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Chapter 1: Introduction

CHAPTER 1

Introduction

Slurry transport technology has been employed to pump solid-
liguid mixtures through pipelines in dredging operations, mining and
waste-disposal applications. The technology has been developed for
decades, although most research reports do not cover major pipelines
over long distances. For pipeline designers it is important to determine
the flow velocity and hydraulic gradient of slurry transport systems,
based on the transport conditions such as pipe diameter, density and size
of solids, and concentration. It is worth noting that, due to the complex
behaviour of mixed-sized slurry flows, most correlations have been
inclined to develop models for single size slurries. However, in
commercial slurries the single-sized slurries are seldom encountered. It
results in inaccurate predictions ™. Moreover, the correlations are
empirical and restricted to the range of transport conditions, as

summarised by Kazanskij .

The object of this study is to develop analytical models of
hydraulic gradient for mixed-sized slurry flows in pipes, confirming the

applicability of the model with extensive experimental data.



Akita University

Chapter 1: Introduction

The study covers three main aspects: (1) database of slurry flow®!,
(2) single size model of settling slurry flow *!, and (3) innovated models
for mixed-sized slurry flows [®.

The researchers of pipeline design over the years have performed
experimental work to analyse the behaviour of slurries. However, some
experimental data are not readily available in reports, or lack crucial
information of temperature, density, and viscosity of fluids. The focus of
the database in chapter 2 was, therefore, aimed at developing a program
for slurry transport database: the functions are; to accumulate, input,
edit, sort, store the data, and display the results in graphical forms for
comparison with predictions.

The information of data includes transport conditions of pipe
diameter, particle size, flow velocity, concentrations, fluid temperature,
and hydraulic gradient. The database consisted of the representative data
of Shook et al. !® Gillies ", and others ). Also contained is
experimentals from the author’s laboratory, conducted in small pipelines

over decades ¥11*% as shown in Figure 1.1.

In chapter 3, an analytical model ' was proposed and then
verified by using the slurry flow database. The model was established for
single size settling slurry flows through the analysis of energy
components needed to transport solids in pipes. The design procedure for
the optimum operation of the pipeline was also discussed, based on the

parameter of specific energy consumption.
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Chapter 4 covered two types of innovated models [ developed for
predicting hydraulic gradient i of mixed-sized slurry flows. The
deviations of predicted hydraulic gradients from the experimentals was
highlighted when the single size model was applied to the data of multi-
sized slurry flow. The innovated models depend on particle size
distribution: for coarse-coarse and coarse-fine slurries. The models were
confirmed by using experimental data from various slurry transport
systems. Since the Wasp et al. method [**1'l*2] has held great promise in
the prediction of i, comparison was drawn with the analytical models, as
well as the correlation of Condolios-Chapus 3!, Limitations of all the

prediction methods were also discussed.

It was concluded that, the innovated models could be useful for
predicting pressure drop in practical pipeline systems. The accumulated
data in the database, which covered vast transport conditions, was vital
for verifying the agreement of the models with the experimentals

discussed in this study.
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CHAPTER 2

Development and Application of Slurry
Transport Database

The transport conditions of solids in slurry pipelines cause the
flow behaviours of solid-liquid mixture to vary strongly and affect the
hydraulic gradients in the systems. Since any transport design
correlations of slurry should be confirmed by a wide range of data,
experiments in various flow regimes have been carried out over the years

by many researchers.

The study in this chapter was, therefore, aimed at developing a
slurry transport database for accumulation, input, editing, sorting,
storing of the data available in literature, and displaying the results in
graphical form for comparison. A basic processing procedure was
adopted for the design of the program. Then a flowchart of the program
was developed to analyse the data. The flowchart consisted of three sub-
flowcharts: (1) input — for the input and addition of data; (2) editing -
for modifying and standardising all the data into the Excel CSV form;
and (3) graph displays of the data — for comparison of the researchers’
data on log-log graphs. In addition Star graphs were used to give a clear
description of the transport conditions for the researchers. The database

was applied for the verification of proposed correlations.
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2.1 Introduction

For the slurry flow, the optimal transport conditions of pipe
diameter, flow velocity, concentration, and pressure loss should be
evaluated based on transport capacity and maximum particle diameter.
The selection of the pump and the pipeline design, and evaluation of the
operating cost were pushed forward by using these parameters. The
proposed correlations of pressure loss in reported studies do not
guarantee the accuracy of the prediction in the practical pipelines of

mixed-sized slurries.

Although the pressure loss analysis by numerical simulations gives
a clear calculation result, it has not widely been used in the practical
design; there is limited access to special software and super computers,
as pointed out by Jacobs 1. Whether designers estimate the hydraulic
gradient with the correlations or the numerical simulations, the evaluated
results should be confirmed with the specific experimental data of slurry
pipelines. It is expected that the data of the slurry transport conducted
by universities and institutes would be extensive. However, there is great
concern about the scatter and loss of the data when the researchers leave
or the slurry transport project reaches completion. Therefore, it is
valuable to accumulate, arrange, and store the data in the unified form.

This chapter explores the database software developed not only for

the input, editing, and sorting of the data, but also the comparison of
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calculated results with graphical representations. In addition, the data
characterisation of researchers was performed. The database is vital for

the verification of proposed correlations.

2.2 The Database Management System (DBMS)

In this study, the database management system (DBMS) was
constructed by using the Visual Basic 6.0. The programming language
was developed for computers operating on Microsoft Windows. Before
Visual Basic was created, the popular languages for developing a user-
friendly interface were C or C++. However, they usually require lots of
lines of code. Microsoft introduced Visual Basic in 1991, as Visual
Basic 1.0 [?1. It became instantly popular as a programming language that
was easy to learn and quickly led to a whole new generation of Windows
software. Over the years, Microsoft continued to enhance the Visual
Basic, with support systems for databases, ActiveX, COM, and so on.

The two main features that make Visual Basic different from the
traditional programming tools are:

(1) The user interface is literally drawn-similar to using the paint
program.
(2) The sequence of procedures is controlled by users’ initiated

actions, e.g., buttons, text boxes, and others, instead of a

predetermined sequence of procedures in the program.
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Once the interface has been drawn on the monitor, the
programming can start. However, unlike traditional languages where a
program runs sequentially from first line of commands to bottom, Visual
Basic actions respond to specific instructions written by the programmer.
These instructions, which are called Event Procedures in Visual Basic,
instructs the program to respond to different events, such as mouse click.
A combination of the Event Procedures is called a “Project” in Visual
Basic. In summary, designing a Visual Basic application follows this
procedure:
a) Design the window for the user.
b) Choose the events for the window, which the project will follow.
c) Write the instructions, which the events will follow.

A complete set of these steps should enable the program to run according

to the event procedures, which makes it more user-friendly.

~10 ~
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2.3 The Design and Functions of the Database Management System

2.3.1 Designs of the database program

The database management system (DBMS) in this study was
constructed by using the Visual Basic 2006, which allows users not only
to input data and edit existing information with the Microsoft Windows
operating system, but also represent graphical display on the monitor.
The most important aspect of database design is not its complexity but
instead a simple design, which includes careful focus on the information,
that is most important. The design must also allow for accurate data
capture and effective long term management and maintenance of the data,
as indicated by Morris [¥1. The design for the slurry transport database
was based on the warehouse-type of database, which puts emphasis on

the function of storing data in unified format.

