must take into account the repulsive effect 
by the Pauli principle, or the density overlap going 
beyond the normal density. In addition to the poten­
tial Vnt. we introduce a repulsive potential due to the 
higher overlapping density, which is estimated by the 
binding energy loss of nuclear matter, i.e., by the 
equation of state. The energy loss per unit volume 
(fm3 ) is taken to be pil·500 MeV fm3 for twice the 
normal density p0 . The overlapping volume with twice 
the normal density is simply calculated by a similar 
expression to eq. ( 5), but with the 6-function instead 
of the interaction, and by introducing the density dis­
tribution of constituent nuclei with a very small dif­
fuseness parameter ap of 0.1 fm. 
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3. Internal collective modes 

In order to solve the normal modes for three vari­
ables R, [J1 and [J2 , V;n1 is expanded into a quadratic 
form at an equilibrium configuration. The energy 
surface of V;n1 (R, fJ, fJ, 0) is displayed in fig. 2a, to 
which we add the dominant centrifugal potential 
J(J + 1 )fz 2 /2J.1R 2 to give the correct radial depen­
dence of the energy surface with spin J being 36. We 
find a local minimum point at jJ1 = jJ2 = 0 and R = 8.24 
fm, namely at the pole-pole configuration. In fig. 2b, 
the a-dependence is shown with /J1 = jJ2 = [J, and in 
fig. 2c, the K- and v-dependence of the /Jrenergy 
curves ofT?ot + V;n1(R, fJ, fJ, 0). The a-dependence is 
seen to be very weak with small values of fJ, which 
justifies the present choice of the internal-rotational 
mode for the variable a. By expanding V;n1 +J(J+ 
1 )fz 2 /2J.1R 2 at the equilibrium point we obtain V0 = 
V0 + Vmodc-modc with V0 =Eo +J(J+ 1 )fz 2 /2J.1R~ + 
!kR (R -Rc )2 +! kp(/Jf + fJ~) and Vmodc-mode = 
Va(R0 )/J1/J2 cos 2a, where only the m=O, 1 terms in 
eq. ( 7) contribute up to the second order. V mode-mode 
represents an a-dependence of V;n1 and gives rise to 
mode-mode couplings in addition to T mode-mode from 
the kinetic energy T'. The total hamiltonian is writ­
ten as follows: 

H=Ho +Hmode-modc + T(;, 

Ho = Te;b +T?o, + Vo, 

11 mode-mode = T mode-mode + V mode-mode · 

(8) 

(9) 

(10) 

In Te;b and T?ot we have an R-dependent mass pa­
rameter ( 1/1 + 1/ J.1R 2 ) -

1 
, but the dependence is very 

weak because 1/ J.1R 2 is about one tenth of 1/1 in the 
contact region. We therefore insert the equilibrium 
distance Rc into ( 1/1 + 1/ J.1R 2

). Accordingly the 
hamiltonian H 0 is separable in three variables; 

H0 =HR +Hp, +Hp,, ( 11 ) 

n2 a2 k 
HR =- 2!1 aR2 + ; (R-Re)2+ Eo 

+ fz
2 
[J(J+ 1)-~K2 -! v 2 

2 J.1R~ 

( 12) 

( 13) 

where plus and minus signs of (K± v) are associated 
with /J1 and jJ2 , respectively. Eq. ( 12) represents the 
simple one-dimensional harmonic oscillator, but eq. 
( 13) does not. By the approximation of sin [J;~ [J;, eq. 
( 13) is reduced to a hamiltonian of the kind of a 
spherical oscillator and we know the eigenfunctions: 

rp,K(fJ) N,Kp< IKI +I )/2 

X 1F1 ( -n,! IKI + 1; ajJ2
) exp(- !afJ2

), ( 14) 

where K=K± v. In the above approximations the 
normal modes turn out to be those associated with 
the variables R, jJ1 and jJ2 , respectively. The latter two 
variables describe the so-called butterfly and anti­
butterfly motions. The energy eigenvalues of the sys­
tem are given as follows: 

