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ABSTRACT 

 
 Flying animals and insects flap their wings by using a combination of pitching 

and heaving oscillations. This movement generates a vortex, which affects unsteady 

fluid forces. The propulsive force generated by these animals is related to the unsteady 

forces accompanied with vortex motion. It is well known that vortex motion plays an 

important role in the generation and enhancement of unsteady fluid forces, which must 

be considered when estimating the propulsive force generated by swimmers. The 

purpose of this study is to experimentally explain the mechanism of unsteady fluid force 

generation from vortex ring structure, and to examine its behavior in typical swimming 

motions. The swimming actions analyzed in this study include the S-shaped pull used in 

the front crawl, and the motions associated with the use of a monofin. The unsteady 

fluid force was calculated from the momentum of a vortex ring. In addition, the effect of 

the shed vortex ring on the propulsive force was investigated. In an experiment 

involving a swimmer, the parameters of movement are limited. In addition, in order to 

measure the 3D vortex structure, motion repeatability is important. Therefore, 

oscillations of the test model were mechanically controlled by a driver unit. The flow 

fields were measured using stereoscopic particle image velocimetry (PIV), which was 

applied at several downstream positions, and three components of velocity 

measurements were synchronized to the model movements. The fluid force acting on the 

model was measured by using a load cell. The oscillation that occurs as the angular 

speed changes generates a strong vortex near the model, enhancing the fluid force. 

Based on the comparison between the flow field and the fluid force, the vortex near the 

model affects unsteady fluid force generation to a greater extent than the shed vortex. 

The variation in propulsive force calculated from the momentum of the growing vortex 

on the upper surface of the monofin exhibits the same trend as the measured variation. 

Therefore, there is no large difference between measured and calculated propulsive 

force during one cycle. 
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1. INTRODUCTION 
 

 

 

1.1 Background 

 

 The importance of unsteady effects was demonstrated by animal 

flight at low Reynolds numbers. Because, a quasi-steady-state approach to 

predicting fluid forces acting on an insect wing leads to errors that suggest 

that flight using steady fluid force is impossible. Vortex motion plays an 

important role in the generation of unsteady fluid forces. Flying and aquatic 

animals generate a vortex by oscillating their wings or fins, respectively, and 

unsteady fluid forces are generated by the change in vortex movement. In 

the two-dimensional flow field, flapping insects create a leading edge vortex 

(LEV) on the upper surfaces of their wings. The lift is generated by the 

presence of a low-pressure region in the LEV core. In recent years, the 

development of numerical analyses and a flow field measuring technique 

have allowed for greater investigation of the three-dimensional vortex 

structure. The vortex ring generated by flapping motion has downward 

momentum, and it is suggested that insects fly using the reaction force of 

momentum generation. However, the relationship between the 

three-dimensional vortex (vortex ring) structure and unsteady fluid forces is 

inconclusive.  

 It seems that during front crawl and monofin swimming motions, the 

swimmer effectively uses the unsteady effect to move through the water. For 

example, the propulsive force of a swimmer engaged in a front crawl is 

mainly generated by hand motion, and the actual motion of their hand is 

noticeably unsteady. In particular, the unique S-shaped pulling motion 

performed during crawl stroke creates circumstances in which the direction 
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of circulation around the hand changes during the cycle of a single stroke. 

Namely, during one cycle of pitch-oscillation, the leading edge of the discoid 

airfoil (which simulates the hand of a swimmer) displaces the trailing edge. 

From the results of the experiment using a swimmer, it has been predicted 

that the swimmer uses the unsteady lift created by the shed vortex and 

bound vortex around their hand, which is enhanced by vortex shedding. 

Therefore, unsteady forces must be considered when estimating the 

propulsive forces of swimmers performing the front crawl. A monofin is a 

type of swim fin typically used in underwater sports, such as fin swimming, 

free diving, and underwater orienteering. In addition, monofins have been 

used for fin swimming competitions. Monofin swimmers can reach speeds up 

to 3.58 m/s. It is known that monofin fin swimmers are much faster than 

freestyle swimmers. The monofin swimmer uses their body to undulate 

waves towards the monofin, similar to a dolphin kick. The actual motion of a 

monofin is obviously unsteady; however, the three-dimensional vortex 

structure, and the unsteady fluid forces associated with swimmer propulsion 

were not investigated. Furthermore, the reduced frequency (which 

represents unsteady effect magnitude) and Reynolds number achieved by a 

swimmer are very different from flying animals, so it is impossible to apply 

the earlier study on insect/bird flapping to swimming.  

 If the relationship between the unsteady fluid force and the vortex 

ring can be clarified, it will allow for the propulsive force generated by a 

swimmer to be optimized from a hydrodynamical point of view. In addition, 

an understanding of the unsteady fluid force generation mechanism has 

application to not only the enhancement of the propulsive force generated by 

the swimmer, but also to the aerospace field. For example, improving 

propulsive efficiency makes it possible to achieve high performance while 

using minimal energy. It can be expected that the lift enhancement enabled 

by the unsteady fluid force can be applied to MAVs (Micro Air Vehicles). 

MAVs can explore buildings destroyed by earthquakes or serve as 

exploration spacecraft on Mars where the low-density atmosphere makes it 
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difficult for wings to maintain steady lift.  

 

1.2 Literature Review 

 

 The quasi-steady assumption was used to explain the flight 

mechanism of insects or birds. The lift force calculation based on the 

quasi-steady theory was performed for hovering hummingbirds and 

drosophila by Weis–Fogh (1972) [1]. Weis–Fogh concluded that the hovering 

flight of hummingbirds and drosophila is consistent with quasi-steady theory. 

On the other hand, Ellington (1984) showed that a quasi-steady state 

approach using the more accurate kinematic data of wing movement yielded 

errors, suggesting that flight is impossible [2]. Gray (1936) estimated the 

propulsive force generated by a dolphin based on its muscle weight, and he 

indicated that the swimming speed estimated from dolphin’s muscle weight 

is not reached the actual one (known as the Gray's paradox) [3]. Therefore, 

the influence of unsteady effects on the flight and propulsion of animate 

beings is important. It is known that the fluid force generated by unsteady 

motion (unsteady fluid force) is greater than the fluid force generated under 

stationary conditions. For example, when a wing with an angle of attack 

changes suddenly from rest, the unsteady lift is twice as large as the steady 

lift (Izumi (1983) [4]). 

 In recent years, many studies have been conducted to investigate the 

relationship between unsteady fluid force generation and the flow field. Sane 

(2003) summarized the fundamental unsteady mechanism in terms of insect 

flight [5]. The importance of LEV on lift generation in insect flight is 

indicated by Maxworthy (1979) [6]. The effect of Reynolds number on the 

LEV and fluid force for flapping wings was studied by Birch et al. (2003), and 

they concluded that the LEV is enhanced as the Reynolds number is 

increased [7]. Zhao et al. (2011) showed that the lift force is increased with 

increasing LEV strength, which is caused by a decrease in wing flexibility [8]. 

Recently, three-dimensional investigations of flow fields were conducted as a 
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result of improvements made to the particle image velocimetry (PIV) 

technique. For example, the three-dimensional vortex structure generated 

during the pitching and surging of flat revolving plates was measured using 

tomographic PIV (Percin et al. (2015) [9]). This technique is able to obtain 

three-component velocity in 3D volume. The temporal sequence of the vortex 

ring on a live butterfly wing was measured in three dimensions by 

Fuchiwaki et al. (2013) [10]. A series of linked vortex rings generated by 

dorsal, caudal, and anal fins in the wake of free swimmers was shown 

(Flammang et al. (2011) [11]). However, the relationship between the 

mechanism of unsteady fluid force generation and flow field remains unclear. 

Several studies have been conducted to estimate propulsive force from the 

flow field. The self-energy of a vortex ring in the wake of free-swimming fish 

was computed by Muller et al. (1977) [12], and the impulse was estimated 

from the momentum of the vortex ring generated by an 'S' type turning fish 

(Epps et al. (2007) [13]). Nauen et al. (2002) computed the time-averaged 

trust forces from the vortex ring in the wake of steadily swimming fish, and 

the results suggested that the estimated trust forces were not different from 

the drag force measured by towing the fish body [14]. The time-varying 

propulsive force acting on the fin was calculated from the momentum of the 

vortex ring connected to the fin (Imamura et al. (2013) [15]), using the 

method developed by Dickinson (1996) [16]. However, the propulsive force 

calculated from the vortex ring was overestimated because the circulation 

was calculated by the spanwise vorticity in the central plane of the fin. 

 Many studies have been conducted to estimate the propulsive forces 

of swimmers performing the front crawl (Schleihauf et al. (1983) [17] and 

Berger et al. (1995) [18]). This estimation has been essentially based on the 

quasi-steady flow theory. In the quasi-steady flow theory, the magnitude of 

force is proportional to the square of the sweep speed of the hand of a 

swimmer. However, during an S-shaped pull, hand speed is faster for an 

expert swimmer than it is for a novice swimmer (Matsuuchi (2007) [19]). In 

particular, the unique S-shaped pulling motion of the crawl stroke creates a 
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scenario in which the direction of circulation around the hand changes 

during the cycle of a single stroke (Matsuuchi et al. (2008) [20]). In a 

previous study, fundamental unsteady pitch-oscillating motion was utilized 

to investigate the effects of airfoil shape on the unsteady fluid forces, and the 

differences in the effects of unsteadiness on the discoid airfoil and the NACA 

0012 airfoil were considered (Hasegawa et al. (2010) [21]). It was concluded 

that the vortex grows and the fluid force increases when the reduced 

frequency of oscillation is increased, and the effect of unsteadiness during 

pitch-oscillating motion varies depending on airfoil shape. 

 Several kinematic and dynamic studies have been reported on 

monofin swimming. The propulsive force acting on the fin swimmer was 

calculated by a simulation that uses the measured bending stiffness and 

damping coefficient of a monofin (Nakashima et al. (2010) [22]). The 

influence of gender, skill level, and race distance on selected kinematic 

parameters of surface monofin swimming were measured by Gautier et al. 

(2004) [23]. Nicolas et al. (2009) compared efficiency and active drag 

kinematic parameters for an underwater and surface fin swimming trial [24]. 

The monofin swimmer uses their body to undulate waves towards the 

monofin (Arellano et al. (2002) [25] and Nicolas et al. (2007) [26]), similar to 

a dolphin kick. The actual motion of a monofin is unsteady, meaning that 

these forces must also be considered when estimating the propulsive force 

generated by a monofin. 

 

1.3 Aim of This Study 

 

 The purpose of this study is to investigate the relationship between 

unsteady fluid force and three-dimensional vortex structure. The specific 

goals of this study are described as follows: 

 

1. To understand the fundamental relationship between unsteady fluid 

force and vortex structure [27]. 
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2. To investigate the effect of differing oscillating motions on vortex 

generation [28, 29]. 

 

3. To clarify the effects of three-dimensional airfoil shapes on vortex 

ring structures [30, 31]. 

 

4. To estimate the unsteady fluid force acting on the model from the 

vortex ring, and to explain the influence of the vortex ring scenario 

(i.e. shed or attached the vortex ring on monofin) on force generation. 

 

 The contents of this study are described as follows: Chapter 1 

contains the introduction, which includes background information and the 

goals of this study. In Chapter 2, we explain the experimental apparatus for 

the wind tunnel and water channel test. In Chapter 3, the unsteady lift and 

flow field was investigated during impulsive incidence variation of the angle 

of attack. In Chapter 4, we examine the three-dimensional vortex structure 

around the discoid airfoil. This structure is observed during pitch-oscillating 

motion around an oscillating 90° center angle as the angular speed is 

changed. The effect of three-dimensional airfoil shape on vortex structures 

during pitching motions was researched in Chapter 5. In Chapter 6, the 

propulsive force and vortex ring were investigated for the monofin using the 

driver unit. In Chapter 7, the propulsive force was estimated from the 

momentum of the vortex ring using the results obtained in Chapter 6. In 

Chapter 8, we summarize the results of the study. 
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2. EXPERIMENTAL APPARATUS 
 

 

 

2.1 Wind Tunnel 

 

 The experiments were carried out using a low-speed, open-type wind 

tunnel. Figure 2.1.1 shows the schematic of the wind tunnel. The wind 

tunnel consists of the driving section, diffuser, rectifier portion, nozzle, and 

test section. The wind tunnel was driven by an electric blower (Showa fan 

A-7KM, Showa Denki Co., Ltd). The total length from the diffuser inlet to the 

nozzle outlet is 3,780 mm. Three screens were set in the diffuser, and the 

rectifier portion has a honeycomb and four screens. Freestream velocity 

varied from 0–30 m/s with a freestream turbulence intensity of 5 %. Figure 

2.1.2 shows the test section used to measure the flow field. The test section is 

constructed with acrylic plate, and its inlet dimensions are 300 × 300 mm. 

The origin of the coordinate system is defined as the center of the model. The 

velocity is denoted by three components (u, v, and w) in three directions (x, y, 

z.) The oscillating motions of the airfoil were generated using a five-phase 

stepping motor (RK544, Oriental Motor Co., Ltd.) with a 0.072° step around 

its mid-chord axis. The stepping motor was controlled using a personal 

computer. 
 

2.2 Water Channel 

 

 The experiments for the monofin were performed using a circular 

water channel, and Figure 2.2.1 shows its schematic. The test section has a 

length of 4.6 m, a span of 2.0 m, and a depth (water level) of 1.2 m. The 
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glass-windowed observation sections are positioned on the side and at the 

bottom of the test section to perform the flow visualization. The freestream 

velocity varied from 0–2.5 m/s at equal intervals of 0.1 m/s. Figure 2.2.2 

shows the test section and the driver unit used for the monofin. The origin of 

the coordinate system is defined as the center of the oscillation axis. Monofin 

oscillation is performed by using a stepping motor (AR911AA-3, Oriental 

Motor Co., Ltd.) set at the top of the driver unit. The power of the motor is 

transmitted to the oscillation axis via two belt pulleys and a crank 

mechanism. 