2.3.2 Database items entry

For constructing the database in this study the data was
accumulated, input by Microsoft Excel, and saved in the CSV format
(x.csv). Although experimental conditions of slurry transport have been
thoroughly described in some reports, there is often little known about
the information: water temperature, settling velocity of the solids,

friction factor of the pipe, and so on. Moreover, all data should be

~12 ~
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unified by unit conversion, especially for U.S. customary units. The

items used to characterise transport conditions are shown in Table 2. 1.

~13 ~
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Table2.1 Input items for transport conditions in the database

Cell Input item | Representation Units
A No. Data number (-)

B Data name | Researcher’s name (=)

C Sample Kinds of solids (=)

D D Pipe diameter (cm)

E d Particle diameter (cm)

F K Area index (-)

G Vi Terminal velocity (cm/s)
H Cyg Drag coefficient (=)

I Ds Solids density (g/cm?®)
J t Temperature (°C)

K Vi Mean flow velocity (cm/s)
L C Delivered concentration (%)

M i Hydraulic gradient of slurry flow | (mmAg/m)
N Index Index of A-Re Equation (=)

@) Coefficient | Coefficient of 1-Re Equation (=)

~14 ~



Akita University

Chapter 2: Development and Application of Slurry Transport Database

2.3.3 Functions of the database program

For constructing the database the data was accumulated through
three kinds of methods: 1) making standardised table of Excel format
transferred from original data, 2) digitisation of plotted experimental
results in graphical form by using scanning software, 3) direct input of
data into the unique table on the monitor. According to the design
concept by Fujita !*!, the simplified processing procedure of the data is

required, as shown in Figure 2.2.

Figure 2.3 shows the flowchart of the DBMS, which was used for
collection of programs that enables users to create and maintain the
database, as defined by Elmasri and Navathe . It consists of three
subprograms: input, editing, and graphical representation of the data.
The subflowchart of the direct input function in the database program is

shown in Figure 2.4.

~15 ~
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Figure 2.2  Data processing procedure

~16 ~
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‘ Start '

1 II
Data Data Graphical
Input Editing Representation
Save as
|
!
Yes
Any other work?
No

Figure 2. 3 Flowchart of database management system

~17 ~
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I. Data Input

Data table display

New compilation Reference

Data input Data addition and
deletion

Auto save

l

Figure 2.4  Subflowchart of input and addition of data

~18 ~



Akita University

Chapter 2: Development and Application of Slurry Transport Database

The input of data table shown in Figure 2.5 ensures accurate
processing for users. The vital information against the input should be
limited for the design of slurry transport. The data box of “Area Index”
on the table represents the shape factor '®! of irregular-shaped solids:
sand, 1.5; coal, 1.7 "), The data boxes of “Index of Power Function” and
“Coefficient of Power Function” were prepared for representing the A-Re
relationship in the form of power function, which indicates the
characteristics of water flow in pipelines. The input procedure on the
monitor should be repeated until no further experimental data remain. If
some reports lack the experimental results of water flowing alone, the 1-

Re relationship should be approximated by the Blasius equation;

J=03164Re™* (2. 1)

Table 2.2 shows a sample of the standardized data in the Excel
CSV format used to construct the database. Each data item in the three
thousand more data used in this study has 66 different types of data
elements stored in it. That is, for each of the 10 items of data in the
sample, they correspond with records of 13 data elements that include;

data name, researcher name, pipe diameter, particle diameter, and others.
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Figure 2.5 Data Table (Edit) for input of data
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Figure 2.6 shows the subflowchart of the editing function, which
enables to search for specified range of data, make rearrangement, and
save it after accessing reference files in the CSV format. If some ranges
of flow velocity, delivered concentration, and hydraulic gradient could
be fixed on the specification table of the monitor screen, as shown in
Figure 2.7, the only data required would be displayed. It should be
further developed such that particle size, pipe diameter and researcher’s

name can be specified on the table.
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For graphical representation of results calculated with desired
correlations of hydraulic gradient, two options are prepared as shown in
Figure 2.8. If the process box of “reference to data files” is chosen, the
ranges of transport conditions should be entered by mouse operations. It
allows, on the monitor, the confirmation of the reference data in the files
before the calculating hydraulic gradients. The calculated results could
be automatically registered and displayed in graphs. The other option of
the subflowchart has possibility to compare calculated results with the
saved data, and display the graphs on the monitor. When the Durand-

Condolios correlation 81

0=82u° . (2.2)
where;
-y
¢—I e (2.3)
w
sz CDm
d = ——————— 2.4
an W gD(5-1) (2.4)

is selected, the results give typical i-V, and ¢-y relationships with the

experimental data, as shown in Figures 2. 9 and 2. 10.
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2.4 Characterisation of researchers’ data

In this study, over 3,000 data including experimental results by
Sato et al. [®1 1= [11 \were collected from references with clear transport
conditions. The ranges of experimental data of slurry flow are dependent
on the researchers. The database for verifying correlations of hydraulic
gradient should cover wide range of data. The characterisations of

researchers’ data could be summarised in the form of star graphs.

2.4.1 Laboratory data

Some of the experimental data used in the database were collected
from the Hydraulic Transport laboratory in Akita University. The

experiments have been conducted over decades since the 1960s.

(1) Experimental conditions

Although a 1-inch transparent perspex pipeline is currently being
used, previous tests were carried out in various sizes of pipes. The
diameters ranged from 25.9 mm to 31. 9 mm. Depending on the scope of
research, the solids of diameters in the range of 0.565 mm to 2.18 mm
were used: sand solids; average specific gravity of 2.65, and Bakelite
(polyoxybenzyl methylene glycol anhydride); specific gravity 1.4. The

slurries were transported through the pipeline at mean velocities between
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70 cm/s ~ 230 cm/s, and lower volume concentrations of C < 20 %.

Transport conditions of the experiments are summarised in Table 2.3.

(2) Experimental apparatus and procedure
The pipeline system used in the experiment was closed loop
system, as shown in Figure 1.1. In this system, discharged slurry is

returned back into the mixing tank and re-circulated.

The experimental equipment was consists of the following items:
Pipeline: A transparent acrylic resin pipe of 25.7 m length, set

on the support approximately 1.85 m above the ground. The diameter of

the pipe was 26.15 mm. The inlet and outlet of pipeline loops fed and

discharged slurry in a mixing tank of 260 L capacity in volume.

Pump: A Warman pump (a centrifugal-type pump) was
installed in the experimental system. The pump, shown in Figure 2.11,
can handle slurry in capacities of 0.02 — 14 m3/min, with solids size
range of 20 mm — 200 mm. It was driven by a 3.7 kW electric motor. The
rotational speed of maximum 2,200 revolutions per minute was adjusted

from a control panel to change flow velocities.
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Figure2. 11  Warman pump
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Flowmeter:  An electromagnetic flowmeter with detector and
converter provide continuous flow measurements. In this system, the
devices were installed separately and connected together via cables, as
shown in Figure 2.12. The converter changes electromotive force from
the detector to the flow rate signal. The flowmeter sends the

instantaneous flow rate to the computer.