EJ(n, n1 , n2 , K, v) =Eo 

fz 2 [J(J + 1)-~K2 -! v 2 

+2 J.1R~ 

-~G + f.l~~) ]+ (n+!)fzw 

+ (2n 1 +!iK+vi+1)fzwp, 

+ (2n2+!1K-vi+1)fzwp2 , (15) 

where fzw, fzwp, and fzwp2 are vibrational energy 
quanta for the radial, jJ1- and /J2-modes, respectively. 
E0 is the minimum value of the potential energy at 
the equilibrium. Concerning the intrinsic excita­
tions, not only the above vibrational modes but also 
the precessional rotation modes exist, the quantum 
states of which are specified by K and v. K is a projec­
tion of the angular momentum onto the z' -axis which 
specifies coincident rotation of the constituent nu­
clei. v specifies the motion which is associated with 
the variable a= (a 1 - a 2 ) /2 and we call this motion 
the twisting-rotation mode, where the constituent 
nuclei rotate in an opposite direction with each other. 

There is a selection rule, K± V=even, for preces­
sional angular momentum. Because of the parity and 
boson symmetry, n 1 can be taken to be larger than n2• 
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Accordingly, v is allowed to have negative values if 
n1 #112 andK#O. 

We furthermore diagonalize H mode-mode with the 
basis states obtained above, i.e. with eigenstates of 
H0• Since we neglect the Coriolis terms T'c, the K­
quantum number persists as a good quantum num­
ber. The quantum number n of the radial mode also 
persists by the approximation of R = Rc in Tmodc-modc• 
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Fig. 2. Potential energy surfaces for the 24Mg + 24Mg system with 
1= 36. (a) An energy surface V; 01 (R, p, p, 0) +J(J+ I )fz 2 f2JLR 2 

in the R-P plane (P1 =P2 ) is displayed, where the energy mini­
mum point is found at the + mark, i.e., P1 = P2 = 0 and R = 8.24 
fm. (b) Energy curves of V;01 (R, p, p, a) +J(J+ I )fz 2 /2tlR 2 with 
R=8.24 fm are shown versus the variable a for several values of 
p. (c) The cross section of the surface (a) is displayed by a thick 
line. The energy curves of T?0 ,(J, K, v) + V;01 (R, p, p, 0) with 
R = 8.24 fm are displayed by thin lines, for several values of K 
and for v=O. The characteristics of the v-dependence are the same 
asK due to the simple (K± 11)

2 /sin2p, terms in T?ot· 

which is reasonable due to the good localization of 
the two nuclei around Re. The factor cot {J; in 
T mode-mode is also approximated by {Jj I , consistent 
with the approximation sin fJi';:;;;. {J;. With these ap­
proximations we can obtain analytic expressions of 
the matrix elements of the hamiltonian Hmodc-modc· 

Their magnitudes are found to be very small, namely, 
to be around I MeV. It, however, should be noted 
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that the energies of several basis states with pure ex­
citations of the normal modes are almost degenerate, 
if the sum of the quantum numbers 2(n 1 +n2 )+ 
11 K +vI+ 11 K- vI is equal among them. These al­
most degenerate levels with the same K-value be­
come separate when H mode-mode is taken into account. 
The resulting levels for J = 36 obtained after diagon­
alization of H mode-mode are shown in fig. 3 together 
with the zeroth-order levels labeled withA-L (here­
after we call them the A-level, etc.). The degenerate 
C-. D-... levels are seen to be split into separate levels 
by Hmode-modc· The energy gains or losses in them 
originate mainly from the mutual-orientation-depen­
dent interaction V mode-mode· But the non-degenerate 
levels such as the A-level are not affected so much, as 
expected from the weakness of Hmodc-mode· Intuitive 
pictures are given for several intrinsic excitation 
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Fig. 3. Molecular normal modes for the 24Mg+ 24Mg system for 
J = 36. Degeneracies are given in parentheses on the right-hand 
side of the levels. Energy levels of normal modes of H 0 arc dis­
played on the left-hand side of the associated levels and are la­
beled by A-L. The quantum states (n, n" n2, K, v) of them are 
as follows; A: (0, 0, 0, 0, 0), B: (I, 0, 0, 0, 0), C: (0, I, 0, 0, 0) 
(0, 0, 0, 0, 2), D: (0, 2, 0, 0, 0) (0, I, I, 0, 0) (0, I, 0, 0, 2) (0, 
0.0,0,4),E: (0,0,0, I, I),F: (0,0,0,2,0), (0,0,0,2,2),G: 
(0, 0, 0, 3, I) (0, 0, 0, 3, 3), H: (0, 0, 0, 4, 0) (0, 0, 0, 4, 2) (0, 
0.0.4,4),1: (0, 1,0, I, ±I) (0,0,0, 1,3),1: (0, 1,0,2,0) (0, 
1. 0, 2, ±2) (0, 0, 0, 2, 4), K: (0, I, 0, 3, ±I) (0, I, 0, 3, ±3) 
(0, 0, 0, 3, 5), L: (0, 2, 0, I,± I) (0, I, I, I, I) (0, I, 0, I, ±3) 
(0. 0, 0, I, 5). 