 

2.3 Test Models 

 

 For the wind tunnel test, three types of airfoils were used to 

investigate the effect of airfoil shape on vortex structure. The schematic of a 

discoid airfoil (to simulate the hand of swimmer), a rectangular airfoil (with 

a NACA 0015 profile), and a triangular airfoil are shown in Figs. 2.3.1, 2.3.2 

and 2.3.3, respectively. The discoid airfoil is created by rotating the NACA 

0015 profile from the leading edge to the maximum thickness around its 

mid-chord axis (Fig. 2.3.1 (b)). Each airfoil has a chord, c, of 150 mm and a 

span of 150 mm. The maximum thicknesses of the discoid airfoil, the 

rectangular airfoil, and the triangular airfoil are 37.5 mm, 22.5 mm and 22.5 

mm, respectively. The oscillating axis was fixed at 75 mm from the leading 

edge for the discoid and rectangular airfoils, and 100 mm from the leading 

edge for the triangular airfoil. The airfoil edge has a smooth, semi-circular 

shape. 

 In the water channel test, a monofin (similar to the caudal fin of a 

dolphin) was used, and its schematic is shown in Fig. 2.4. The monofin has a 

chord, c, of 320 mm and a span of 360 mm. The monofin was made from 

laminate composite materials and its thickness decreased from the root to 

the tip. 
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2.4 Fluid Force Measurement 

  

 Two types of load cells were used in this study because the range of 

the fluid force is widely different between wind tunnel and water channel 

measurements. In the wind tunnel test, a 50 mN, ultra-small capacity, load 

cell (LVS-500GA, Kyowa Electronic Instruments Co., Ltd.) is used. The load 

cell was set at one end of the oscillating axis. In the water channel test, a 200 

N compact tension/compression load cell (LUR-A-SA1, Kyowa Electronic 

Instruments Co., Ltd.) is used. The load cell was the fixed on the front side of 

the frame, which was set at the top of the water channel. The monofin drive 

unit was placed on the slider of the frame and can move freely in the 

x-direction (Fig. 2.5). Therefore, the fluid force acting on the monofin was 

measured by connecting the load cell and driver unit. The output of the load 

cell was imported to a personal computer via a dynamic strain amplifier 

(DPM-601AM67, Kyowa Electronic Instruments Co., Ltd.) and an A/D board 

(AD16-16U(PCI)EH, Contec Co., Ltd.). 

 

2.5 Measurement of Angle of Attack Variation of 

Test Model  

 

 To confirm the oscillation of the model, the time series data of the 

angle of attack was measured using a potentiometer. The potentiometer was 

fixed at one end of the oscillating axis. In the water channel test, the 

potentiometer was covered by a waterproof case. 

 

2.6 Flow Field Measurements 

2.6.1 Two Component PIV 
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 Figure 2.6 shows the two component (2C) PIV system, which is able 

to measure two-dimensional, two-component velocity in the measuring plane. 

The 2C PIV system consists of a high-speed camera (FASTCAM SA3, 

Photron Co., Ltd.) and an Nd-YAG laser (PIV G8000 Laser, Katokoken Co., 

Ltd.). The tracer particle is glycol oil mist with a particle diameter ranging 

from 0.3–1 μm, and it is generated by a smoke generator (Model 8304, 

Kanomax Inc.). Fig. 2.6 (a) and (b) show the configuration of the PIV system 

in the x–z and x–y plane, respectively. In the x–z plane, the vertical laser 

sheet is deflected by a mirror set at the top of the test section, and the 

particle images are captured from the side of the test section using the 

high-speed camera (Fig. 2.6 (a)). In the x–y plane, the horizontal laser sheet 

irradiates the directly and the particle images are captured from the top of 

the test section through the mirror (Fig. 2.6 (b)). 

 

2.6.2 Stereoscopic PIV 

 

 The flow fields were measured using a stereoscopic PIV method that 

is able to measure two-dimensional, three-component velocity in the 

measurement plane. In the wind tunnel test, the stereo PIV system consists 

of a double pulse Nd: YAG laser (Solo 120XT, New Wave Research, Inc.) and 

two charge-coupled device (CCD) cameras (Megaplus ES1.0, 1,008 × 1,024 

pixels, Kodak Co., Ltd.); the stereo PIV system is shown Fig. 2.7. The tracer 

particle is glycol oil mist. The 3 mm thick laser sheet was irradiated in the 

y–z plane from the side of the test section, and two CCD cameras were placed 

on both sides of the test section to capture the particle images. The PIV 

cameras were mounted on a specially designed rig with an adjustable 

viewing angle. The angle between the optical axes of the two cameras was set 

to approximately 90° to satisfy the scheimpflug condition. The time interval, 

Δt, between two sequence image capturing was set to 0.5 ms. To synchronize 

image capture with the airfoil motion, the flow fields were measured based 

on a timing cycle generated by the trigger of the pulse generator (Model 9314, 
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Quantum Composers, Inc.). Figure 2.8 shows the stereoscopic PIV system in 

the water channel test. The measurement was tested on the 8 mm wide laser 

sheet at a time interval, Δt, of 2.5 ms. 

 

2.7 Three-Component Vorticity 

  

The three components of vorticity are defined as 
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Each term on the right hand side of Eq. (2.1) is disregarded by using the 

central finite difference approximation for the second order. Considering ωx 

by using the Taylor expansion around the points an, wn+1, and wn-1 (Fig. 2.9 

(a)) are follow 
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where Δy and Δz represent the mesh spacing of the PIV in the spanwise and 

heightwise direction, respectively. At the boundary in the measurement 

region, one side difference is used. wn+1 and wn+2 (Fig. 2.9 (b)) are written as 
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ωy and ωz are calculated in the similar way. 

 

2.8 Q Invariant of Velocity Gradient Tensor 

  

The velocity gradient tensor is shown as 
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u  can be divided into the symmetric tensor and the antisymmetric tensor. 
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where Sij and Ωij represent the stretching tensor rate and the rotation tensor 

rate, respectively. Each tensor is written by 
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The second invariant of the velocity gradient tensor, Q, is defined as 

 ijijijij SSQ  .                                            (2.13) 

Namely, Q is a local measure of the excess rotation rate relative to the strain 

rate. The vortices are defined as the region where the magnitude of the 
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rotation rate is greater than the magnitude of the strain rate, i.e. Q > 0 

(Miura et al. (1998) [32]).  
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Fig. 2.1.1 Wind tunnel schematic 
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Fig. 2.1.2 Test section for the wind tunnel test 
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Fig. 2.2.1 Water channel schematic 
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Fig. 2.2.2 Test section for the water channel test 
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(b) Discoid airfoil shape 

 

Fig. 2.3.1 Discoid airfoil 
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Fig. 2.3.2 Rectangular airfoil dimensions (mm) 
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Fig. 2.3.3 Triangular airfoil dimensions (mm) 

 

 

Fig. 2.4 Monofin shape 
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Fig. 2.5 Fluid force measurement system 
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(b) x–y plane 

Fig. 2.6 Schematic of the 2C PIV system used for the wind tunnel test 
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Fig. 2.7 Schematic of the Stereoscopic PIV system used for the wind tunnel 

test 
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Fig. 2.8 Schematic of the Stereoscopic PIV system used for the water channel 

test 
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3. EFFECT OF DIFFERENT AIRFOIL 
SHAPES ON UNSTEADY LIFT 
DURING IMPULSIVE INCIDENCE 
VARIATION 

 
 

 

 To understand the fundamental relationship between unsteady fluid 

force and three-dimensional vortex structure, the angle of attack of 

three-dimensional airfoils was subjected impulsive incidence variation. The 

simple unsteady phenomenon appears close to the airfoil during the 

impulsive incidence variation. 

 

 

3.1 Experimental method 

 

 The experiments were conducted using the wind tunnel described in 

Fig 2.1.1. The free-stream Reynolds number, Re, is defined as Re = cU0/ν, 

where c is the chord length of the airfoil, U0 (= 3 m/s) is the free-stream 

velocity, and ν is the kinematic viscosity of the air. The test models are the 

discoid airfoil (with a NACA0015 profile) and the triangular airfoil, and the 

schematics for each airfoil are shown in Figs. 2.3.1 and 2.3.3, respectively. 

Figure 3.1 shows the angle of attack, α, variation of the airfoil with respect to 

the nondimensional time, tU0/c, where t is the time. The degree of the airfoil 

movement was defined by the nondimensional rise time, T* (= taU0/c), where 

ta is the time period during which the airfoil angle of attack is varied. A small 

T* value indicates a fast change in angle of attack during the impulsive 

incidence variation. The experiments were conducted at T* = 2 and T* = 5, 

and the amplitude angle, α0 (Fig. 3.1), is 18° and 36°, respectively. The flow 

fields are measured using the stereoscopic PIV method. The schematic of the 
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stereoscopic PIV system is shown in Fig. 2.7. Figure 3.2 shows the 

measurement region for the stereoscopic PIV. The measurements were 

performed in the region from x/c = -0.5–1.0, at equal intervals of x/c = 0.033 

in the y–z plane. The measurement regions in the y–z plane range from y/c = 

-1–0 and from z/c = -0.7–0.7. The velocity data on the right-hand side was 

interpolated using the mirror image of the velocity data on the left-hand side, 

because the flow field is symmetrical in the y–z plane. The flow field is 

estimated using an ensemble averaged velocity over 10 cycles. The image of 

three-dimensional vortex structure is depicted by plotting the iso-Q surface. 

 

3.2 Results and Discussion 

3.2.1 Different Discoid Airfoil Motion 

 

 Figure 3.3 shows the lift curve for the discoid airfoil under stationary 

conditions at Re = 3.0×104. The static fluid forces were measured in the 

region for an angle of attack, α, ranging from 0°–44.64° at equal intervals of 

α = 1.44°. The maximum lift coefficient, CLmax, is 0.68, and the stall angle is 

24° for the discoid airfoil under stationary conditions at Re = 3.0×104. Figure 

3.4 shows the CL variation during the impulsive incidence variation from α = 

0° to α = 36° for T* = 2, compared to the CL variation under stationary 

conditions. In this figure, the blue line and red dotted line represent the CL 

variation during the impulsive incidence variation and under stationary 

conditions, respectively. CL in the stationary condition is plotted at an angle 

of attack that corresponds to the angle of attack during the impulsive 

incidence variation. CL is calculated by ensemble averaging over 10 

consecutive measurements. Fig. 3.4 shows that stall delay is observed as the 

angle of attack is impulsively changed, and CL increases beyond the static 

stall angle. The maximum CL for T* = 2 is greater than the maximum CL at 

the stationary condition. After the airfoil stop moving, CL gradually 

decreases until it asymptotically approaches the CL value achieved in the 
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stationary condition. Figure 3.5 shows the CL variation for the discoid airfoil 

during impulsive incidence variation, when the angle of attack is varied from 

α = 36° to α = 0° for T* = 2. CL decreases as the angle of attack is decreased, 

and negative lift is observed before the airfoil stops moving. CL increases 

after the airfoil stops moving and the lift value is positive from tU0 /c = 3–5. 

After tU0 /c = 5, CL eventually coincides with its stationary value. 

 Figure 3.6 shows the three-dimensional vortex structure around the 

discoid airfoil during impulsive incidence variation from α = 0° to α = 36°. In 

Fig. 3.6, the green regions show the iso-surface of the nondimensional Q 

invariant of the velocity gradient tensor, Qc2/U02 = 5. The leading edge vortex 

(LEV) attaches to the upper surface of the airfoil, even at angles beyond the 

stall angle (Fig. 3.6 (c)). Because the effective angle of attack decreases with 

impulsive increases in angle of attack, the tip vortex (TIV) appears at both 

left and right extremities of the discoid airfoil when the airfoil stops moving 

(Fig. 3.6 (c)). The separation on the whole upper surface of the discoid airfoil 

is suppressed by the TIV even after the LEV detaches from the upper surface 

after the airfoil stops moving. Figures 3.7 and 3.8 show the 

three-dimensional vortex structure of ωy and ωx for the discoid airfoil to 

illustrate the behavior of the LEV and the TIV around the discoid airfoil, 

respectively. The LEV attaches to the upper surface of the airfoil just after 

the airfoil stops moving. The attached LEV region decreases in the spanwise 

direction over time. The TIV appears near the trailing edge at tU0 /c = 2. 

Immediately after the airfoil stops moving, a strong TIV exists in the wake of 

the airfoil (Figs. 3.8 (c)). The TIV moves toward the center axis of the airfoil 

because of the curvature of the discoid airfoil (Figs. 3.8 (c) and (e)). The TIV 

becomes weaker over time and the flow on the upper surface detaches 

gradually. For the two-dimensional airfoil, it was reported that CL rapidly 

decreases after the airfoil stops moving. This occurs during impulsive 

incidence variation from 0° to the angle set beyond the static stall angle for 

small values of nondimensional rise time (Aihara et al. (1985) [33]). On the 

other hand, for the discoid airfoil, CL gradually decreases after the airfoil 
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stops moving. This occurs because CL variation is affected by the TIV 

behavior after the airfoil stops moving. 

 Figure 3.9 shows the three-dimensional vortex structure for the 

discoid airfoil during impulsive incidence variation from α = 36° to α = 0°. 

The LEV is successively shed from the leading edge of the airfoil and the flow 

on the upper surface detaches even at the angles below the stall angle (Fig. 

3.9 (b)). This occurs because the effective angle of attack is increased as the 

angle of attack is impulsively decreased. The airfoil remains in a stalled 

state and CL is less than it is at the stationary condition just after the airfoil 

stops moving. After the airfoil stops moving, CL increases as the flow 

gradually attaches to the upper surface of the airfoil (Fig. 3.10 which shows 

the two-dimensional vortex structure in the x–z plane at y/c = 0). 

Furthermore, positive lift is produced because the LEV attaches to the upper 

surface of the airfoil (Fig. 3.10 (b)). Subsequently, the flow field and CL 

eventually coincide with their stationary values. 

 

3.2.2 Different Airfoil Shapes 

 

 Figure 3.11 shows the lift curve for the triangular airfoil under 

stationary conditions at Re = 3.0×104. The maximum lift coefficient, CLmax, is 

0.75 and the stall angle is 33°. Figures 3.12 and 3.13 show the CL variation 

for the triangular airfoil during the impulsive incidence variation from α = 0° 

to α = 18°, and from α = 0° to α = 36°, respectively. In all cases involving the 

triangular airfoil (similar to the discoid airfoil (Hasegawa et al. (2014) [34])), 

CLmax is greater during impulsive incidence variation than at the stationary 

condition, and it increases with the increasing amplitude angle, α0, and with 

decreasing nondimensional rise time, T*. From α = 0° to α = 36° (Fig. 3.13), 

stall delay is observed. CLmax (= 1.08) for the triangular airfoil at T* = 2 and 

α0 = 36° (Fig. 3.13 (b)) is approximately equivalent to the discoid airfoil, but 

the difference between CLmax under stationary and unsteady conditions is 

smaller than it is for the discoid airfoil. In contrast to the discoid airfoil, CL 
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decreases rapidly just after the airfoil stops moving. At tU0 /c = 15, CL during 

the impulsive incidence variation under reaches stationary values. 