Pressure transducer: Pressure drops were measured by using a
Differential Pressure Transducer, as shown in Figure 2.13. The pressure
transducer functions at the output power of 1.5 mV/V +1 %, and can be
operated in the safe temperature range of -10 to 70 °C. It can make
highly accurate measurements in the maximum range of 10 kPa working
pressure with maximum line pressure of 2.94 MPa (30 kg/cm?). The
distance of pressure taps on the pipe, connected to the transducer, was
1.89 m. The taps were also used for bleeding air bubbles before

commencing the experiments.
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Figure 2. 12 Schematic composition of devices for measurement of flow rate
(Referred: Yamatake Corporation Smart Electromagnetic
Flowmeter Converter User’s Manual)
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Figure 2. 13  Differential pressure transducer
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The experimental procedure followed the following steps:

(a) After ensuring that the water outlet valve is closed, water is filled
into the mixing tank. Then the pump is started to circulate the
water through pipeline. By using the flow control panel, the
velocity of the water was increased to the maximum, usually 200
m/s. The flow was monitored until the velocity and pressure drop
readings reached stabilised values on the computer.

(b)By using the pressure taps located on the return loop, the air
bubbles were removed from the pipeline. Water measurements
were then recorded.

(c) Solids, which have previously been weighed, were fed into the
mixing tank gradually to avoid chocking the pipeline.

(d) The flow velocity was manually controlled and varied by the dial
on the flow control panel. After the desired velocity was selected
and slurry flow stabilised, mean velocity and hydraulic gradient
measurements displayed on the monitor were recorded.

(e) The weighing cage was used to collect discharged solids. The
solids were weighed and used to determine delivered concentration
of solids.

(f) The process was repeated at regular time intervals of
approximately 10 ~ 15 minutes, in the velocity range of 70 cm/s to
200 cm/s. Water temperature was monitored and measured
throughout the experiment, although no attempt is made to control

it.
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(g) At the section, which is located between the pressure taps on the
pipeline, flow behaviour was observed. With the sections
illuminated by LED lamps, a digital camera was installed to take
images of flow patterns and a video camera captured the movement
of solids. During the experiments with sand, the water was
regularly replaced with fresh water to ensure visibility at the

observation section.

2.4.2 Other researchers’ data

2.4.2.1 Shook et al. data

The main purpose of the experimental research of Shook et al. was
to investigate the effects of the factors — size distribution of particles
and the physical properties of the fluid, which are frequently neglected
by many researchers — on flow behaviour. In the experiment, silica sands
were used as a representative of fine solids instead of the commonly-
used clay, which has a tendency of non-Newtonian behaviour. Fluid
properties, terminal velocity and drag coefficient were considered, as

well as discussion of Newtonian carrier fluids of high viscosity.

(1) Experimental conditions
Two pipeline systems of 2-inch-closed and 4-inch-open loops were
used in the Shook et al. research. The 2-inch loop tests were carried out

after experiments in the open loop showed air bubbles for viscosity u > 2
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cp. Three different kinds of carrier fluids of water, Ethylene glycol, and
Brine were used.

However, only experimental data restricted to carrier fluid of
water was analysed. The temperature of the fluids was varied between 10,
21.11 and 60 °C for the 2-inch pipeline, but kept at a constant 21.11 °C
for tests in the 4-inch pipeline. The range of solids size of density p =
2.65 g/cm® was from 0.198 mm to 0.54 mm. The slurries in both
pipelines were conveyed at mean velocities of about 55.8 cm/s to 378
cm/s. Measurements were made in a wide range of concentrations of 5,
12, 18, 24, 30, 36, and 42 % for closed loop, but varied from 1.4 % to
41.9 % for the open loop pipeline. Summary of the experimental data can

be shown in Table 2.4.

(2) Experimental apparatus and procedure

The experiment procedure for both the 2-inch and 4-inch sand tests
were as follows.

Solids were fed into a mixing tank, and conveyed through the pipe
by a centrifugal pump. A magnetic flow meter was equipped to measure
flow velocity. For pressure drop readings, a Meriam U-tube manometer
was applied. Different sampling methods were used for determination of
particle distribution and concentration. For the 2-inch pipe, a circular
instrument of half-inch diameter and 1-inch long was used to sample half
a kilogram of slurry approximately on the return leg. Diversion method

was used in the 4-inch pipe, where 0.91 kg of slurry was collected as it
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drained back into the mixing tank. Fluid viscosity was measured with a
Brookfield viscometer — a rotational viscometer that uses torque to
determine viscosity. Extensive information can be found in the cited

report of Shook et el. 12!

~ 39~



Akita University

Chapter 2: Development and Application of Slurry Transport Database

'z 001 7 11T | TTE 7 £eo 112 001 7 1’12 7 0709 (D)1
~c 0E~¢ h~¢ 6ETF~+1 ~5 (v) D
. . ) . OFLE 9°L9¢ 6 8EE 0'SLE C6EE | ST9% S 19
I'E€€ CBEE CHEE~TEE : - ' ' : g g (sma) *q
~ — i ~— — -— ~ L7 - co
b | ~gece L7991 6671 098 oL FEL STL 8°6¢S
#S0 86170 F50 86170 FS0 170 86170 FS0 L6T 0 120 861°0 (o) p
doopaso[d ¢7¢ dooypaso]d ¢°T¢ doojwedo 0701 doorpaso[d ¢°7¢ (wmm) @
(fj2e ) auLig [024]8 aumafimp g I)E AN JIILLIE))
‘e 18 X00yS JO ©1ep 40} SUOIIIPUOI [eluUsWIIBdXa JOo Arewwns ¥ 'z 9|qel

~ 40 ~



Akita University

Chapter 2: Development and Application of Slurry Transport Database

2.4.2.2 Gillies data

(1) Experimental conditions

Experiments by Gillies were carried out in pipelines of varying
sizes of 2, 6, 10, and 20 inches. In the 2-inch pipeline, three different
sizes of particles were used, with diameters of; 0.18, 0.29, and 0.55 mm.
The slurries were transported at mean velocities of 110 cm/s ~ 305 cm/s,
in the concentration of 15 % ~ 45 %. The tests were conducted with
water of temperature of 15 °C.

For tests in the 6-inch pipe, only solids of 0.19 mm diameter were
used at a concentration of 16 %. Water temperature was kept at 13 °C,
and the slurry transported at a relatively small range of velocities of 213

cm/s to 296 cm/s.

Two different solids with particle sizes of 0.29 mm and 0.55 mm
were used in the experiments of the 10-inch pipe system. The slurries
were carried through the pipe at high velocities of 288 cm/s ~ 530 cm/s.
Transport behaviours were studied with three different concentrations of
between 15 % to 34 % at carrier fluid temperatures of 15 °C and 40 °C.

In the largest pipe, the slurry consisted of solids of diameter 0.18
mm and water with the temperature varied from 9 °C to 15 °C. The
concentration range was from 10 % to 34 %. Mean velocities was

increased from 265 cm/s to 428 cm/s.
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(2) Experimental apparatus and procedure

All the four pipelines used in the research were closed loop
systems, where the slurry inlet and discharge points are at the same place.
The experiment procedures for the loops was as follows:

(a) After filling the pipeline with water, a chilled or heated
mixture of water and ethylene glycol was used to determine a
desirable operating temperature. Then at steady flow,
measurements of pressure difference and flow rate were made
by using a differential pressure transducer and an
electromagnetic flow meter respectively.

(b) At the feed tank, solids were added to the system, and the
centrifugal pump was used to transport the slurry through the
pipe — different kind of pump for each of the loops.

(c) After stable flow and selected temperatures are reached,
pressure drop and flow rate were measured. Reducing the flow
rate gradually, the same measurements were determined until
the onset of solids deposition at the bottom of the pipe.

(d)Electric probes were used to measure the solids velocities and a
gamma ray-density meter determined in-situ concentrations
during transport. A transparent observation section was
equipped to determine flow regimes as well as monitor the
presence of air bubbles.