modes at the bottom of the columns. The A-level is 
the lowest state with J = 36, without any excitations, 
i.e., with all the quantum numbers being zero. The B­
level is a radially excited state with n = 1 and the other 
quantum numbers being zero. The lower level stem­
ming from C-levels corresponds to a butterfly motion 
and the upper partner to an anti-butterfly motion. D­
levels correspond to higher excitations ofbutterfly and 
anti-butterfly motions. These excitation modes are 
expected to reflect their own characteristics in ob­
servable quantities such as partial decay widths, not 
only in their excitation energies (ref. [ 12], prelimi­
nary results are reported in ref. [ 13] ). 

The molecular states obtained above are intrinsic 
states of the system, with which rotational bands are 
associated. Hence many molecular bands are ex­
pected to exist. It, however, should be noted that all 
of them cannot be observed as resonances in 
24Mg + 24Mg collisions, because states with K =F 0 and/ 
or v =F 0 carry no partial width of the elastic channel 
due to the selection rule in angular momentum and 
therefore they cannot be excited through the 
24Mg+ 24Mg entrance channel. Of course some of 
them may have K= V=O components due to the 
Coriolis coupling T'c and have some resonance 
strengths. In fig. 4, the energy spectrum with K = 0 is 
shown in the resonance energy region. Experimental 
resonance levels are shown for comparison at the 
rightmost column of fig. 4. We have found that the 
number of the levels is reproduced well in the present 
calculations. 

J 

55 ·10 

50 

I 45 

40 cxp. 

Fig. 4. Di-nucleus spectrum with K=O for the 24Mg+ 24Mg sys­
tem in the resonance energy region. States with the same total 
spins arc connected by thin lines to guide the eye. We select res­
onance levels from the elastic and inelastic excitation functions 
[ 3], if two prominent peaks are seen to be correlated with each 
other. They arc shown on the right-hand side, with a bar for in­
dicating the available energy region ofthe data. 
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4. Concluding remarks 

We have proposed a new molecular model, which 
takes into account many degrees offreedom of the di­
nuclear system. It describes the dynamics of the in­
teracting system as a sum of normal modes at the 
equilibrium configuration. 

We have applied the model to the 24Mg + 24Mg sys­
tem. Various molecular states with excitations of the 
normal modes have been obtained. Since Hmode-modc 

depends on the mutual orientation of the 24Mg nu­
clei, we have diagonalized it and obtained molecular 
states which embody the intuitive pictures such as 
butterfly motion, etc. Calculated molecular states with 
several-] values relevant to the experiment have been 
found to be in good correspondence with the ob­
served resonances. It is strongly desired that the ex­
periments explore a wider energy region. 

The effects of the Coriolis coupling terms T'c are 
now under investigation. A closer comparison with 
experiment is being made with analyses of partial de­
cay widths into various inelastic channels [ 13]. Ex­
perimental data to be compared are strongly desired. 

The results obtained above are extremely encour­
aging for further development of the model. Up to 
now, a change of deformation of the constituent nu­
clei themselves is not taken into account, neither is 
the axial symmetry of 24Mg. The extension of the 
model which includes such degrees offreedom seems 
to be very interesting. Applications to systems with 
oblate deformation, such as 28Si + 28Si, are also 
interesting. 
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