 Figure 3.14 shows the three-dimensional vortex structure around the 

triangular airfoil during impulsive incidence variation from α = 0° to α = 36° 

for T* = 2. Figures 3.15 and 3.16 show the three-dimensional vortex 

structure of ωy and ωx for the triangular airfoil to illustrate the behavior of 

the LEV and the TIV around the triangular airfoil, respectively. The starting 

vortex (SV) grows near the trailing edge as the angle of attack increases. 

Therefore, the circulation around the airfoil is augmented and the lift 

increases. The LEVs are formed on the upper surface along the right and 

left leading edges of the triangular airfoil just before the airfoil stops moving 

(Fig. 3.14 (b)). After the airfoil stops, the detached point of the LEV moves 

from the trailing edge toward the leading edge as time passes (Fig. 3.14 

(c)-(f) right column and Fig. 3.16 (c)-(f)). The nondimensional time at which 

the flow field reaches a stationary condition is smaller than that for the 

discoid airfoil. As a result, the lift decreases abruptly after the triangular 

airfoil stops moving. Because the fundamental vortex structure after the 

triangular airfoil stops moving is similar to that of the stationary condition. 

On the other hand, the separation on whole upper surface of the discoid 

airfoil is suppressed by the noticeably strong TIV, which was not observed 

under stationary condition. In addition, the effect of impulsive incidence 

variation (unsteady effect) on the LEV for the triangular airfoil is relatively 

small because strong LEVs were generated under stationary conditions, 

even at the angles greater than the stall angle. Therefore, the unsteady 

effect on the unsteady force and the flow field during impulsive incidence 

variation for the discoid airfoil is greater than that for the triangular airfoil. 

 

3.3 Conclusions 

 

 To understand the fundamental relationship between unsteady fluid 

force and three-dimensional vortex structure, upward and downward airfoil 
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movements are performed and the angle of attack of the airfoil is impulsively 

changed between 0°–36°. In addition, two types of airfoils were used. The 

results of the experiment are summarized as follows: 

 

1. Stall delay is observed when the discoid airfoil is motioned upward, and 

the maximum lift coefficient is greater than at the stationary condition. 

CL gradually decreases after the airfoil stops, and the value of CL 

asymptotically approaches that of the stationary condition. CL variation 

is affected by the TIV behavior after the airfoil stops moving for upward 

motions. 

2. When the discoid airfoil is motioned downward, CL decreases as the 

angle of attack decreases, and negative lift is observed before the airfoil 

stops moving. The flow on the upper surface detaches even at angles 

below the stall angle. CL increases as the flow gradually attaches to the 

upper surface of the airfoil after it stops moving. 

3. In contrast to the discoid airfoil, CL decreases rapidly for the triangular 

airfoil immediately after it stops moving. The nondimensional time at 

which the flow field reaches a stationary condition is smaller than that 

for the discoid airfoil. The unsteady effect on the unsteady lift and the 

flow field during impulsive incidence variation for the discoid airfoil is 

greater than that for the triangular airfoil. 
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Fig. 3.1 The temporal change in angle of attack 
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Fig. 3.2 The measuring region for stereoscopic PIV for impulsive incidence variation 
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Fig. 3.3 Lift curve for the discoid airfoil in the stationary condition 
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Fig. 3.4 Lift curve for the discoid airfoil as it is impulsively changed from 0°–36° at T* 

= 2.0  

 

 
Fig. 3.5 Lift curve for the discoid airfoil as it is impulsively changed from 36°–0° at T* 
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(d) tU0/c = 3 

 

(e) tU0/c = 5 

 

(f) tU0/c = 7 
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(g) tU0/c = 12 

 

(h) tU0/c = 20 

 

(i) tU0/c = 30 

Fig. 3.6 Three-dimensional vortex structure for the discoid airfoil as it is impulsively 

changed from 0°–36° for T* = 2.0 
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(a) tU0/c = 1    (b) tU0/c = 2 

 
(c) tU0/c = 3    (d) tU0/c = 7 

 
(e) tU0/c = 12    (f) tU0/c = 30 

Fig. 3.7 Three-dimensional vortex structure of ωy for the discoid airfoil as it is 

impulsively changed from 0°–36° for T* = 2.0 

Flow 

ωyc /U0 = -5 
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(a) tU0/c = 1    (b) tU0/c = 2 

 
(c) tU0/c = 3    (d) tU0/c = 7 

 
(e) tU0/c = 12    (f) tU0/c = 30 

Fig. 3.8 Three-dimensional vortex structure of ωx for the discoid airfoil as it is 

impulsively changed from 0°–36° for T* = 2.0 

Flow 

ωxc /U0 = -5 ωxc /U0 = 5 
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(d) tU0/c = 3 

 

(e) tU0/c = 5 

Fig. 3.9 Three-dimensional vortex structure for the discoid airfoil as it is impulsively 

changed from 36°–0° for T* = 2.0 
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(a) tU0/c = 2                         (b) tU0/c = 3 

Fig. 3.10 Density map of vorticity in the x–z plane for the discoid airfoil as it is 

impulsively changed from 36°–0° for T* = 2.0  

 

 

Fig. 3.11 Lift curve for the triangular airfoil in the stationary condition 
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(a) T* = 5 

 
(b) T* = 2 

Fig. 3.12 Lift curve for the triangular airfoil as it is impulsively changed from 0°–18°  
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(a) T* = 5 

 
(b) T* = 2 

Fig. 3.13 Lift curve for the triangular airfoil as it is impulsively changed from 0°–36°  
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(a) tU0/c = 0 

 

(b) tU0/c = 1.5 
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(d) tU0/c = 3 

 

(e) tU0/c = 7 

 

(f) tU0/c = 15 

Fig. 3.14 Three-dimensional vortex structure for the triangular airfoil as it is 

impulsively changed from 0°–36° for T* = 2.0  
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(a) tU0/c = 0    (b) tU0/c = 1 

 
(c) tU0/c = 2    (d) tU0/c = 3 

 
(e) tU0/c = 7    (f) tU0/c = 15 

Fig. 3.15 Three-dimensional vortex structure of ωy for the triangular airfoil as it is 

impulsively changed from 0°–36° for T* = 2.0  
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(a) tU0/c = 0    (b) tU0/c = 1 

 
(c) tU0/c = 2    (d) tU0/c = 3 

 
(e) tU0/c = 7    (f) tU0/c = 15 

Fig. 3.16 Three-dimensional vortex structure of ωx for the triangular airfoil as it is 

impulsively changed from 0°–36° for T* = 2.0  
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4. VORTEX STRUCTURE AROUND 
DISCOID AIRFOIL DURING 
PITCH-OSCILLATING MOTION 

 
 

 

 To investigate the effect of oscillating motion on vortex generation, 

two types of pitch-oscillating motion around the oscillating 90° center angle 

(the leading edge of the airfoil displaces the trailing edge during one cycle of 

oscillation) are conducted as the angular speed is changed. 

 

 

4.1 Experimental method 

 

 Experiments were carried out using the wind tunnel described in Fig 

2.1.1. The experiments described here were performed using Re = 3.0 × 104, 

which corresponds to the Reynolds number range for the hand of a swimmer. 

The test model is the discoid airfoil shown in Fig. 2.3.1. To investigate the 

effect of angular velocity on vortex structures during one cycle of pitching 

motion, two types of airfoil oscillations were performed. In the following 

analysis, the nondimensional time, t  is defined as t  = t/T, where T is the 

total time of one cycle of oscillation, and t is the time. Figure 4.1 shows the 

angle of attack of the airfoil model with respect to nondimensional time. For 

the standard oscillation case (Type-1), the variation in angle of attack follows 

that of a sinusoidal curve. The angle of attack of the model varies according 

to the equation 

 α = αc + a0 sin (2π t ),                                        (4.1) 

where a0 is the amplitude, f is the oscillation frequency, and αc is the angle of 

the pitching center. The airfoil model moves slowly at the beginning of the 

Akita University



46 

 

downstroke and upstroke, at t  = 0–0.25 and 0.5–0.75, respectively (Type-2). 

For the Type-1 case, the airfoil model oscillates at a constant speed. For the 

Type-2 case, the oscillating motion changes in speed over the course of a 

single cycle of pitch-oscillating motion. The angular velocity abruptly 

increases immediately before the upstroke and decreases immediately after 

the upstroke. The reduced frequency, k, is defined as k = πfc/U0. In general, it 

is known that the unsteady effect appears for k > 0.2 (Azuma (1993) [35]), 

and becomes significant for k > 1. The local reduced frequency for Type-2 

oscillation is 0.5 k from t  = 0.0–0.25, and 1.4 k from t  = 0.25–0.5. The 

flow fields are measured using the 2CPIV method. For the oscillation in this 

chapter, it is inferred that the vortex generated by the discoid airfoil mainly 

consists of ωy and ωz. Therefore, to investigate the three-dimensional vortex 

structure, the PIV measurement is applied to several x–z and x–y plane (see 

fig. 4.2). The measurements were performed in the region from y/c = 0.0–0.5 

at equal intervals of y/c = 0.1 in the x–z plane, and in the region from z/c = 

0.0 to 0.5 at equal intervals of z/c = 0.1 in the x–y plane (Fig. 4.2). ωy in the 

x–z plane at y/c > 0.5 and ωz in x–y plane at z/c > 0.5 is neglected because 

these values are sufficiently small. The flow field is estimated using an 

ensemble averaged velocity over 20 pitching cycles. 

 Figure 4.3 shows the control volume used to evaluate the unsteady 

fluid force acting on the airfoil over a pitch-oscillating cycle. The control 

volume is chosen around the discoid airfoil, and the fluid force is estimated 

from time variations of momentum in the control volume using a momentum 

conservation law (Arita et al. (2011)) [36]. We confirmed that the variation of 

the fluid force calculated from this method follows the same trend as the 

fluid force measured by a load cell at Re = 5.0 × 104. 

 

4.2 Results and Discussions 

 

 Figure 4.4 shows the vortex structure under stationary conditions. 

Fig. 4.4 (a) shows that the discoid airfoil forms a vortex ring in the wake. 

Akita University



47 

 

This vortex ring travels downstream. For α = 69.8° and α = 110.2°, an 

inclined vortex ring is observed and the inclined angle of the vortex ring 

increases as the angle of attack increases. However, the inclined angle 

becomes smaller as the vortex ring travels downstream. The vortex ring is 

shed in the wake with a frequency of 100 Hz, and there is no difference in 

vortex shedding frequency for other angles of attack. 

 Figures 4.5 and 4.6 show the contour maps for the Type-1 vorticity in 

the x–z plane at y/c = 0.0 and 0.4, respectively. The color bar indicates the 

strength of the vorticity. The airfoil profile is depicted for better 

understanding of the airfoil position at the measured angle of attack. For the 

discoid airfoil, the distance between the pitching axis and the airfoil edge 

decreases as y/c increases. Therefore, strong vortices are observed at y/c = 0, 

in contrast to those observed at y/c = 0.4. Namely, the vortex has a different 

structure in the spanwise direction, and three-dimensional deformation 

occurs in the wake.  

 Figure 4.7 shows the contour maps for Type-2 vorticity in the x–z 

plane at y/c = 0.0. A strong negative vortex exists near the upper edge of the 

airfoil from t  = 0.4–0.5, in contrast to those for Type-1. This is because the 

angular velocity for Type-2, from t  = 0.25–0.5, is faster than that for Type-1. 

At t  = 0.63, the vortices generated during downstrokes are concentrated in 

one large-scale vortex that travels in the downstream direction. The fluid 

forces generated by the airfoil model were calculated using a momentum 

conservation law applied to the flow field around the airfoil. Figure 4.8 shows 

the variation of the fluid force with respect to nondimensional time. There 

are two peaks in the fluid force over a single period of pitch-oscillating 

motion. In Type-1 oscillation, the two peaks in the fluid force curve were 

observed at t  = 0.25 and t  = 0.75. In Type-2 oscillation, the two peaks 

were observed at t  = 0.4 and 0.9. In addition, the nondimensional time at 

which the fluid force indicated a peak value was delayed compared to that of 

Type-1. In addition, the peak value of the fluid force for Type-2 is larger than 

that for Type-1. Figures 4.9 and 4.10 show the three-dimensional vortex 

Akita University



48 

 

structure for Type-1 and Type-2 oscillation, respectively. In these figures, the 

green regions show an iso-surface of nondimensional vorticity |ωc /U0| = 6. 

For Type-1 oscillation, during the downstroke of the pitch-oscillating motion, 

vortex growth is promoted near the upper edge of the airfoil. This occurs 

because of the pressure difference between the front and back sides of the 

airfoil. The fluid force increases as the vortex grows near the airfoil. A 

large-scale vortex exists near the upper edge of the airfoil at t  = 0.25. 

Thereafter, the fluid force decreases as the shed vortex travels in the 

downstream direction. 

 From t  = 0–0.25, the vortex remains close to the upper edge for 

Type-2 oscillation compared to that of Type-1 oscillation. Vortex growth is 

promoted after t  = 0.25 because of the change in the speed of airfoil 

movement associated with Type-2 oscillation, and the peak value of the fluid 

force increases relative to that for Type-1 oscillation. For Type-2, the 

oscillation speed abruptly increases immediately before the upstroke and 

decreases immediately after the downstroke. Therefore, the vortex grows 

near the upper edge of the airfoil immediately before the upstroke, and a 

strong vortex exists near the upper edge of the airfoil at t  = 0.5 (Fig. 4.10 

(e)). For Type-2 oscillation, a strong vortex exists over a prolonged period of 

time near the airfoil edge because the fluid force increases over the course of 

a single pitching oscillation. This behavior is in contrast to that of Type-1 

oscillation.  

 

4.3 Conclusions 

 

 The vortical flow fields were measured during pitching oscillation as 

the angular speed was changed. The fluid force was calculated using a 

momentum conservation law, and the results of the experiment are 

summarized as follows; 

 

1. There are two peaks in the fluid force over the course of a single pitching 
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motion cycle. In Type-2 oscillation, the nondimensional time at which the 

fluid force exhibits a peak value is delayed in comparison with that of 

Type-1 oscillation. 