(e) Last, samples were taken to determine viscosity and density of

the carrier fluid.
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During the experiment process, a digital converter and a personal
computer were used to compile and store data. The summary of transport

conditions of Gillies 13! from the study are shown in Table 2.5.
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2.4.2.3 Acaroglu data

(1) Experimental conditions

Acaroglu conducted experiments using medium size particles of 2
mm and 2.78 mm in a pipeline of diameter 7.6 cm. The solids were
transported through the pipe in concentrations of between 1 % ~ 15 %,
with high velocities ranges of approximately 160 cm/s to 650 cm/s. The
experiment can be characterised as a medium particle, and high speed

slurry transport.

(2) Experimental apparatus and procedure

The pipeline in the research consisted of aluminium pipes joined
with couplings, as well as a 1.85 m observation section all in a closed-
loop system. The sands were transported in different flow patterns:
suspension flow with the 2 mm solids, and stationary bed flow with the
2.78 mm solids. The experimental procedures were as follows:

(a) By using the solid-liquid slurry-type pump, water was injected
into the pipeline at a low velocity. Then air bubbles are
removed by bleeding the water-air manometers.

(b)Sand solids were fed into the pipe at a constant rate to ensure
uniform flow of the solids.

(c) After solids feeding was completed, and stable flow was
achieved, water valves were closed to take measurements of
parameters: pressure drop by using the manometers; mean

velocities by a pitot-static tube for suspension flow, and brine
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injection method for flows with stationary bed; and
concentration profiles by a the sampler.

(d) The measurements were repeated with gradual change of mean
velocity.

(e) After each sampling, the materials were re-fed into the system,

except at the end of the experiment.

Throughout the experiment, water temperature was monitored and
recorded. For further details on the exact experimental procedures and
the measurements, refer to the report of Acaroglu **!. Representative

transport conditions used in this chapter are summarised in Table 2.6.
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Table 2. 6 Representative transport conditions of Acaroglu

Pipe diameter, D (mm) 76

Particle diameter, 4 (mm) 2 278
Mean flow velocity, V), (cm/s) 191 ~ 554 159~ 650
Concentration, C (%) 0941457 097849
Temperature, ¢ (° C) 2035 1921
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2.4.2.4 Daniel data

(1) Experimental conditions

Medium sized sand solids were used in the experiment by
Daniel [**. The solids of diameters ranging from 0.15 mm to 1.57 mm
were conveyed in a small pipeline with inside diameter of 5.08 cm, at
velocities of roughly 70 cm/s for the larger solids to 370 cm/s for the
finer solids. Flow behaviours were monitored at lower concentrations of

up to maximum 26 %.

(2) Experimental apparatus and procedure

The approximately 27 m long-closed loop horizontal pipeline
consisted of two sections: a 2-inch diameter-steel inlet pipe section, and
a 1-by-4 inches (height x width) rectangular return section. A 45.7 cm
long-transparent section was set on the circular loop for observing flow
behaviour. An Allis Chalmers rubber lined pump, a centrifugal-type
pump, was used to circulate the sand slurry at fixed speeds. To vary flow

velocity, a portion of the slurry was diverted on the return flow section.

Two different pressure transducers were equipped to measure
pressure differences: an inclined Mercury-manometer for the 2-inch
section, and a Meriam fluid manometer for the rectangular section.
Concentrations were determined by using a gamma-ray density gauge.
Summary of the transport conditions are shown in Table 2.7, and full

experimental procedures can be referred to the report of Daniel [*5!,
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2.4.2.5 Yagi et al. data

(1) Experimental conditions

The data was extracted from two different sized transparent
pipeline systems. For the experiment in the 155-mm-diameter pipe, sand
particles of the size 0.91 mm and specific gravity 2.63 were transported.
Flow velocities were changed from 173.4 cm/s to maximum values of
546.0 cm/s. Concentration was varied between 5 % to 25 % at regular
intervals.

Coarser solids, gravel of 8 mm size were carried in the pipe of
diameter 80 mm. Similarly, at higher range of velocities between 107.2
cm/s ~ 519.6 cm/s the slurries were transported through the pipe at
concentrations of 5 % ~ 30 %. For both pipeline systems, water

temperature was kept at 20 °C.

(2) Experimental apparatus and procedure

The brief explanation of the experimental apparatus and procedure

is as follows:

(a) As in most experiments, first, measurements of flow rate and
pressure drop were made with water flowing alone to determine
the characteristics of pipes.

(b) A gate was opened to discharge the sand solids into the pipeline
after measuring the weight and volume. The solids were sucked

up the pipeline through a centrifugal pump, and the flow rate
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was adjusted by controlling the revolutions of the pump. Solids
concentration was controlled by opening the feeder gate.
(c)Once the slurry flow stabilised: the in-situ concentration was
determined by density-meter; Mercury-manometer pressure
transducer measured pressure drop; and flow rate recorded by
using the magnetic flow-meter. Simultaneously, delivered

concentration was also evaluated.

The data was collated and stored in computer files. The
experimental results were analysed to discuss the behaviour of slurry
flows containing coarse particles. A summary of transport conditions of
the representative data is shown in Table 2.8. Refer to Yagi et al. 1% for

details of the researchers’ work.

~B51 ~



Akita University

Chapter 2: Development and Application of Slurry Transport Database

Table2.8  Summary of transport conditions of representative data

of Yagi et al.
Pipe diameter, D (mm) 80.7 1552
Particle diameter, d (mm) 8.0 091
Specific gravity of solids, &, (-) 261 2.63
Mean Velocity, V,, (cm/s) 107.2~5196 1734~ 546.0
Concentration, C (%) 3~30 3~25
Temperature, ¢ (°C) 20
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2.4.2.6 Link et al. data

(1) Experimental conditions

Tests in the report were carried out in different sizes of steel
pipelines with solids of wide size distributions, to investigate the
behaviour of water and oil shale mixtures flows. Although the
researchers used both horizontal and vertical pipelines, only data from
the horizontal pipes was contributed to the database.

Different types of oil shale were transported: Shale-A (residue) at
0.03 mm, Shale-B (residue) at 0.03 mm ~ 0.48 mm, and Shale-C (raw) at
a wide range of coarse solids of approximately 2 mm ~ 12 mm. In
pipelines of 6-inch and 8-inch, solids were conveyed at varying
velocities of maximums 540 cm/s and 390 cm/s respectively. Solids
concentrations were measured in weight percentage, varied with each
type of shale: 45 % ~ 62 % for Shale-A, up to 45 % for Shale-B, and
maximum of 32 % for Shale-C. Recorded water temperatures were in the
range of 20 °C to 38 °C. Table 2.9 shows the summarised transport

conditions.

(2) Experimental apparatus and procedure

The research was developed by Link et al. on behalf of U.S.
Bureau of Mines, to handle tailings disposal from mining of oil shale.
High carbon content-fine waste, lower carbon content-coarse waste, and
unrefined oil shale were transported in the pipelines. Both the pipelines

used the recirculating loop systems, with a centrifugal pump used to
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carry the solids. Slurry temperature was not controlled, although its
effect on the fluid density and viscosity was observed. The flow
diversion sampling method was employed to determine delivered
concentrations, which were compared with feed concentrations. For each
test run, pressure losses were measured at various velocities to correlate
head loss against velocity. Full contents of the research can be found in

U.S. Bureau of Mines Report [*7],
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2.4.3 Summary of researchers’ data

The researchers’ data 61" [®1 111 = [18] can also be characterised
through the star graphs with six axes as shown in Figures 2. 14. A Star
graph is generally constructed by choosing one special vertex, then
drawing edges from the special vertex to every other vertex of the power
n. In this study a Star S; was applied, with the six outer vertices
representing the following: particle size as d (cm); pipe diameter, D
(cm); flow velocity, Vn, (cm/s); delivered concentration, C (%);

hydraulic gradient, i (mmAg/m); and water temperature, t (°C).