2. The fluid force increases as a vortex grows near the airfoil. Thereafter, 

the fluid force decreases as the shed vortex travels in the downstream 

direction. 

3. The peak value of the fluid force for Type-2 oscillation is larger than that 

for Type-1 oscillation. For Type-2 oscillation, a strong vortex exists close 

to the airfoil over a prolonged period of time. The fluid force increases 

over a single period of pitching oscillation, in contrast to what is observed 

in Type-1 oscillation. 
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(a) Type-1 

 

(b) Type-2 

Fig. 4.1 The temporal change of α during pitch-oscillating motion 
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Fig. 4.2 Measurement region for 2CPIV 
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Fig. 4.3 Calculation of fluid forces using a momentum conservation law 

 

Akita University



53 

 

  

 

 

(a)  90  

 

 

(b)  8.69  

 

 

(c)  2.110  

Fig. 4.4 Three-dimensional vortex structure under stationary conditions at Re = 3.0×104 
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(a) t= 0             (b) t= 0.13            (c) t= 0.25 

 
(d) t= 0.4             (e) t= 0.5             (f) t= 0.63 
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(g) t= 0.75           (h) t= 0.9 

Fig. 4.5 Density map of vorticity in the x–z plane for Type-1 at y/c = 0.0 and Re = 3.0×104 

Flow 
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(a) t= 0             (b) t= 0.13            (c) t= 0.25 

 
(d) t= 0.4             (e) t= 0.5             (f) t= 0.63 
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Fig. 4.6 Density map of vorticity in the x–z plane for Type-1 at y/c = 0.4 and Re = 3.0×104 

Flow 
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(a) t= 0             (b) t= 0.13            (c) t= 0.25 

 
(d) t= 0.4             (e) t= 0.5             (f) t= 0.63 
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(g) t= 0.75           (h) t= 0.9 

Fig. 4.7 Density map of vorticity in the x–z plane for Type-2 at y/c = 0.0 and Re = 3.0×104 
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Fig. 4.8 Time history of the fluid force variation during pitch-oscillating motion at Re = 

3.0×104 
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(a) t= 0 

 

(b) t= 0.13 

 

(c) t= 0.25 
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(d) t= 0.4 

 

(e) t= 0.5 

 

(f) t= 0.63 
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(g) t= 0.75 

 

(h) t= 0.9 

Fig. 4.9 Three-dimensional vortex structure for Type-1 at Re = 3.0×104 
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(d) t= 0.4 

 

(e) t= 0.5 

 

(f) t= 0.63 
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(g) t= 0.75 

 

(h) t= 0.9 

Fig. 4.10 Three-dimensional vortex structure for Type-2 at Re = 3.0×104 
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5. EFFECT OF THREE-DIMENSIONAL 
AIRFOIL SHAPE ON VORTEX RING 
STRUCTURE DURING PITCHING 
MOTION 

 
 

 

 To investigate the influence of airfoil shape on unsteady fluid force 

during pitching motion around the oscillating 90° center angle, the 

three-dimensional vortex structures for discoid and rectangular airfoil were 

measured. The discoid and rectangular airfoils were used in this experiment. 

 

 

5.1 Experimental Method 

 

 Experiments were conducted using the wind tunnel described in Fig. 

2.1.1. The experiments were performed for Re = 3.0 × 104. To investigate the 

influence of airfoil shape on vortex structure during pitching motion, two 

types of three-dimensional airfoils were used: the discoid airfoil and the 

rectangular airfoil with the NACA 0015 profile. Detailed information on each 

airfoil was provided in Section 2.3. The variation in angle of attack follows 

that of a sinusoidal curve and was shown in Fig. 4.1 (a). The reduced 

frequency, k, is defined as k = πfc /U0. The flow fields are measured using the 

stereo PIV method. The stereo PIV system is shown in Fig 2.7. The 

measurements were performed in the region from x/c = 0–1.0 at intervals of 

x/c = 0.033 in the y–z plane (Fig. 5.1). In order account for the fluid force 

caused by the unsteady effect during oscillation in two types of the airfoils 

(which have different cross sectional areas), the unsteady fluid force during 

pitching oscillation, Funst, was nondimensionalized by the following equation.  

Akita University



65 

 

 
st

st
unst

F

FF
F

)( 
                                                (5.1) 

where F is the fluid force acting on the airfoil during pitching oscillation, and 

Fst is the fluid force in the stationary condition. The plotted curves in Fig. 5.8 

were calculated at the angle of attack corresponding to each nondimensional 

time value. STF  is the mean value of Fst for each angle of attack. 

 

5.2 Results and Discussion 

5.2.1 3D Vortex Structure around a Discoid Airfoil 

 

 Figure 5.2 shows the three-dimensional vortex structure of the Q 

invariant of the velocity gradient tensor obtained by stereoscopic PIV. The 

green region in Fig. 5.2 shows the nondimensional Q iso-surface, Qc2/U02 = 4. 

A circular vortex ring forms near the wake of the airfoil at t  = 0. During the 

downstroke, vortex growth is promoted near the upper edge of the airfoil. 

This occurs because the pressure difference between the front and backsides 

of the airfoil become larger by increasing the relative velocity between the 

upper edge and the free-stream. The large-scale vortex exists near the upper 

edge of the airfoil at t  = 0.25. Figure 5.3 shows the three-dimensional 

vortex structure of each vorticity component around the discoid airfoil. In 

this figure, the green, red, and blue regions represent the nondimensional 

vorticity iso-surfaces, |ωxc/U0| = 4, |ωyc/U0| = 7, and |ωzc/U0| = 7, 

respectively. ωx is diminished in the wake of the airfoil throughout the cycle. 

In contrast, ωy is strengthened near the upper edge of the airfoil during the 

downstroke, and increases near the upper edge of the airfoil from t  = 0 to 

0.25. From t  = 0.25–0.75, ωy decreases near the upper edge of the airfoil. 

The variation of ωy during pitch-oscillating motion was affected by the 

relative velocity between the upper edge of the airfoil and the free-stream. 

On the other hand, ωz observed at both left and right extremities was not 

affected by the pitching motion. It is seen from Fig. 5.3 that the profile of 
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iso-surface ωz does not change during pitch-oscillating motion, because the 

variation in the relative velocity due to the pitching motion is small near the 

pitching axis. Figure 5.4 plots the time history of each vorticity component 

throughout a pitch-oscillating cycle. Here, the vertical axis denotes the 

averaged nondimensional vorticity in the wake of the airfoil. ωy most widely 

varies among the three vorticity components, while ωy varies coordinated 

with the fluid force (Fig. 5.8). The unsteady fluid force generated by the 

pitch-oscillating airfoil is largely determined by ωy. 

 

5.2.2 3D Vortex Structure around a Rectangular Airfoil 

 

 Figure 5.5 shows the three-dimensional vortex structure around the 

rectangular airfoil for k = 0.97 and Re = 3.0 ×104. A rectangular vortex ring 

forms in the wake of the rectangular airfoil at t  = 0.08, which was 

generated during the upstroke in the previous cycle. During the downstroke, 

the vortex growth is promoted near the upper edge of the airfoil. 

Furthermore, the upper part of the vortex ring is connected to the airfoil via 

the vortex at both left and right extremities. However, at t  = 0.17, the 

vortex ring (Fig. 5.5 (b) red dotted line) exists farther downstream than in 

the discoid airfoil case. Hence, the vortex at both left and right extremities 

(Fig. 5.5 (c) blue dotted line) is stretched in the downstream direction and the 

vortex ring is deformed. The upper part of the vortex ring breaks down at t  

= 0.58, in contrast to the discoid airfoil at t  = 0.58. Figure 5.6 shows the 

three-dimensional vortex structure of each component of the vorticity around 

the rectangular airfoil. At t  = 0.25, for the rectangular airfoil, ωx appears 

near the upper edge of the airfoil during downstroke (marked by the circle in 

Fig. 5.6 (b)). Subsequently, ωx increases as the vortices at the left and right 

extremities (Fig. 5.6 (c) dotted lines) stretch in the downstream direction, 

causing vortex breakdown to occur. On the other hand, for the discoid airfoil, 

ωx was observed farther downstream, and vortex deformation did not occur 

in the near wake of the discoid airfoil. Figure 5.7 plots the time history of 
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each vorticity component in the wake of the rectangular airfoil during a 

pitch-oscillating cycle. ωx increases just before the airfoil motion changes 

direction. The increase in ωx indicates that the vortices at the left and right 

extremities stretch in the downstream direction. In other words, the upper 

part of the vortex travels farther downstream (Fig. 5.5 (c) red dotted line) in 

contrast to the discoid airfoil (Fig. 5.2 (c) red dotted line). In addition, ωy 

decreases as ωx increases, meaning that the vorticity is transported from the 

upper part of the vortex to the vortices at both left and right extremities. 

Therefore, the ωy decrease is rapid in comparison with to that for the discoid 

airfoil, and the vortex breakdown for the rectangular airfoil occurs earlier 

than for the discoid airfoil. ωz is larger for the rectangular airfoil than for the 

discoid airfoil throughout the pitch-oscillating cycle, because the vortex near 

the extremity of the airfoil in the spanwise direction becomes stronger.  

 

5.2.3 Fluid Force Characteristics 

 

 Figure 5.8 shows the unsteady fluid force variation during 

pitch-oscillating motion for k = 0.97 and Re = 4.0 × 104. The two peaks are 

observed in the fluid force curve for each model. The fluid force variation is 

similar to the ωy variation during one pitch-oscillating cycle. The unsteady 

fluid force for the discoid airfoil is greater than that for the rectangular 

airfoil throughout one pitch-oscillating cycle. This is because, for the discoid 

airfoil, the vortex breakdown was delayed (Figs. 5.2 (d) and 5.5 (d)) and the 

vortex exists in its wake over a prolonged period of time. 

 

5.3 Conclusions 

 

 To investigate the effect of a three-dimensional airfoil shape on the 

three-dimensional vortex structure for an oscillating airfoil, two types of 

airfoil shapes were used. The main conclusions of this study are summarized 
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as follows.  

 

1. A circular vortex ring forms in the wake of the discoid airfoil. The vortex 

ring in the wake of the discoid airfoil maintains its circular shape 

throughout the pitch-oscillating cycle.  

2. A rectangular vortex ring forms in the wake of the rectangular airfoil. 

The vortex deforms at the extremities of the rectangular airfoil in the 

spanwise direction. The vortex breaks down near the airfoil. 

3. The fluid force generated by the discoid airfoil throughout one 

pitch-oscillating cycle becomes larger than the fluid force generated by 

the rectangular airfoil, because the vortex exists in the wake of the 

discoid airfoil over a prolonged period.  
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Fig. 5.1 Measurement region of stereoscopic PIV 
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(a) t= 0.08 

 

(b) t= 0.25 

 

(c) t= 0.42 

Qc2 /U02 = 4 

Flow 
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(d) t= 0.58 

 

(e) t= 0.75 

 

(f) t= 0.92 

Fig. 5.2 Three-dimensional vortex structure around the pitch-oscillating discoid airfoil 

for k = 0.97 and Re = 3.0 ×104 
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(a) t= 0.08   (b) t= 0.25 

 
(c) t= 0.42   (d) t= 0.58 

 
(e) t= 0.75   (f) t= 0.92 

Fig. 5.3 Three-dimensional vortex structure of each vorticity component around the 

discoid airfoil for k = 0.97 and Re = 3.0 ×104 

ωzc /U0 = 7 ωyc /U0 = 7 ωxc /U0 = 4 

Flow 
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Fig. 5.4 Time history of each vorticity component during a pitch-oscillating cycle for the 

discoid airfoil for k = 0.97 and Re = 3.0 ×104 
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(a) t= 0.08 

 

(b) t= 0.25 

 

(c) t= 0.42 

Qc2 /U02 = 4 

Flow 
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(d) t= 0.58 

 

(e) t= 0.75 

 

(f) t= 0.92 

Fig. 5.5 Three-dimensional vortex structure around the pitch-oscillating rectangular 

airfoil for k = 0.97 and Re = 3.0 ×104 
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(a) t= 0.08   (b) t= 0.25 

 
(c) t= 0.42   (d) t= 0.58 

 
(e) t= 0.75   (f) t= 0.92 

Fig. 5.6 Three-dimensional vortex structure of each vorticity component around the 

rectangular airfoil for k = 0.97 and Re = 3.0 ×104 

ωzc /U0 = 7 ωyc /U0 = 7 ωxc /U0 = 4 

Flow 
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Fig. 5.7 Time history of each vorticity component during a pitch-oscillating cycle for the 

rectangular airfoil for k = 0.97 and Re = 3.0 ×104 

 

 

Fig. 5.8 Fluid force curve during pitch-oscillating motion for k = 0.97 and Re = 4.0 ×104 
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6. PROPULSIVE FORCE AND 
THREE-DIMENSIONAL VORTEX 
STRUCTURE DURING MONOFIN 
OSCILLATION 
 

 
 

 The vortex ring structure generated by a pitch-oscillating discoid 

airfoil is a rather complex mechanism to use for calculating propulsive force. 

Therefore, the flow field and propulsive force are measured using the 

monofin, which generates a relatively simple vortex ring. In this chapter, the 

propulsive force and three-dimensional vortex structure on the monofin 

explains before the propulsive force estimate from the momentum of vortex 

ring in chapter 7. 

 

 

6.1 Experimental Method 

 

 Figure 2.2.2 shows the schematic of the experimental setup. 

Experiments were performed in a circulating water channel, which has a 

length of 4.6 m, a span of 2.0 m, and a depth of 1.2 m, and which includes a 

glass-windowed observation section (Fig. 2.2.1). The test model was shown in 

Figure 2.4. The monofin has a chord length of 320 mm and a span of 360 mm. 

The monofin was made from laminate composite materials and its thickness 

decreases from the root to the tip. The oscillating motions of the monofin 

were operated by a drive unit. The oscillating center, αc, in the motion was 

set at -20° and the pitching angle, a0, was ± 20°. The experimental conditions 

were determined by referencing the fin movements of the top swimmer in fin 

swimming (Luersen et al. 2006) [37]. Figure 6.1 shows the angle of attack of 
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the monofin with respect to nondimensional time. In this experiment, t  = 0 

is defined as the upper dead point (α = 0°) during fin motion. To investigate 

efficient monofin swimming motion, five types of oscillations were performed. 

For the standard oscillation case, the variation in the angle of attack follows 

the pattern of a sinusoidal curve. Four types of fast kick-up and fast 

kick-down oscillations were given. The speed ratio in the kick-up and 

kick-down motions are summarized in Table 1. The propulsive forces were 

measured by a load cell attached to the top of the drive unit. The flow fields 

are measured using the stereoscopic PIV method (Fig. 2.8). Figure 6.2 shows 

the measurement region in the downstream direction for the stereoscopic 

PIV. The measurements were performed in the region from x = 80–1020 mm 

at equal intervals of x = 20 mm in the y–z plane. The flow field is estimated 

using an ensemble averaged velocity over 30 pitching cycles. The 

three-dimensional vortex structure was visualized by the iso-surface of the Q 

invariant of the velocity gradient tensor. 

 

6.2 Results and Discussion 

 

 Figure 6.3 shows the variation of the propulsive force with respect to 

nondimensional time. The propulsive force, P, was calculated by following 

equation 

 
 

standardst

st

FF

FF
P




                                              (6.1) 

where F is the fluid force acting on the monofin during the oscillation, and 

Fst is the fluid force at the stationary condition. The plotted curves in Fig. 6.3 

were calculated at the angle of attack corresponding to the nondimensional 

time.  
standardstFF  is the mean value of stFF   for each angle of attack in the 

standard case. For the standard case, a peak is observed at t   = 0.76. A 

negative propulsive force is observed during kick-down, which indicates that 

the fin motion during kick-down generates the drag force. This occurs 

because the trailing edge of the monofin moves in the opposite direction of 
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the freestream during the kick-down motion. The negative value in Fig. 6.3 

indicates that the monofin moves in the propulsive direction at a speed that 

is lower than U0 = 0.5 m/s. On the other hand, for two types of fast kick-up 

motion, the propulsive force curve has two peaks, and the second peak is 

larger than the first peak. Two peaks are observed at t  = 0.12 and t  = 

0.91 for fast kick-up 1 and 2. Furthermore, the maximum propulsive force is 

greater than that for the standard case, and its value increases with 

increasing kick-up speed. The time during which the drag force is observed 

becomes longer as kick-down speed becomes slower. On the other hand, for 

two types of fast kick-down motions, a high propulsive force was observed 

during one oscillating cycle. A propulsive force peak occurs at t  = 0.49 and 

at t  = 0.68 for fast kick-down 1 and 2, respectively. Furthermore, the 

maximum propulsive force value increases with increasing kick-down speed. 

Altogether, the motion with the largest velocity difference in kick-up and 

kick-down speed enhanced the propulsive force during the kick-up, and the 

motion with the fastest kick-down speed decreases the averaged drag force 

during kick-down. As a result, the propulsive force during one oscillating 

cycle for the fast kick-down case is highest among the five oscillations. 

 Figure 6.4 shows the vorticity contour map and the velocity vector at 

y = 0 mm in the x–z plane for the standard, fast kick-up 1 and fast kick-down 

1 motions. In this figure, each flow field corresponds to the nondimensional 

time immediately after the propulsive force reaches a maximum value for 

each motion. The monofin profile is depicted in this figure for better 

understanding of the fin position at the measured angle of attack. The 

negative and positive vortices were generated during kick-up and kick-down 

motion, respectively. In all cases, a negative vortex exists on the lower 

surface during kick-up motion. The oscillating motion with different kicking 

speed in kick-up and kick-down generates a strong negative vortex in 

comparison with that for the standard case. Hence, it is predicted that the 

negative vortex strength on the lower surface of the monofin during the 

kick-up motion is related to propulsive force generation. For fast kick-up, 

strong negative vortex generation is caused by an increase in the pressure 
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difference between the upper and lower surface of the monofin during 

kick-up. This is initiated by fast kick-up speed. On the other hand, for fast 

kick-down, a strong negative vortex is formed during the kick-up motion in 

spite of the slow kick-up speed. This occurs because the large pressure 

difference between the upper and lower surfaces was created by the increase 

in relative velocity at the edge of the monofin, and the remarkably strong 

downwash generated by the fast kick-down motion. 

 Figures 6.5, 6.6, and 6.7 show the three-dimensional vortex structure 

around the monofin for the standard, fast kick-up 1, and fast kick-down 1 

cases, respectively. In these figures, the green regions show the iso-surface of 

the nondimensional Q value (|Qc2/U02| = 4). In the right column, the vector 

indicates the velocity in the x–z plane at y = 0 mm. For the standard case, 

two vortex rings exist in the wake of the monofin at t= 0. The vortex ring 

shed from the monofin (Fig. 6.5 (a) blue dotted line) was generated during 

the kick-down in the previous cycle. The vortex ring attached to the surface 

of the monofin (Fig. 6.5 (a) white dotted line) was created during the kick-up 

motion in the previous cycle. Monofin oscillation produced a chain of linked 

vortex rings in the wake. During the kick-down, a vortex ring is produced on 

the upper surface of monofin along the edge (Fig. 6.5 (b) red dotted line). This 

vortex ring is perpendicular to the freestream direction. Hence, propulsive 

force is hardly created during the kick-down. During the kick-up motion, the 

vortex ring grows on the lower surface of monofin (red dotted line in Fig. 6.5 

(d)). This vortex ring is slightly inclined with respect to the freestream 

direction. In other words, the vortex ring on the lower surface of the monofin 

during kick-up has the momentum in the downstream direction. The 

monofin yields the propulsive force by generating the vortex ring with the 

momentum in the downstream direction. Furthermore, the vortex ring 

generated by kick-down motion remains on the upper surface of the monofin 

(white dotted line in Fig. 6.5 (d)). For the fast kick-up 1 case, the monofin 

during kick-down produces the inclined vortex ring (Fig. 6.6 (b) blue dotted 

line) with respect to the freestream, which induces strong flow in the 
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freestream direction (Fig. 6.6 (b) right column). At t= 0.58, the vortex ring 

created during kick-down stretches in the downstream direction (Fig. 6.6 (d) 

red dotted line), because the time during the kick-down motion is long. 

Similar to the standard case, the inclined vortex ring, with respect to the 

freestream direction, is generated along the edge on the lower surface of the 

monofin during kick-up motion (dotted line in Fig. 6.6 (f)), and its circulation 

is larger than that for the standard case (the negative vorticity in Fig. 6.4 (a) 

and (b)). Therefore, the high propulsive force generated during kick-up is 

obtained by forming the inclined vortex ring with a large momentum in the 

downstream direction. For the fast kick-down 1 case, the vortex ring 

generated by the kick-down motion exists near the monofin at the lower dead 

point of oscillation ( 33.0t ). This vortex ring induces strong downwash on 

the upper surface of the monofin (Fig. 6.7 right column). During kick-up, the 

monofin gains high propulsive force from the enhancement of the pressure 

difference at the upper and lower surface of the monofin. This is caused by 

the increase in relative velocity between strong downwash and the monofin. 

 The results of the experiment show that oscillating motion with 

different kicking speeds, in kick-up and kick-down movements enhances the 

maximum propulsive force compared to the standard case. This occurs 

because the vortex ring on the lower surface of the monofin becomes stronger 

during kick-up motions. Furthermore, in the case of fast kick-down, the 

duration of the kick-down motion becomes shorter, meaning that the drag 

force during one oscillating cycle can be suppressed. It was concluded that 

the high propulsive force generated during one oscillating cycle is yielded for 

the fast kick-down 1 case. 

 

6.3 Conclusions 

 

 To investigate the influence of oscillating motion on the propulsive 

force and the three-dimensional vortex structure around the monofin, three 

types of motion were examined. The findings of the present study are 
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summarized as follows. 

 

1. Oscillating motion with different kick-up and kick-down speeds enhances 

the maximum propulsive force compared to the standard case. 

Furthermore, the propulsive force generated during one oscillating cycle 

for the fast kick-down 1 case is the highest among the five cases. This is 

because the negative propulsive force generation time during kick-down 

is short. 

2. During the kick-up motion, the inclined vortex ring with respect to the 

freestream is generated on the lower surface. The strength of the vortex 

on the lower surface of the monofin during the kick-up was increased as 

the velocity difference between kick-up and kick-down is increase. The 

vortex on the lower surface enhances the maximum propulsive force.  
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Fig. 6.1 The temporal change of α during oscillating motion 

 

Table 6.1 Ratio of kick-up and kick-down speed 

 kick-up speed : kick-down speed 

Standard 1 : 1 

Fast kick-up 1 2 : 1 

Fast kick-up 2 5 : 4 

Fast kick-down 1 1 : 2 

Fast kick-down 2 4 : 5 

-40

-30

-20

-10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Standard

Fast kick-up 1

Fast kick-up 2

Fast kick-down 1

Fast kick-down 2

Non-dimensional time t  [‐] 

A
n

g
le

 o
f 

a
tt

a
ck

 α
 [

°]
 

Akita University



85 

 

 

4
5

0

Dimensions in mm
 

Fig. 6.2 Measurement region of stereoscopic PIV for the monofin 

 

 

Fig. 6.3 Propulsive force variation during one kick stroke 
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(a) Standard 

 

(b) Fast kick-up 1 

 

(c) Fast kick-down 1 

Fig. 6.4 Contour map of vorticity and velocity vectors in the x–z plane (y = 0 mm) at the 

time immediately after the propulsive force reaches its maximum value 
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(a) 0t  

 

(b) 17.0t  

 

(c) 33.0t  

Qc2 /U02 = 4 

Flow 
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(d) 5.0t  

 

(e) 75.0t  

 

(f) 83.0t  

Fig. 6.5 Three-dimensional vortex structure for the standard case 
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(a) 0t  

 

(b) 17.0t  

 

(c) 42.0t  

Qc2 /U02 = 4 

Flow 
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 (d) 58.0t  

 

(e) 75.0t  

 

(f) 92.0t  

Fig. 6.6 Three-dimensional vortex structure for the fast kick-up 1 case 
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(a) 0t  

 

(b) 17.0t  

 

(c) 33.0t  

Qc2 /U02 = 4 

Flow 
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(d) 5.0t  

 

(e) 67.0t  

 

(f) 83.0t  

Fig. 6.7 Three-dimensional vortex structure for the fast kick-down 1 case 
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7. PROPULSIVE FORCE 
CALCULATION BASED ON VORTEX 
RING 
 

 
 To clarify the relationship between the unsteady fluid force and the 

vortex ring, and to investigate the influence of the vortex ring position on the 

propulsive force with regard to the monofin, the propulsive forces acting on 

the monofin were calculated by using the momentum of the vortex ring. The 

propulsive force estimations were applied to the vortex ring, which was 

explained in Chapter 6. 

 

7.1 Experimental Method 

7.1.1 Theory of Propulsive Force Calculation 

 

The momentum of the vortex ring is 

 AM Γ ,                                                   (7.1) 

where ρ is the density of the water，Γ is the circulation of the vortex ring，

and A is the area surrounded by the vortex line. The force is the time 

variation of the momentum,  

 M
dt

d
F   

    A
dt

d
Γ ,                                               (7.2) 

where ρ is constant． 

Given that the circulation and area changes with respect to time, the 

resultant fluid force generated by the vortex ring (Dickinson (1996)) [16] is 

expressed by 
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 



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

 


dt

d
A

dt

dA
F  .                                          (7.3) 

The propulsive force, Fx, and the force in the heightwise direction, Fz, are  
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and 

  
























z

x
z

A

A
FF arctancos ,                                        (7.5) 

respectively, where Ax, and Az are the profile areas in the x and z direction of 

the vortex ring, respectively.  

 

7.1.2 Area Calculation of Vortex Ring 

 

 Muller et al. [12] and Epps et al. [13] assumed that the vortex ring is 

a simple circular shape with a diameter equal to the distance between the 

vortex pair in a two-dimensional plane. However, the three-dimensional 

structure of an actual vortex ring is more complex (Fig. 6.6). A more accurate 

calculation of the vortex ring area was performed by Imamura et al. (2013), 

who clarified the three-dimensional structure of the vortex ring in the wake 

of the oscillating fin. In this study, the area calculation of the vortex ring was 

performed using a method similar to that used by Imamura et al. [15]. We 

estimated the fluid force not only from the vortex ring attached to the 

monofin, but also from the shed vortex ring. Figure 7.1 shows the method of 

detection used for the vortex line. The 36 mesh grids perpendicular to the 

horizontal plane were created at equal intervals of 10° [15] around the point 

defined as center of the vortex ring (Fig. 7.1). The vorticities in each mesh 

grid were calculated using linear interpolation. The centers of the vortex core 

in each mesh grid were detected as a peak of the vorticity in the plane. By 

connecting the vortex center in each plane, the area of the vortex ring is 

defined as a polygon. As seen Fig. 7.2 (a) and (b), the time varying profile 
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areas Ax and Az, are calculated, respectively. 

 

7.1.3 Circulation Calculation of Vortex Ring 

 

 Imamura et al. (2013) assumed that circulation is constant over the 

entire vortex ring, and the vortex ring circulation was estimated by 

integrating the region of interest to the vortex in the central plane of the fin 

(at y = 0 in the x–z plane). However, this procedure led to an overestimation 

of propulsive force. The problem with the assumption was determined to be 

that circulation is not constant over the entire vortex ring [15]. Thus, in this 

study, to calculate the circulation of the entire vortex ring, the following 

procedure is used. The mesh grids perpendicular to the vortex ring were 

created (Fig. 7.3) at each vortex center detected in the Section 7.1.2, and the 

vorticities in each mesh grid were calculated using linear interpolation. 

Vortex circulations in each plane were computed by Stokes theorem. The 

large vorticity area integration causes higher total circulation. Hence, the 

vorticities greater than the 25 % of the maximum vorticity were integrated. 

Figure 7.4 shows the circulation calculated by Stokes theorem with respect 

to the threshold percentage of the maximum vorticity by way of an example. 

The slope of a line in Fig 7.4 changes when the threshold level is below 

approximately 20 %, because low-level vorticities were summed over a large 

area. A similar trend was observed in the majority of vortex rings. Finally, 

the circulation of the entire vortex ring circulation was calculated by 

averaging the circulation in each plane. 