The features of researchers’ data can be summarised as follows:
(1)Sato et al.: Low concentration, low-speed transport
(2)Shook et al.: High concentrations, fine particle transport
(3)Gillies: Fine particle, high concentration, high-speed transport
(4)Acaroglu: Medium particle, low concentration, high-speed

transport

(5)Daniel: Medium particle, medium-speed transport
(6)Yagi et al.: Coarse particle, high-speed transport

(7)Link et al.: High concentration, high-speed transport
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C(%)

High concentrations, fine particle

Low concentration, low-speed transport transport

d(cm)

Fine particle, high concentration, Medium particle, low concentration,
high-speed transport high-speed transport

Figure 2. 14 Representative star graphs
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6) Yagi & Okawa (1972)

d(cm)
115
t(°c) ] D(cm)
60 = 50
L 650
90 = Vi(cm
~ 900 i(mmAg/m) -
i(mmAg/m) 60 60
C(%) C(%)
Medium particle, medium-speed Coarse particle, high-speed transport
transport

o | inketalqor)

d(cm)

High concentration, high-speed
transport

Figure 2. 14 Representative star graphs (continued from previous page)
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2.5 The application of the database program
In this chapter, analytical procedure of data should be explained
with the database program. The following section could be useful for

designers of pipeline systems using the monitor displays.

2.5.1 Starting the program

Double clicking the shortcut of the Database program on the
computer desktop starts the program. The clicking produces the interface
on which the program is written. After activating the “RUN” action of
the program, a blank table is produced as shown in Figure 2.15. At the
top of the interface, there is a tool bar with buttons of File (F), Edit (E),
Display (D), and Graph (G). Each has a function on the program: File
(F); opens a new or existing file. The display of this blank table signals
that the program has started and the functions of: I. Data input, Il. Data
Edit and 1Il. The graphical representation on the flowchart in Figure 2.3

can be attained.
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Figure 2. 15 Starting the program
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2.5.2 Data Input — Subprogram |

On the toolbar at the top, under Edit (E), clicking the button “Data
table (T)” produces a blank table for input of data, as shown in Figure

2.5. The following actions should be taken by using the mouse selection:

(1) Under Work selection, click “Open” — the action opens a

window from which to choose the data, as shown in Figure 2.16.

(2) Choose the type of data needed by selecting the data and
clicking Open (O). The action generates a Data Table (Edit) filled with

the characteristics of the selected data, as shown in Figure 2.17.

(3) Click “Input”, to submit the data for processing. Then, click
“Close” to quit the table. The screen will display a table with the

submitted data, as shown in Figure 2.18.

(4) To process the selected data and display analytical results, on
the toolbar, click “Graph (G)” and then “Calculation (C)” in the
dropdown menu select to start the calculations based on the program
codes. The calculation process, shown in Figure 2.19, takes a few

seconds to analyse the data.
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Figure 2. 16 Selection of data for analysis
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i:;a;‘?ﬂr;rﬁ:m MNumer of data in a group |95
Input | Top |
Field
Data number |43|:|
Data name |DAMIELS. M
Kind of salids |zand I
Fipe diameter {cm} 508
Particle diameter £om) 015748
frea index |1 I3
Terminal velocity {cmis 2 (169524
Drag coef. of a solid £—3 [13326
Particle density {gfom™3) 254
Water temp. G} 236111
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Ihdex of power function |-025
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Edit Delete

Cloze

Figure 2. 17 Data Table (Edit) showing characteristics
of the selected data
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Data clear (D
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I T T | 617895 gm= 84151 (%)

Figure 2. 19 Calculation process of the submitted data
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After analysis is completed, monitor display would show
calculation results, as illustrated in Figure 2.20. The Dialog box is

prepared for the selection of the graphical representation.
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Figure 2. 20 Calculation results tables for the selected data and
dialog box for graphical display options
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2.5.3 Data Edit — Subprogram 11l

When carrying out “Data Edit” function, as shown in Figure 2.6,
reference data files are used. This allows users to specify analytical data
for processing, based on the desired transport conditions. Data edit can
be progressed as follows:

(1) Open a reference file by using the “File (F)” button, which will

display table with analytical data as shown in Figure 2.18.

(2) In the table, the data could be specified by clicking either the
“Edit (E)” then “Search” or “Binoculars”, shown in Figure 2.21.
Both options will result in a Search dialog box, as shown in Figure
2.21.
(3) As mentioned in Sect. 2.3.3, the box can be used to fix the ranges
of flow velocity, delivered concentration, and hydraulic gradient.
(4) After transport conditions are chosen, the users have option to
proceed or delete and re-arrange specified data.

(5) To process the specified data, the -calculation procedures
discussed in Sect. 2.5.2 should be repeated. Figure 2.22 shows
representative processing specified data, as compared with Figure

2.19.
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Figure 2. 21 Search dialog box for selecting specified data
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2.5.4 Graphical representation — Subprogram 111

In Figure 2.20, the dialog box at the bottom displays three kinds of
graphs to display: hydraulic gradient, ¢-w relationship, and
concentration distribution curve. Representative analytical results for

each option are as follows:

(1) Hydraulic gradient Choosing the option of hydraulic
gradient results gives another dialog box, shown in Figure 2.23. The box
has two options: Selection 1; for data-group numbers, and Selection 2;
for correlations. After this processing, a representative i-V, graph would

be displayed, as shown in Figure 2.24.

(2) p-w graph Choosing the ¢-w relationship provides selection
options of data-group numbers and correlations. Figure 2.25 shows

representative results of the -y relationship.

(3) Concentration distribution curve By the option of
concentration distribution, the monitor shows the calculated results of
in-situ concentration of solids in pipes, shown in Figure 2.26. The

profile informs the flow patterns of slurry flow.
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Figure 2. 23 Dialog box for data group numbers and i-Vm correlations
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2.6 Conclusions

The study of Database program was progressed in this chapter and it
reached the following conclusions:

1) The slurry transport database program equipped with the fundamental
functions such as input, edit and save was developed.

2) The Data Table for input ensured accurate data processing.

3) For compiling published data, careful attention should be paid for
lack of information and the unit conversion of the data, especially in
U.S. customary units.

4) The graphical representations of estimated results with representative
correlations of hydraulic gradient were effective for the comparison
with experimental data.

5) The analysis of over three thousand data resulted in the star graphs
with six axes, which could describe the characteristics of the

researchers’ data.
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CHAPTER 3

Verification and Application of Design Model for
Settling Slurry Transport in Pipes

The application of most empirical correlations for hydraulic
gradient of settling slurry are generally limited to the experimental
region in which four different flow patterns can be observed: stationary
bed flow, saltation flow, heterogeneous flow, and pseudo-homogeneous
flow. Therefore, the reliable design model independent on not only the

flow regimes but also pipe diameter is imperative for pipeline engineers.

By using the condition factor introduced by Sato et al., which
represents the situation of solids movement in a pipe and calculated from
the concentration profiles, an equation was derived for hydraulic
gradient of settling slurry flow in horizontal circular pipes. With the
slurry database, it was also assured that the equation was valid for
practical pipeline design under the condition of settling slurry flow.
Hence, the effect of pipe diameter and concentration on the Specific
Energy Consumption and pipeline design procedure were discussed based

on the analytical results.
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3.1 Introduction

The particle size of solids in slurry affects the transport cost of
pipelines. It is reported that coarse coal slurry - a representative settling
slurry - becomes more economical than fine coal slurry (non-settling
slurry) in horizontal pipelines where the distance is 40 km or lesser at a
throughput level of 2.27 million tonne per year, if the transport cost
includes preparation and dewatering charges 1. In all cases of designing
slurry transport systems, the prediction of hydraulic gradient as well as
critical deposit velocity of slurry is vital for pipeline engineers. A
number of correlations for the hydraulic gradient or pressure drop of
settling slurry have been proposed: Refer to the reviews by Kazanskij ],
Abulnaga !, and King . Since most of the correlations were however
derived at different flow regimes which depend on the mean velocity of
the flow, the boundaries between the regimes should be determined
whereas it is not easy to clearly distinguish one regime to another by

observation.

The objective of this chapter is to demonstrate the applicability of
an analytical model ! to the settling slurry flow in horizontal pipes by
using the Slurry Flow Database developed by Seitshiro et al. ®! and to
clarify the design procedure for the optimum operation condition. It is

shown that both a condition factor indicating concentration profiles and
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a generalized particle Reynolds number are vital to predict the energy

needed for transporting the slurry.

3.2 Theoretical analysis

3.2.1 Digitisation of Flow patterns

The hydraulic gradient, or head loss per unit distance, of settling
slurry flow in a horizontal pipe varies with the mean velocity and
concentration, as shown schematically in Figure 3.1. As the velocity
increases, the flow pattern of the slurry changes from the flow with
stationary bed to saltation, heterogeneous, and pseudo-homogeneous
flows. These flow patterns can be characterised by typical in-situ
concentration profiles and flow behaviours, as shown in Figure 3.2.

For analysing the hydraulic gradient of slurry from fully
suspended to fully saltation flow, a condition factor k for solids
movements was introduced. Intermediate flow pattern can be represented

by the value of k between 0 to 1.

3.2.1.1 Flow with Stationary bed

If the slurry flow speed is too low to move the solids, the particles
begin to settle on the bottom of the pipe. Continuing the transport at the
same conditions could lead to accumulation of the solids, resulting in
blockage of the pipe. In this regime, the concentration is rather higher at

the bottom of the pipe.
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3.2.1.2 Saltation flow

As the velocity of the slurry flow is increased, a portion of the
solids begin rolling and jumping on the surface of the bed. The upper
layers of the bed move with higher velocity. A series of the change of
the movement could bear an analogy with the mechanical phenomena of
sand dunes in a desert. The concentration of the solids in this regime can

be essentially restricted to lower parts of the pipe.

3.2.1.3 Heterogeneous flow

At increased flow velocities most solids are suspended by
turbulence in pipes. However, the flow velocity is not sufficient to
maintain the solids in full suspension. All particles move in an
asymmetric concentration profile. This regime can be encountered in
slurry transport systems of dredging and tailings disposal in the weight

concentration below 35 % ],

3.2.1.4 Pseudo-homogeneous flow

In this regime, transport velocities are higher and all solids are
uniformly distributed throughout the pipe. The flow turbulence is highly
sufficient to lift and keep all the particles in suspension. If the velocity

is increased further, the risk of pipe erosion rises.

It should be noted that the flow behaviour depends on not only

velocity but the size and density of solids. In commercial slurry
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pipelines, a combination of the heterogeneous-homogeneous regimes is
often observed due to complex mixtures of coarse and fine solids 8.

Detailed explanations of the regimes are described elsewhere [+ 71 [81. [9],

For a two dimensional steady and uniform flow in a horizontal

pipe, the profile of solids can be represented by %1 [0

d
$em d—j+(1-q)”Vt 9=0 (3D
where:
¢=0.451y *% e (32)
&, =0.0395-D-V, e (323)
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Higher risk region Higher risk
of blockage Practical transport region_ region of erosion

Figure 3. 1 Schematic variation of flow regimes with increasing velocity
and concentration of slurry flow
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For an arbitrary value of n, the concentration g at the distance z

from the bottom is given by:

o i i_qg. - V.
log—- + |4 TT(n+k-1) M b & (3.4)
da o1 k=1 i 0.03953 V,
in which the value of n can be estimated by the relationship [*°:
n=23 L (3.5)
| e .
1- i
Ep+(a+%p+)
where;
Rep” =ya? +4V48af/Rey, i, (3. 6)

The characteristic plane which can be produced with coordinate
axes sides and the concentration distribution curve predicted by using Eq.
(3. 1) has the geometrical centre of gravity, G (Qm, z*m), as shown in
Figure 3. 3. On the practical transport conditions that all solids in the
pipe are in motion, the vertex @ in Figure 3. 3 depends on the flow

pattern of the slurry. It varies between 6g to 8o which corresponds to full
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saltation flow without deposit at low velocity to full homogeneous flow

at higher velocity respectively, as illustrated in Figure 3. 4:

Op =21aN G 0) e (3.7)

0o = 2tant Oa e (3.8)

in which gag and g, represent the concentrations at the bottom of the
pipe in saltation and pseudo-homogeneous flows of the average in-situ

concentration Q.
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Characteristic plane
of concentration

Concentration
distribution

Figure 3. 3 Characterisation of concentration distribution curve
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zD
1.04

5= 2tan" (g% q )

a)

Saltation flow

zD 4

1.0 4

]

8,=2tan’lq,

b) Pseudo-homogeneous flow

4

Figure 3.4 Extreme flow patterns of saltation and pseudo-homogeneous flow
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Based on the Pappus-Guldins theorem ! the coordinate
G(gm,z*m) in Figure 3. 3, the centroid of the characteristic plane can be
computed numerically as illustrated in Figure 3. 5, by the following

equations;

g{(qi +2qi+1 ] ( z* +22*a+1 j (q - qm)}

(qi -U Z*)

i=1

n

Z(qi 'Z*i 1 Z*)

Lk E A (3. 10)
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J[@: —gs11)

g; di+1 q

0 q

Figure 3. 5 The integral determination of the centre of the
characteristic plane
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On the other hand, the vertex & can be calculated by:

0G? +GQ? -0Q?
2.0G-GQ

cos @ =

where each of the triangle segments, in Figure 3. 6 can be represented as

follows:

OG =+/q,,° + 2%,
GQ==JUh2—qm2)+Z*m2 ........................... (3. 12)
OQ:qa

Substituting Eq. (3. 12) into Eq. (3. 11), vertex 0 can then be estimated

by:

(sz + Z*m2)+ iqa —0Um )2 + Z*mz}_ Qaz

cos @ = > _— _—
2\/Qm +Zm +\/(Qa_qm)2+2m

9=COS_1 (qm2+2*m2)+%qa_qm )2+Z*m2}_qa2 ....... (3 13)

2\/qm2 "‘Z*mz +\/(qa —0m )2 +Z*mz

~03 ~



Akita University

Chapter 3: Verification and Application of Design Model for Settling Slurry Transport in Pipes

[ ]
*
=
Lm—

G (GI?H

Vertex &

0(0.0) Q (4.,0)

Figure 3. 6 Calculation procedure of the vertex 8
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Introducing a condition factor k, the priority parameter of saltation,
with the assumption of a linear correlation between k and the vertex &,

the k factor can be represented by the following function:

1z —90
g — 0o

It means that as the velocity of slurry flow decreases from the
pseudo-homogeneous flow to the saltation, the value of k increases and
approaches unity, as shown Figure 3. 7.