 

7.2 Results and Discussion 

 

 In general, it is known that propulsive forces are generated as the 

result of creating and shedding of the vortex ring with momentum (Ito (2015) 

[38]). The time-averaged propulsive forces from the elliptical vortex ring in a 
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fish wake were evaluated by Nauen et al. (2002), and its values are not 

significantly different than the drag force measured by towing a fish body 

[14]. On the other hand, Imamura et al. (2013) estimated the time varying 

propulsive force from the vortex ring attached to the monofin surface. They 

showed that the measured and estimated propulsive force variations have 

the same behavior and value, but the calculated maximum propulsive force [15] 

is over three times higher than the measured value [39]. The effect of the 

relative position of the vortex ring to the monofin on the time varying 

propulsive force has not been argued. In this study, we investigated which 

vortex ring (e.g. attached to, connected to, or shed from the monofin) affects 

propulsive force generation. An "attached ring" is a vortex ring that grows on 

the surface of monofin (e.g. red dotted line in Fig. 6.5 (a), (b) and (e)). A 

"connected ring" is defined as a vortex ring connected to the monofin in spite 

of the other vortex ring generation on the surface of monofin, i.e. the 

remaining vortex ring on the monofin (e.g. white dotted line in Fig. 6.5 (e)). A 

"shed ring" is a vortex ring shed from the monofin (e.g. blue dotted line in Fig. 

6.5 (a)). Figure 7.5 shows the propulsive force calculated from the 

momentum of a vortex ring with respect to the nondimensional time. The 

blue, red, and green lines in this figure indicate the estimated propulsive 

force from the "attached ring"，"attached ring" + "connected ring” and all 

vortex rings ("attached ring " + "connected ring" + "shed ring"), respectively. 

The measured propulsive force is shown by the black line for comparison 

purposes. For the propulsive force calculated from the "attached ring," a 

large peak is observed t   = 0.79. This exists because the vortex ring was 

generated on the lower surface of monofin during kick-up. In comparison to 

the measured propulsive force, the variation of propulsive force for the 

"attached ring" has same tendency. The averaged and maximum forces 

calculated from the "attached ring" during one cycle are approximately 1.9 

and 1.3 times as high as those for the measured propulsive force, respectively. 

The curve of force calculated from the "attached ring" and "connected ring" 

has a significantly large peak during kick-up. This is because the vortex ring 
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with momentum in upstream direction on the upper surface of monofin 

(white dotted line in Fig. 6.5 (e)) breaks down, in addition to the propulsive 

force generation caused by growing the vortex ring on the lower surface (red 

dotted line in Fig. 6.5 (e)). That is, the decrease in momentum in the 

upstream direction appeared as the propulsive force. However, the maximum 

propulsive force generated during kick-up was overestimated in comparison 

with the measured value, because the vortex ring on the upper surface of the 

monofin contributes to the vortex ring growth on the lower surface of 

monofin during kick-up. The vortex ring on the upper surface induces 

downward flow on the upper surface of monofin (Fig. 6.5 (c)-(e) right column). 

The strength of the vortex ring strength on the lower surface of the monofin 

was enhanced by the increase in relative velocity between the monofin tip 

and the downward flow. Furthermore, a significantly negative value was 

observed just after the upper dead point of motion. This value exists because 

the vortex ring, which created the high propulsive force during kick-up, is 

dissipated by the viscous effect and Ax decreases after the kick-up motion. In 

eq. (7.3), the viscous effect was not considered. Thus, the decrease in 

momentum in the downstream direction due to the viscous effect appears as 

a negative force. For the propulsive force calculated for all of the vortex rings 

in the measurement region (green dotted line in Fig. 7.5), negative force was 

observed during the fast half of the kick-up motion. This is because the 

vortex ring strength decreases (because of viscous effects) after the vortex 

ring shed in the wake of the monofin. The estimated propulsive force, 

including the "connected ring" or "shed ring," were significantly different 

from the measured propulsive force. The difference between the calculated 

mean propulsive force and the measured propulsive force is small in 

comparison with that by Imamura et al. (2011) and (2013) [15, 39]. However, 

the value of estimated mean propulsive force during one oscillation cycle was 

1.9 times as high as the measured value. This is because the drag force in the 

estimated propulsive force curve was calculated to be smaller than that in 

the measured propulsive force curve. During kick-down, the vortex ring on 
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the upper surface of the monofin bends into a 'U' shape (e.g. Fig. 6.5 (d) right 

column). The upstream side of the 'U' shaped vortex ring (blue solid line in 

Fig. 7.6) induces the flow in the upstream direction, and the downstream 

side (red solid line in Fig. 7.6) produces the flow in the downstream direction. 

Thus, Ax is estimated as the difference in the profile area in the x-direction of 

the upstream side, Axu (surrounded by blue solid line in Fig. 7.2 (a)), and the 

downstream side, Axd (surrounded by red solid line in Fig. 7.2 (a)), of the 

vortex ring. That is, Axu is calculated to be smaller than the actual area 

because the flow fields near the leading edge were not measured (blue dotted 

line in Fig. 7.6). As a result, the drag force during kick-down was 

underestimated. If it is assumed that the 'U' shaped vortex ring is generated 

from the leading edge, the averaged propulsive force calculated from 

"attached ring" during one cycle becomes 1.3 times as large as the measured 

value. Therefore, the propulsive force acting on the monofin can be estimated 

from the flow field (including the region near the leading edge) by calculating 

the propulsive force based on the vortex ring attached to the surface of 

monfin. 

 

7.3 Conclusions 

 

To investigate the relationship between the propulsive force and the 

vortex ring generated in the wake of a monofin, the propulsive force was 

estimated from the vortex ring. The main conclusions of this experiment are 

summarized as follows:  

 

1. The propulsive force calculation, including the "connecting ring," 

overestimated the peak value during kick-up compared to the measured 

value. 

2. The significantly negative force at the upper dead point of oscillation was 

observed in the propulsive force curve calculated from all vortex rings in 

the measurement region. 
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3. The propulsive force acting on the monofin can be estimated from the 

flow field, including the region near the leading edge, by calculating the 

propulsive force based on the vortex ring attached to the surface of the 

monofin. 
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(a) Top view 

 

(b) Perspective view 

Fig. 7.1 Detection of vortex line 
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(a) Profile area in the x-direction Ax 

 

(b) Profile area in the z-direction Az 

Fig. 7.2 Calculation of vortex ring profile area 
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Fig. 7.3 Calculation of vortex ring circulation 

 

Fig. 7.4 Circulation calculated by Stokes theorem with respect to the 

threshold percentage of the maximum vorticity 
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Fig. 7.5 Propulsive force calculated from vortex ring in the wake of the 

monofin 

 

 

Fig. 7.6 Contribution of the upstream and downstream sides of a vortex ring 

to the momentum in the freestream direction 

 

-8

-4

0

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Attached Vortex Ring

Attached and Connected Vortex Ring

All Vortex Ring

Measured

P
ro

p
u

ls
iv

e
 f

o
rc

e
 P

 [
N

] 

Non-dimensional time t   [－] 

Akita University



104 

 

 

8. SUMMARY 

 
 

 Experimental studies on the unsteady phenomenon generated by an 

oscillating model were performed. The flow fields were measured using 

Stereoscopic PIV, which was applied at several downstream positions, and 

three-component velocity measurements were synchronized to the model 

movements to clarify the three-dimensional vortex structure around the 

model. To understand the fundamental relationship between unsteady fluid 

force and three-dimensional vortex structure, the three-dimensional airfoil 

was subjected to impulsive incidence variation of its angle of attack. The 

effect of the difference in the airfoil shape and oscillating motion on the 

unsteady fluid force and the three-dimensional vortex structures were 

investigated. Furthermore, we attempted to estimate the propulsive forces 

acting on the monofin by using the momentum of the vortex ring to clarify 

the effect of its relative position to the monofin on the time-varying 

propulsive force. 

 

1. Stall delay is observed for the upward movements of the discoid and 

triangular airfoil, and the maximum lift coefficient is greater than that 

under the stationary condition. For the discoid airfoil, CL gradually 

decreases after the airfoil stops moving. For the triangular airfoil, CL 

decreases rapidly immediately after the triangular airfoil stops moving. 

The unsteady effect on the unsteady lift and flow field generated during 

impulsive incidence variation is greater for the discoid airfoil than for 

the triangular airfoil. 

 

2. The fluid force increases as a vortex grows near the airfoil. The peak 

value of the fluid force for Type-2 oscillation is larger than that for Type-1 

oscillation. For Type-2 oscillation, a strong vortex exists close to the 

airfoil over a prolonged period of time. 
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3. The fluid force from the discoid airfoil throughout one pitch-oscillating 

cycle becomes larger compared to that from the rectangular airfoil. This 

occurs because the vortex exists over a prolonged period of time in the 

wake of the discoid airfoil. 

 

4. Oscillating motion with different kicking speed in kick-up and kick-down 

enhances the maximum propulsive force compared to the standard case. 

During the kick-up motion, the inclined vortex ring with respect to the 

freestream is generated on the lower surface. The strength of the vortex 

on the lower surface of the monofin during kick-up was increased for the 

motion with different kick-up and kick-down kicking speeds. 

 

5. The propulsive force calculated from the "attached ring" is most similar 

to the measured propulsive force. The propulsive force acting on the 

monofin can be estimated from the flow field, including the region near 

the leading edge, by calculating the propulsive force based on the vortex 

ring attached to the surface of monofin.  
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     APPENDIX A: LIST OF USED 
                  : SYMBOLS 

 

x, y, z 

u, v, w 

ωx, ωy, ωz 

Δx, Δy, Δz 

S 

Ω 

Q 

c 

Re 

U0 

ν 

ρ 

t 

T 

Δt 

α 

ta 

T* 

α0 

CL 

CLmax 

t' 

a0 

αc 

f 

k 

F 

Funst 

Fst 

P 

M 

Cartesian coordinates 

velocity components 

vorticity components 

mesh spacing of each direction 

rate of stretching tensor 

rate of rotation tensor 

Q invariant of velocity gradient tensor 

chord length 

Reynolds number 

free stream velocity 

kinematic viscosity 

density 

time 

period of one pitch-oscillating cycle 

time interval between two sequence image capturing 

angle of attack 

time period during which airfoil’s angle of attack is varied 

nondimensional rise time 

amplitude angle during impulsive incidence variation 

lift coefficient 

maximum lift coefficient 

nondimensional time 

amplitude angle during pitch-oscillating motion 

angle of the pitching center 

frequency 

reduced frequency 

fluid force acting on the test model 

nondimensional unsteady fluid force 

fluid force under stationary condition 

propulsive force 

momentum 
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Γ 

A 

Fx 

Fz 

Ax 

Az 

 

circulation of the vortex ring 

area surrounded by vortex line 

propulsive force calculated from the vortex ring 

force in the height direction calculated from the vortex ring 

profile area in the x direction 

profile area in the z direction 
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APPENDIX B: PROPULSIVE FORCE 
              ESTIMATION PROGRAM 
              BASED ON VORTEX 
              RING MOMENTUM 
 

 

%///////////////////////////////////////////////////////////////////////////////////% 

%     <<Program of Propulsive Force Estimation Based on Vortex Ring Momentum>>      % 

%                                                                                   % 

%     This program is calculating the time varying profile area and circulation     % 

%                     for each vortex ring in the wake of a monofin                     % 

%                                                                                   % 

%                                    2015.12.23                                     % 

%                                         by                                        % 

%                                      T. HANIU                                     % 

%                                                                                   % 

%///////////////////////////////////////////////////////////////////////////////////% 

  

  

clear all 

close all 

  

A = zeros(12, 36); 

for T = 1 : 12 

    for Vnum = 1 : 5 

        clearvars -except NUM T Vnum A 

         

        CSVFOLDA = 'FLODERNAME'; 

        AOA =   [-40 -36 -28 -16  -8  -3   0  -1  -8 -19 -30 -38]; 

        AOAte = [-40 -42 -42 -39 -27 -13   1   9   5  -6 -19 -30]; 

  

        listhire = dir('hire.csv'); 

        [imn h] = size(listhire); 
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        name = char(listhire(1).name); 

        data = (dlmread(name, ',', 0, 0)); 

        [yhire xhire] = size(data); 

        Y3 = data(:, 1:4); 

        X3 = data(:, 5:8); 

  

        Zhire(1 : floor(yhire / 4), 1) = 1.4; 

        Zhire(floor(yhire / 4) + 1 : floor(yhire / 4 * 2), 1) = 1.1; 

        Zhire(floor(yhire / 4 * 2) + 1:floor(yhire / 4 * 3), 1) = 0.9; 

        Zhire(floor(yhire / 4 * 3) + 1:floor((yhire / 4 * 4)), 1) = 0.7; 

  

        Z3(:, 1) = Zhire * 0; 

        Z3(:, 2) = Zhire * 0; 

        Z3(:, 3) = Zhire * 0 + 1; 

        Z3(:, 4) = Zhire * 0 + 1; 

        Z3 = Z3 * 10; 

  

        xh = 320; 

        for i = 1 : yhire 

            for j = 1 : 4 

                if X3(i, j) > xh 

                    X3(i, j) = xh; 

                end 

            end 

        end 

  

        omel = 2; 

  

        peaknum = (dlmread(sprintf('%s/circulation/peak_num_T%d.csv', CSVFOLDA, T), ',', 

1, 1)); 

        if peaknum(1, Vnum) ~ = 0 

            bound = (dlmread(sprintf('%s / circulation / bound_T%d.csv', CSVFOLDA, T), 

',', 1, 1)); 

            xu = bound(1, Vnum); 

            xd = bound(2, Vnum); 

            yf = bound(3, Vnum); 
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            yb = bound(4, Vnum); 

            zu = bound(5, Vnum); 

            zd = bound(6, Vnum); 

            name = char(sprintf('%s/omega_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/omegax_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/omegay_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/omegaz_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/U_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/V_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/W_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/x_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/y_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            name = char(sprintf('%s/z_%02.0f.mat', CSVFOLDA, T)); 

            load(name); 

            [nz ny nx] = size(omega0); 