For practical slurry transport, the heterogeneous flow pattern can

mostly be observed, with values of 8 (o< 0 <6p) and k (0< k <1).
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W
=

Figure 3. 7 The relationship between k and @ with the change of
concentration profiles
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3.2.2 Enerqgy losses in Settling Slurry Flow

3.2.2.1 Energy required for pipe flows

In pipe flows, it is assumed that water could exert a normal force
F on an imaginary circular plate, as shown in Figure 3. 8(a). The energy
required to move the object through the pipe of distance | in time T, the

work done per unit time, can be calculated by:

where the force exerted on the cross-sectional area A, as shown in

Figure 3. 8(b) can be calculated by:

F=AP-A (3. 16)

The time spent for the work through water of flow rate Q (=V, -

A) can be represented by:

Substituting Egs. (3. 16) and (3. 17) into Eqg. (3. 15), the energy to flow

water in the pipe can be estimated by:
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c_(aP-A) |
A1/Q
. E=AP-Q e (3.18)

which can be useful for selecting the type of pump and the specifications

of pipeline systems for the transport of solids and water.
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@) Movement of an imaginary disk
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A
Vin
AP —_— Q

(b) Slurry flow in a pipe

Figure 3. 8 Comparison of slurry flow to the movement of an
imaginary disc in a pipe
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3.2.2.2 Suspended flow of slurry
When the solid particles of slurry are transported in suspension
over the length dl of the pipe per unit time, the consumed energy E, as

shown in Figure 3. 9, can be represented by:

E=E, +Eg+Ep e (3.19)

where E, is the energy loss in flow of clear water as a vehicle at the
same velocity as slurry. Eg is the energy loss in maintaining the solids in
suspension, and Ep is the energy dissipated for the drag of solid
particles.

According to Eqg. (3. 18), the component of the energy E, for

water flow with velocity V,, can be estimated by:

Ew=4Py - AV e, (3. 20)

Substituting the following AP-i,, relationship;

. AR,
Iw dl - ( )
into Eq. (3. 20), resulting in:
EWZIWVmAydI ........................ (3 22)
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The submerged weight of all suspended solids at the interval dl of

the pipe in Figure 3. 10 can be represented by:

Woo =TA-dl - (p5 - p)g

=qA-dl-(rs-7) e (3. 23)

In a suspended slurry flow, the energy required to keep the solids
in suspension Eg which have the tendency of settling with the velocity

V4, can be calculated by:

=TA-d- (7 -7V (3. 24)

By using the Richardson-Zaki equation,

Eq. (3. 24) can be re-arranged as follows:

Eg=(1-T)"V, (¥ -») T - Adl

=q(1-0)"V, Ay, - p)dl eeeeeieeeineenn (3.26)
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Figure 3.10 Energy loss due to suspension of solids
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On the other hand, if clear water flows with velocity V,, could pass
through the suspended solids in the small element with volume A-dl in
Figure 3.11, it creates the slurry moving with velocities of Vs

and (L-q)v, for solids and water respectively. The drag force of solid

particles in the element can be evaluated by:

The energy loss Ep due to the drag force can be estimated by:

Ep=(L-TVuFo oo, (3. 28)

Substitution of Eq. (3. 27) into Eq. (3. 28), results in:

3 (Vw _Vs )2

=— CAdl-Tg-(L-0)V
2 od, q-(1-qVy

The drag coefficient of solids Cpr in Eg. (3. 29) can be

represented by [*21:

where,
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Rep, = Vi =Vs)d - p (3. 30)

In summary, the total energy E in Eq. (3. 19) can be written by [0

E=i-Vo-Ay-dl e, (3. 32)

Substituting Eqgs. (3. 22), (3. 26), (3. 29), and (3. 32) into Eqg. (3. 19) and

dividing by V4ydl yields:

|=iw+—q_(5s -1V, o ot WaBap Y { q—_C_} qe-c)
V. 16 {(dvmpj q-C } gd [@-7)g
po)L-9)a

which can be valid to evaluate the hydraulic gradient of settling slurries

in pipes. The relationship between g and C can be given by [*3:

44803 2
a+ |a®+ S
B a +4\/Eaﬁ
- 2 Repvitqiliq o+ -
(a-c)v, Vo q-C ,-a)
L-a)v :
' , 448ap 4maﬁ
o+ T o+ a +
p

..(3. 34)
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A

Figure 3.11 Energy loss due to drag force
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3.2.2.3 Saltation and Heterogeneous flow of slurry

If the pressure drops of heterogeneous flow in pipes are analysed,
the friction factor f between the solids and the pipe decreases with
increasing velocity, as reported by Sato et al. [®). This fact shows that in
heterogeneous flow, or intermediate regime between saltation and
pseudo-homogeneous flows, some portions of the solids could be
assumed to be transported in saltation, or sliding movement and others in

suspension.

Transporting the solids in saltation the friction force at the bottom

of the pipe, can be represented by:

Fe=1-w,

=F G Ad-(Fe-7) e, (3. 35)

As a result, the energy lost due to the friction of the solids against

the pipe wall can be evaluated by:

E,=F -V,

=g Ad (- 7) Ve e, (3. 36)

For a steady slurry flow, the flow rate Qg can be represented as:

~107 ~



Akita University

Chapter 3: Verification and Application of Design Model for Settling Slurry Transport in Pipes

Qu=A-Vi (3.37)

Evaluating the discharge flow rate of slurry as the value of Qq,

T-Ve=CVi o) (3.38)

Substituting Eqgs. (3. 37) and (3. 38) into Eq. (3. 36) results in:

Ec=f-T0s-7)Qq ool (3. 39)

Dividing Eq. (3. 39) by V4ydl gives:

Lastly, the hydraulic gradient of slurry flow in saltation can be evaluated

by [3:

The condition factor k represented by Eq. (3. 14) could be used to

divide the slurry into saltation and suspension portions, as shown in
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Figure 3. 12. Therefore, the hydraulic gradient due to the solids is in

slurry can be written as:

i =K-ig +(1-k)ig, e (3. 42)

in which is; and is, are excess hydraulic gradients due to sliding

particles and suspended particles respectively, as represented by:

iy="f-7-00,-1) e (3.43)
v 16 {[dvmpj q-C } gd [@-9)g
] po)-q)af
e (3. 44)

After calculation of ig; and isy, the hydraulic gradient of slurry flow can

be estimated by.

i =iy i e (3. 45)
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Figure 3. 12 Suspension and sliding of particles in the slurry flow
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3.3 Verification of the Model with the Database

For confirming the accuracy of evaluating hydraulic gradient of
slurry flow with the analytical model, the experimental data (about 3,000
points) in the database reported by Seitshiro et al. [®! were compared

with predicted values of i, as shown in Figure 3. 13.