             

            f = figure; 

            set(f, 'Position', [50, 50, 650, 600]); 

            set(gcf, 'Color', 'w'); 

            set(0, 'defaultAxesFontSize', 20) 

            set(0, 'defaultAxesFontName', 'times new roman') 

            set(0, 'DefaultAxesLineWidth', 1); 

            hold on             

  

            s3 = patch(isosurface(x, y, z, omega0 * 0.27 / 0.5, omel)); 

            set(s3, 'FaceColor', [0.3 0.7 0.7], 'EdgeColor', 'none', 'FaceAlpha', 0.3); 

            s3 = patch(isosurface(x, -y, z, omega0 * 0.27 / 0.5, omel)); 
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            set(s3, 'FaceColor', [0.3 0.7 0.7], 'EdgeColor', 'none', 'FaceAlpha', 0.3); 

             

            X4 = X3; 

            Z4 = Z3; 

            deg0 = AOAte(1,T) - AOA(1,T); 

            count = 0; 

            for i0 = 45:157 

            X4 = X4 - X4(i0,1); 

            Z4 = Z4 - Z4(i0,1); 

            deg = -deg0 / (320 - X3(45,1)) * (X4(i0 + 1,1)) / 180 * pi; 

            clear x13 y13 z13 r13 X13 Y13 

  

            if i0 > 157 

                x13 = X4(i0 : yhire + count, :); 

                y13 = Z4(i0 : yhire + count, :); 

                count = count + 1; 

            else 

                x13 = X4(i0 : yhire, :); 

                y13 = Z4(i0 : yhire, :); 

            end 

            [n h] = size(x13); 

            for i = 1 : n 

                for j = 1 : h 

                    if x13(i, j) >= 0 

                    theta13(i, j) = atan(y13(i, j), x13(i, j)); 

                    r13(i, j) = (x13(i, j)^2 + y13(i, j)^2)^0.5; 

                    X13(i, j) = r13(i, j) * cos(theta13(i, j) + deg); 

                    Y13(i, j) = r13(i, j) * sin(theta13(i, j) + deg); 

                end 

            end 

            X13(isnan(X13)) = 0; 

            Y13(isnan(Y13)) = 0; 

                if i0 > 157 

                X4(i0 : yhire + count, :) = X13; 

                Z4(i0 : yhire + count, :) = Y13; 

            else 
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                X4(i0 : yhire, :) = X13; 

                Z4(i0 : yhire, :) = Y13; 

            end 

                X4 = X4; 

                Z4 = Z4; 

            end 

  

            aoa = -AOA(1,T) / 180 * pi; 

            x14 = X4 - X4(1, 1); 

            y14 = Z4 - Z4(1, 1); 

            z14 = Y3; 

            [n h] = size(x14); 

            for i = 1 : n 

                for j = 1 : h 

                    theta14(i, j) = atan2(y14(i, j), x14(i, j)); 

                    r14(i, j) = (x14(i, j)^2 + y14(i, j)^2)^0.5; 

                    X14(i, j) = r14(i, j) * cos(theta14(i, j) + aoa); 

                    Y14(i, j) = r14(i, j) * sin(theta14(i, j) + aoa); 

                end 

            end 

            X14(isnan(X14)) = 0; 

            Y14(isnan(Y14)) = 0; 

            Xfin(1 : yhire, :) = X14; 

            Yfin(1 : yhire, :) = Y3; 

            Zfin(1 : yhire, :) = Y14; 

            Xfin(yhire + 1:2 * yhire, :) = X14; 

            Yfin(yhire + 1:2 * yhire, :) = -Y3; 

            Zfin(yhire + 1:2 * yhire, :) = Y14; 

            p1 = surf(Xfin, Yfin + 5,Zfin); 

            set(p1, 'edgecolor', 'none', 'facecolor', 'k');   

  

            lighting phong; 

            light('position', [1, -1, 1]); 

            axis equal; 

  

            set(gca, 'XGrid', 'on', 'YGrid', 'on', 'ZGrid', 'on'); 
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            xlabel('{\itx / c}'); 

            hx = get(gca, 'xlabel'); 

            ylabel('{\ity / c}'); 

            hy = get(gca, 'ylabel'); 

            zlabel('{\itz / c}'); 

            hz = get(gca, 'zlabel'); 

            xlim([0 1020]); 

            xlim([0 700]); 

            ylim([ -300 300]); 

            zlim([ -300 100]); 

            set(gca, 'xtick', 0 : 100 : 1020); 

            set(gca, 'ytick', -300 : 100 : 300); 

            set(gca, 'ztick', -300 : 100 : 100); 

  

            view(0, 0); 

            cam = 35; 

            camorbit(cam, 40);                

  

            xc = (xu + xd) / 2; 

            yc = (yf + yb) / 2; 

            zc = (zu + zd) / 2; 

           

            %% Vortex Core Center Detection%% 

            N = 36; 

  

            l0 = ((xd - xc)^2 + (yb - yc)^2)^0.5; 

            nr0 = floor(l0 / 10); 

            xr = zeros(floor((zu - zd) / 10), nr0, N); 

            yr = zeros(floor((zu - zd) / 10), nr0, N); 

            zr = zeros(floor((zu - zd) / 10), nr0, N); 

  

            xmeshnum = zeros(N, 1); 

            deg2 = atan2((yb - yc), (xd - xc)); 

            for nt = 1 : N 

                deg = (nt - 1) / N * 2 * pi - pi; 

                if (deg <= deg2 && deg >= -deg2) || (deg >= pi - deg2) || (deg <= -pi + 
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deg2) 

                    l = abs((xd - xc) / cos(deg)); 

                else 

                    l = abs((yb - yc) / sin(deg)); 

                end 

                nr = floor(l / 10); 

                xmeshnum(nt, 1) = nr; 

                for ir = 1 : nr 

                    for k = 1 : floor((zu - zd) / 10) 

                        xr(k, ir, nt) = (ir - 1) * 10 * cos(deg) + xc; 

                        yr(k, ir, nt) = (ir - 1) * 10 * sin(deg) + yc; 

                        zr(k, ir, nt) = (k - 1) * 10 + zd; 

                    end 

                end 

                p = mesh(xr(:, 1 : nr, nt),yr(:, 1 : nr, nt),zr(:, 1 : nr, nt)); 

                set(p, 'edgecolor', 'k', 'facecolor', 'none'); 

            end 

  

            xrnon = (xr - min(min(min(x)))) / 10 + 1; 

            yrnon = (yr - min(min(min(y)))) / 10 + 1; 

            zrnon = (zr - min(min(min(z)))) / 10 + 1; 

  

            Ur = zeros(floor((zu - zd) / 10), nr0, N); 

            Vr = zeros(floor((zu - zd) / 10), nr0, N); 

            Wr = zeros(floor((zu - zd) / 10), nr0, N); 

            omegar = zeros(floor((zu - zd) / 10), nr0, N); 

            omegaxr = zeros(floor((zu - zd) / 10), nr0, N); 

            omegayr = zeros(floor((zu - zd) / 10), nr0, N); 

            omegazr = zeros(floor((zu - zd) / 10), nr0, N); 

  

            for nt = 1 : N 

                for ir = 1 : nr0 

                    for k = 1 : floor((zu - zd) / 10) 

                        if ir <= xmeshnum(nt, 1) 

                            for I = floor(xrnon(k, ir, nt)) : floor(xrnon(k, ir, nt)) + 

1 
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                                for J = floor(yrnon(k, ir, nt)) : floor(yrnon(k, ir, nt)) 

+ 1 

                                    for K = floor(zrnon(k, ir, nt)) : floor(zrnon(k, ir, 

nt)) + 1 

                                        if (I > 0 && I <= nx) && (J > 0 && J <= ny) && 

(K > 0 && K <= nz) 

                                            Ur(k, ir, nt) = U(K, J, I) * (1 - abs(xrnon(k, 

ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + Ur(k, ir, nt); 

                                            Vr(k, ir, nt) = V(K, J, I) * (1 - abs(xrnon(k, 

ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + Vr(k, ir, nt); 

                                            Wr(k, ir, nt) = W(K, J, I) * (1 - abs(xrnon(k, 

ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + Wr(k, ir, nt); 

                                            omegar(k, ir, nt) = omega0(K, J, I) * (1 - 

abs(xrnon(k, ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + omegar(k, ir, nt); 

                                            omegaxr(k, ir, nt) = omegax0(K, J, I) * (1 

- abs(xrnon(k, ir, nt) - I))... 
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                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + omegaxr(k, ir, nt); 

                                            omegayr(k, ir, nt) = omegay0(K, J, I) * (1 

- abs(xrnon(k, ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + omegayr(k, ir, nt); 

                                            omegazr(k, ir, nt) = omegaz0(K, J, I) * (1 

- abs(xrnon(k, ir, nt) - I))... 

                                                                 * (1 - abs(yrnon(k, ir, 

nt) - J))... 

                                                                 * (1 - abs(zrnon(k, ir, 

nt) - K))... 

                                                         + omegazr(k, ir, nt); 

                                        end 

                                    end 

                                end 

                            end 

                        else 

                            xr(k, ir, nt) = xr(k, xmeshnum(nt, 1), nt); 

                            yr(k, ir, nt) = yr(k, xmeshnum(nt, 1), nt); 

                            zr(k, ir, nt) = zr(k, xmeshnum(nt, 1), nt); 

                        end 

                    end 

                end 

            end 

            s3 = patch(isosurface(xr, yr, zr, omegar * 0.27 / 0.5, omel)); 

            set(s3, 'FaceColor',[0.3 0.7 0.7], 'EdgeColor', 'none', 'FaceAlpha', 0.7);  

             

            pnum = 50; 

            omep0 = zeros(pnum, 1, N); 
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            omexp0 = zeros(pnum, 1, N); 

            omeyp0 = zeros(pnum, 1, N); 

            omezp0 = zeros(pnum, 1, N); 

            Up0 = zeros(pnum, 1, N); 

            Vp0 = zeros(pnum, 1, N); 

            Wp0 = zeros(pnum, 1, N); 

            xp0 = zeros(pnum, 1, N); 

            yp0 = zeros(pnum, 1, N); 

            zp0 = zeros(pnum, 1, N); 

            for nt = 1 : N 

                for ir = 1 : xmeshnum(nt, 1) 

                    for k = 1 : floor((zu - zd) / 10) 

                        count = 0; 

                        count1 = 0; 

                        for I = ir - 1 : ir + 1 

                            for K = k - 1 : k + 1 

                                if (I > 0 && I <= xmeshnum(nt, 1)) && (K > 0 && K <= 

floor((zu - zd) / 10)) 

                                    count1 = count1 + 1; 

                                    if omegar(k, ir, nt)> = omegar(K, I, nt) 

                                        count = count + 1; 

                                    end 

                                end 

                            end 

                        end 

                        if count == count1 

                            c = 0; 

                            for ip = 1 : pnum 

                                if omegar(k, ir, nt)> = omep0(ip, 1, nt) && c == 0 

                                    c = 1; 

                                    for ip2 = pnum : -1 : ip + 1 

                                        xp0(ip2, 1, nt) = xp0(ip2 - 1, 1, nt); 

                                        yp0(ip2, 1, nt) = yp0(ip2 - 1, 1, nt); 

                                        zp0(ip2, 1, nt) = zp0(ip2 - 1, 1, nt); 

                                        omep0(ip2, 1, nt) = omep0(ip2 - 1, 1, nt); 

                                        omexp0(ip2, 1, nt) = omexp0(ip2 - 1, 1, nt); 
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                                        omeyp0(ip2, 1, nt) = omeyp0(ip2 - 1, 1, nt); 

                                        omezp0(ip2, 1, nt) = omezp0(ip2 - 1, 1, nt); 

                                        Up0(ip2, 1, nt) = Up0(ip2 - 1, 1, nt); 

                                        Vp0(ip2, 1, nt) = Vp0(ip2 - 1, 1, nt); 

                                        Wp0(ip2, 1, nt) = Wp0(ip2 - 1, 1, nt); 

                                    end 

                                    xp0(ip, 1, nt) = xr(k, ir, nt); 

                                    yp0(ip, 1, nt) = yr(k, ir, nt); 

                                    zp0(ip, 1, nt) = zr(k, ir, nt); 

                                    omep0(ip, 1, nt) = omegar(k, ir, nt); 

                                    omexp0(ip, 1, nt) = omegaxr(k, ir, nt); 

                                    omeyp0(ip, 1, nt) = omegayr(k, ir, nt); 

                                    omezp0(ip, 1, nt) = omegazr(k, ir, nt); 

                                    Up0(ip, 1, nt) = Ur(k, ir, nt); 

                                    Vp0(ip, 1, nt) = Vr(k, ir, nt); 

                                    Wp0(ip, 1, nt) = Wr(k, ir, nt); 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

  

            N0 = peaknum(1, Vnum); 

            N1 = peaknum(2, Vnum); 

            count = 0; 

            for nt = N0 : N1 

                if peaknum(nt + 2, Vnum) == 0 

                else 

                    count = count + 1; 

                    omep(count, 1) = omep0(peaknum(nt + 2, Vnum), 1, nt); 

                    omexp(count, 1) = omexp0(peaknum(nt + 2, Vnum), 1, nt); 

                    omeyp(count, 1) = omeyp0(peaknum(nt + 2, Vnum), 1, nt); 

                    omezp(count, 1) = omezp0(peaknum(nt + 2, Vnum), 1, nt); 

                    Up(count, 1) = Up0(peaknum(nt + 2, Vnum), 1, nt); 

                    Vp(count, 1) = Vp0(peaknum(nt + 2, Vnum), 1, nt); 
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                    Wp(count, 1) = Wp0(peaknum(nt + 2, Vnum), 1, nt); 

                    xp(count, 1) = xp0(peaknum(nt + 2, Vnum), 1, nt); 

                    yp(count, 1) = yp0(peaknum(nt + 2, Vnum), 1, nt); 

                    zp(count, 1) = zp0(peaknum(nt + 2, Vnum), 1, nt); 

                    [xs ys zs] = sphere(100); 

                    a = 10; 

                    surf(xs * a + xp(count, 1),ys * a + yp(count, 1),zs * a + zp(count, 

1),... 

                        'facecolor', 'r', 'edgecolor', 'none'); 

                end 

            end 

            Np = count; 

            xpp = xp; 

            xpp(Np + 1, 1) = xp(1, 1); 

            ypp = yp; 

            ypp(Np + 1, 1) = yp(1, 1); 

            zpp = zp; 

            zpp(Np + 1, 1) = zp(1, 1); 

            plot3(xpp, ypp, zpp,'r--', 'linewidth', 2); 

            patch(xpp, ypp, zpp, 'r', 'edgecolor', 'none', 'facealpha', 0.7); 

             

            %% Profile Area Calculation %% 

            %Az 

            Sxy = 0; 

            for nt = 1 : Np 

                nt1 = nt + 1; 

                if nt == Np 

                    nt1 = 1; 

                end 

                a = ((xp(nt, 1) - xp(nt1, 1))^2 + (yp(nt, 1) - yp(nt1, 1))^2)^0.5; 

                b = ((xp(nt, 1) - xc)^2 + (yp(nt, 1) - yc)^2)^0.5; 

                c = ((xp(nt1, 1) - xc)^2 + (yp(nt1, 1) - yc)^2)^0.5; 

                d = (a + b + c) / 2; 

                Sxy = Sxy + (d * (d - a) * (d - b) * (d - c))^0.5; 

                patch([xc xp(nt, 1) xp(nt1, 1) xc],[yc yp(nt, 1) yp(nt1, 1) yc],... 

                    [zc zp(nt, 1) zp(nt1, 1) zc], 'r', 'edgecolor', 'none', 'facealpha', 
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0.7); 

            end 

  

            %Ax 

            Syzp = 0; 

            Syzn = 0; 

            zpmin = min(zp); 

            for nt = 1 : Np 

                nt1 = nt + 1; 

                if nt == Np 

                    nt1 = 1; 

                end 

                pon = (yp(nt1, 1) - yc) * (zp(nt, 1) - zpmin) - (yp(nt, 1) - yc) * (zp(nt1, 

1) - zpmin); 

                a = ((yp(nt, 1) - yp(nt1, 1))^2 + (zp(nt, 1) - zp(nt1, 1))^2)^0.5; 

                b = ((yp(nt, 1) - yc)^2 + (zp(nt, 1) - zpmin)^2)^0.5; 

                c = ((yp(nt1, 1) - yc)^2 + (zp(nt1, 1) - zpmin)^2)^0.5; 

                d = (a + b + c) / 2; 

                 

                if pon > 0 

                    Syzp = Syzp + (d * (d - a) * (d - b) * (d - c))^0.5; 

                    patch([xc xp(nt, 1) xp(nt1, 1) xc],[yc yp(nt, 1) yp(nt1, 1) yc],... 

                        [zpmin zp(nt, 1) zp(nt1, 1) zpmin], 'r', 'edgecolor', 'none', 

'facealpha', 0.7); 

                elseif pon < 0 

                    Syzn = Syzn + (d * (d - a) * (d - b) * (d - c))^0.5; 

                    patch([xc xp(nt, 1) xp(nt1, 1) xc],[yc yp(nt, 1) yp(nt1, 1) yc],... 

                        [zpmin zp(nt, 1) zp(nt1, 1) zpmin], 'b', 'edgecolor', 'none', 

'facealpha', 0.7); 

                end 

            end 

             

            %% Circulation Calculation %% 

            a = 100; 

            I = 0; 

            da = 10; 
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            for i = -a : da : a 

                I = I + 1; 

                J = 0; 

                for j = -a : da : a 

                    J = J + 1; 

                    pmx0(J, I) = 0; 

                    pmy0(J, I) = i; 

                    pmz0(J, I) = j; 

                end 

            end 

            [nj, ni] = size(pmx0); 

             

            for nt = 1 : Np 

                nts = nt - 1; 

                if nts == 0 

                    nts = Np; 

                end 

                ntl = nt + 1; 

                if ntl == Np + 1 

                    ntl = 1; 

                end 

                theta2(nt,1) = (atan2(zp(ntl, 1) - zp(nts, 1),((xp(ntl, 1) - xp(nts, 1))^2 

+ (yp(ntl, 1) - yp(nts, 1))^2)^0.5)); 

                theta1(nt, 1) = (atan2(yp(ntl, 1) - yp(nts, 1),xp(ntl, 1) - xp(nts, 1))); 

 

                rx1 = [cos(theta1(nt, 1)) -sin(theta1(nt, 1)) 0 

                    sin(theta1(nt, 1)) cos(theta1(nt, 1)) 0 

                    0 0 1]; 

                rx2 = [cos(theta2(nt, 1)) 0 -sin(theta2(nt, 1)) 

                    0 1 0 

                    sin(theta2(nt, 1)) 0 cos(theta2(nt, 1))]; 

                I = 0; 

                for i = -a : da : a 

                    I = I + 1; 

                    J = 0; 

                    for j = -a : da : a 
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                        J = J + 1; 

                        x0y0z0 = [pmx0(J, I) 

                            pmy0(J, I) 

                            pmz0(J, I)]; 

                        xyz = rx1 * rx2 * x0y0z0; 

                        pmx1(J, I) = xyz(1, 1); 

                        pmy1(J, I) = xyz(2, 1); 

                        pmz1(J, I) = xyz(3, 1); 

                    end 

                end 

  

                if Vnum == 5 

                    if nt == Np / 2 - 1 

                        pmx(:, :, nt + 1) = pmx1 + xp(nt + 1, 1); 

                        pmy(: ,:, nt + 1) = pmy1 + yp(nt + 1, 1); 

                        pmz(:, :, nt + 1) = pmz1 + zp(nt + 1, 1); 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    elseif nt == Np / 2 || nt == Np / 2 + 1 

                    elseif nt == Np / 2 + 2 

                        pmx(:, :, nt - 1) = pmx1 + xp(nt - 1, 1); 

                        pmy(:, :, nt - 1) = pmy1 + yp(nt - 1, 1); 

                        pmz(:, :, nt - 1) = pmz1 + zp(nt - 1, 1); 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    else 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    end 

                elseif peaknum(3, Vnum)~ = 0 

                    pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                    pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                    pmz(:, :, nt) = pmz1 + zp(nt, 1); 

Akita University



127 

 

                else 

                    if nt == 2 

                        pmx(:, :, nt - 1) = pmx1 + xp(nt - 1, 1); 

                        pmy(:, :, nt - 1) = pmy1 + yp(nt - 1, 1); 

                        pmz(:, :, nt - 1) = pmz1 + zp(nt - 1, 1); 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    elseif nt == Np - 1 

                        pmx(:, :, Np) = pmx1 + xp(nt + 1, 1); 

                        pmy(:, :, Np) = pmy1 + yp(nt + 1, 1); 

                        pmz(:, :, Np) = pmz1 + zp(nt + 1,1); 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    elseif nt == Np 

                    else 

                        pmx(:, :, nt) = pmx1 + xp(nt, 1); 

                        pmy(:, :, nt) = pmy1 + yp(nt, 1); 

                        pmz(:, :, nt) = pmz1 + zp(nt, 1); 

                    end 

                end 

            end 

  

            for nt = 1 : Np 

                p = mesh(pmx(:, :, nt),pmy(:, :, nt),pmz(:, :, nt)); 

                set(p, 'edgecolor', 'k', 'facecolor', 'none'); 

            end 

  

            xrnon = (pmx - min(min(min(x)))) / 10 + 1; 

            yrnon = (pmy - min(min(min(y)))) / 10 + 1; 

            zrnon = (pmz - min(min(min(z)))) / 10 + 1; 

  

            Ucir = zeros(nj, ni, Np); 

            Vcir = zeros(nj, ni, Np); 

            Wcir = zeros(nj, ni, Np); 
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            omegacir = zeros(nj, ni ,Np); 

            omegaxcir = zeros(nj, ni, Np); 

            omegaycir = zeros(nj, ni, Np); 

            omegazcir = zeros(nj, ni, Np); 

            omeperp = zeros(nj, ni, Np); 

             

            for nt = 1 : Np 

                nts = nt - 1; 

                if nts == 0 

                    nts = Np; 

                end 

                ntl = nt + 1; 

                if ntl == Np + 1 

                    ntl = 1; 

                end 

                dx = xp(ntl,1) - xp(nts,1); 

                dy = yp(ntl,1) - yp(nts,1); 

                dz = zp(ntl,1) - zp(nts,1); 

                for i = 1 : ni 

                    for j = 1 : nj 

                        for I = floor(xrnon(j,i,nt)) : floor(xrnon(j,i,nt)) + 1 

                            for J = floor(yrnon(j,i,nt)) : floor(yrnon(j,i,nt)) + 1 

                                for K = floor(zrnon(j,i,nt)) : floor(zrnon(j,i,nt)) + 1 

                                    if (I > 0 && I <= nx) && (J > 0 && J <= ny) && (K > 

0 && K <= nz) 

                                        Ucir(j, i, nt) = U(K, J, I) * (1 - abs(xrnon(j, 

i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + Ucir(j, i, nt); 

                                        Vcir(j, i, nt) = V(K, J, I) * (1 - abs(xrnon(j, 

i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 
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- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + Vcir(j, i, nt); 

                                        Wcir(j, i, nt) = W(K, J, I) * (1 - abs(xrnon(j, 

i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + Wcir(j, i, nt); 

                                        omegacir(j, i, nt) = omega0(K, J, I) * (1 - 

abs(xrnon(j, i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + omegacir(j, i, nt); 

                                        omegaxcir(j, i, nt) = omegax0(K, J, I) * (1 - 

abs(xrnon(j, i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + omegaxcir(j, i, nt); 

                                        omegaycir(j, i, nt) = omegay0(K, J, I) * (1 - 

abs(xrnon(j, i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 

                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + omegaycir(j, i, nt); 

                                        omegazcir(j, i, nt) = omegaz0(K, J, I) * (1 - 

abs(xrnon(j, i, nt) - I))... 

                                                             * (1 - abs(yrnon(j, i, nt) 

- J))... 
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                                                             * (1 - abs(zrnon(j, i, nt) 

- K))... 

                                                     + omegazcir(j, i, nt); 

                                    end 

                                end 

                            end 

                        end 

                        omeperp(j, i, nt) = abs(omegaxcir(j, i, nt) * cos(atan2(dy, dx)) 

* cos(atan2(dz, (dx^2 + dy^2)^0.5)))... 

                             + abs(omegaycir(j, i, nt) * cos(atan2(dx, dy)) * 

cos(atan2(dz, (dx^2 + dy^2)^0.5)))... 

                             + abs(omegazcir(j, i, nt) * cos(atan2(dy, dz)) * 

cos(atan2(dx, (dz^2 + dy^2)^0.5))); 

                    end 

                end 

                AAAA = omegacir - omeperp; 

                 

                count = zeros(nj, ni); 

                count((nj + 1) / 2,(ni + 1) / 2) = 1; 

                for k = 1 : (nj - 1) / 2 - 1 

                    for i = (ni + 1) / 2 - k : (ni + 1) / 2 + k 

                        for j = (nj + 1) / 2 - k : (nj + 1) / 2 + k 

                            if omeperp(i, j, nt) > 20 * 0.25 

                                for I = i - 1 : i + 1 

                                    for J = j - 1 : j + 1 

                                        if count(J, I) == 1 

                                            count(j, i) = 1; 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

                for i = 1 : ni 

                    for j = 1 : nj 
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                        if count(j, i) == 0 

                            omeperp(i, j, nt) = 0; 

                        end 

                    end 

                end                     

            end 

  

            f = figure; 

            s3 = patch(isosurface(pmx, pmy, pmz, omeperp * 0.27 / 0.5, omel)); 

            set(s3, 'FaceColor', [0.3 0.7 0.7], 'EdgeColor', 'none', 'FaceAlpha', 0.9);  

            xlim([0 1020]); 

            ylim([-300 300]); 

            zlim([-300 300]); 

            view(0, 0); 

            cam = 35; 

            camorbit(cam, 40); 

  

            circu = 0; 

            l = 0; 

            for nt = 1 : Np 

                nt1 = nt + 1; 

                if nt1 > Np 

                    nt1 = 1; 

                end 

                l = l + ((xp(nt1, 1) - xp(nt, 1))^2 + (yp(nt1, 1) - yp(nt, 1))^2 + (zp(nt1, 

1) - zp(nt, 1))^2)^0.5; 

            end 

            counttt = 0; 

            for nt = 1 : Np 

                nt1 = nt + 1; 

                if nt1 > Np 

                    nt1 = 1; 

                end 

                nt0 = nt - 1; 

                if nt0 < 1 

                    nt0 = Np; 
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                end 

                l0 = (((xp(nt1, 1) - xp(nt, 1))^2 + (yp(nt1, 1) - yp(nt, 1))^2 + (zp(nt1, 

1) - zp(nt, 1))^2)^0.5... 

                     + ((xp(nt0, 1) - xp(nt, 1))^2 + (yp(nt0, 1) - yp(nt, 1))^2 + (zp(nt0, 

1) - zp(nt, 1))^2)^0.5) / 2; 

                l0 = l0 / l; 

                counttt = counttt + l0; 

                for i = 1 : ni 

                    for j = 1 : nj 

                        if omeperp(j, i, nt) > 20 * 0.25 

                            circu = circu + omeperp(j, i, nt) * 10 * 10 * 10^(-6) * l0; 

                        end 

                    end 

                end 

            end 

  

            if Vnum == 2 || Vnum == 4 

                Sxy = -Sxy; 

                Syzp = -Syzp; 

                Syzn = -Syzn; 

            end 

            A(T, 1 + ((Vnum - 1) * 9)) = T; 

            A(T, 2 + ((Vnum - 1) * 9)) = (T - 1) / 12; 

            A(T, 3 + ((Vnum - 1) * 9)) = Sxy; 

            A(T, 4 + ((Vnum - 1) * 9)) = Syzp; 

            A(T, 5 + ((Vnum - 1) * 9)) = Syzn; 

            A(T, 6 + ((Vnum - 1) * 9)) = Syzp - Syzn; 

            A(T, 7 + ((Vnum - 1) * 9)) = (Sxy^2 + (Syzp - Syzn)^2)^0.5; 

            A(T, 8 + ((Vnum - 1) * 9)) = circu; 

        else 

            A(T,1 + ((Vnum - 1) * 9)) = T; 

            A(T, 2 + ((Vnum - 1) * 9)) = (T - 1) / 12; 

            A(T, 3 + ((Vnum - 1) * 9)) = 0; 

            A(T, 4 + ((Vnum - 1) * 9)) = 0; 

            A(T, 5 + ((Vnum - 1) * 9)) = 0; 

            A(T, 6 + ((Vnum - 1) * 9)) = 0; 
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            A(T, 7 + ((Vnum - 1) * 9)) = 0; 

            A(T, 8 + ((Vnum - 1) * 9)) = 0; 

        end 

    end 

end 
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