It is recognised that the data scattering in a wide range of flow
conditions could be found outside the 20 % boundary (measured in the
y-axis). These unsatisfactory predictions could be attributed to not only
the application of representative diameter for the solids with a broad size
distribution, but of the model for non-settling slurry flow with higher

volume concentration than 30 %.
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Figure 3. 13 Comparison of predicted hydraulic gradient with the
measured (all data in the database)
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Since the correlations based on heterogeneous flow of suspensions
tend to overestimate the hydraulic gradient, as pointed out by Liu %,
the slurry flow should be analysed as the mixture of coarser solids and
vehicle, when a larger fraction of fines are especially included in the
size distribution. As shown in Figures 3.14 and 3.15, high content of
fines in the slurry results in large deviations in comparison of predicted

[15]

hydraulic gradients against experimentals of Shook et al. and

Gillies 181,

If the data are limited to the settling slurry of narrow-sized solids,
e.g., for C < 15 % and C < 20 % of experimental results presented by

[10], [18] -

Acaroglu ") and Sato et al. (201 respectively, predicted results

could be improved, as shown in Figures 3.16 and 3.17.
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If the criterion index Rep*, a generalised particle Reynolds number,

can be calculated by;

. dV gl
Re, = —1 2 (3. 46)

The value of Rep* coincides approximately with Rep,* = 10, when
the solids of sand slurry can be classified into the medium sand in the
diameter of 0.25 mm [ and transported at the limiting lower
concentration corresponding to the condition of V, = V.. Therefore, the

following criterion for applicable regime of the settling slurry model is

proposed:

Re " >10

Figure 3. 18 shows predicted versus measured hydraulic gradient i
applying the settling slurry model in the range of Re,* > 10. Comparison
of measured and predicted values of i shows good agreement for slurry

transport of solids with relatively broad size distribution in the various

sizes of pipes.
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gradients for slurry transport at the condition of Re,* > 10
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3.4  Specific Energy Consumption for Pipeline Design

The design of slurry pipelines involves estimation of the optimum
conditions of the transport system. While the minimum part of the curve
of the hydraulic gradient versus mean velocity could be chosen as a basic
criterion, it is vital to predict the Specific Energy Consumption (SEC),
the energy required to transport a unit weight of solids over a unit

distance, given as:

SEC=9.807x102.i-7-Q/M; oo, (3. 47)

in which Mg (in kg/s) is the solid flow rate through a pipeline, and can

be calculated by:

Substituting Eq. (3. 48) into Eq. (3. 47), the SEC in KW-h/t-km can

be expressed as:

SEC = 2.726-1

*Us

According to the Eq. (3. 49), the design transport velocity should

be determined as the velocity at which the SEC values reach minima, or
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0iloVy = 0 on the i — Vi, curves. Figures 3. 19(a) and (b) show the SEC
versus mean velocity curves computed for two different pipe sizes of 25
mm and 50 mm diameters at various delivered volume concentrations.
Increasing the concentration and the pipe diameter, the SEC at the
minimum point on the curves decreases. However,
Cabrera 2! recommend that the solid concentration of settling slurries

with coarse particles should be lower than 20 % to 40 % by weight.

In some commercial pipelines it is rather difficult to keep definite
transport conditions such as the mean velocity of slurry Vp, delivered
concentration C, and so on. However the volumetric concentration of C =
0.25 is reported as a commonly-used-fraction of solids in the slurry [23].
Therefore, the computed relationship between flow rate Q and pipe
diameter D at the optimum transport conditions which exist on the
minimum SEC point at C = 0.25 can be shown in Figure 3. 20. Based on

the results, the influence of the particle size is almost negligible in the

range of d < 2.0 mm.
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Figure 3. 19 Specific Energy Consumption (SEC) versus mean flow
velocity at different concentrations of solids:
(@) D =25 mm; (b) D =50 mm
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In summary, the pipeline design procedure for settling slurry

transport is recommended as follows:

1. Determine the particle size of solids in accordance with system
requirements.

2. Select the volumetric concentration of C = 0.25.

3. Determine the slurry flow rate Q with the solid flow rate Ms.

4. By using Figure 3.20, select the pipe size D which assures the
minimum SEC at the flow rate of Q.

5. Determine the mean velocity V, of slurry flow and the hydraulic
gradient at the velocity, based on the analytical model proposed in

this chapter.
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3.5 Conclusions

1) Applying the analytical model of settling slurry flow to practical
designs, the settling slurry index Rep* is useful for the improvement of

prediction accuracy.

2) The verification of the proposed model can be proved with the slurry
database which includes more than three thousand experimental

measurements.

3) The data scattering in the relationship between predicted and
measured hydraulic gradients could be due to the broad size distribution

of solids and non-settling slurry flow.

4) The minimum SEC in the unit of the kilowatt-hour for tonne-kilometre

decreases as the delivered concentration and pipe diameter increases.

5) At the optimum conditions of settling slurry transport, the pipe
diameter in pipelines is related with the flow rate of the slurry,

independent on the particle size in the range of less than 2.0 mm.

6) It appears that the design method proposed in this paper can be
applied to the pipeline design without any scale-up, since it is based on

the database which covers the practical scales of pipe diameter.
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CHAPTER 4

The Multi-Sized Slurry Flows in Horizontal Pipes:
Innovated Models and Verification

In designing pipeline systems for commercial slurries, it is essential
to accurately determine the hydraulic gradient at transport velocities. It
is crucial to note that the slurries are conveyed as a mixture of multi-
sized solids and water. Although many researchers have proposed
correlations for the prediction of hydraulic gradient, most have been

developed for slurries with uniform sized particles of solids.

By considering two different transport conditions of a mixed-sized
slurry, innovated models were proposed and then verified with
experimental data. The data was also analysed with the Wasp method and

the conventional method by Condolios-Chapus.

Measurements of hydraulic gradient, solids concentration, and flow
velocity in a 1-inch pipeline were made in this study. Predictions with
the innovated models could be correlated with the data including
experimental results from large-scale pipelines, in spite of discrepancies

at unstable flow regimes.
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4.1 Introduction

Although multi-sized particles slurries are transported in practical
pipelines, most reported correlations were proposed for single-size
slurries. If the average diameter of solids is used to estimate the drag
coefficient of multi-sized particles slurries, the hydraulic gradients with
these correlations lead to considerable scatter of data *!. Kazanskij [?,
Moro B! and STSJ (Slurry Transport Society of Japan) *! summarised
some empirical equations of hydraulic gradient of slurry flow with
experimental data. The Wasp method !*! recommended by Liu !®! has been
used by designers of pipeline systems for predicting hydraulic gradient
of compound slurries of homogeneous and heterogeneous flows. However,
the range of application of the method is limited. Kaushal et al. [’ also
discussed the limitations and attempted to modify the method. They
concluded that the Wasp method provided reasonable accurate results at

limited low concentrations.

This chapter discusses the limitations of application of other
researchers’ correlations and to develop innovated models, based on the
single size slurry model of Seitshiro et al. 81, The analytical models
depend on particle size distribution: (1) coarse-coarse model; for a slurry
consisting of two different coarse solids flowing in water, and (2)
coarse-fine model; for coarse solids being transported in a modified

vehicle containing fine particles in high concentration. The fine solids
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are defined as particles with sizes smaller than the critical diameter *! in
this study. For both models, it is assumed that the coarse solids in the
slurry do not hinder each other’s movements.

Experiments were performed in a 1-inch transparent pipe with sand-

[10]

bakelite mixed slurries. The data of Shook et al. , Boothroyde et al.

11 and that of this study were used to verify the application of the
models. The analytical results suggest that the innovated models can be

effective for designing slurry pipelines.

4.2  Experimental

For verifying the applicability of the models, a wide range of data

from three different systems is used: a 1l-inch pipeline system of the

[10]

authors, closed and open loop systems of Shook et al. , and prototype

systems of Boothroyde et al. !

4.2.1 Experimental techniques

The experiments were conducted in a closed-loop, horizontal
transparent perspex pipe of diameter 2.62 cm and length 25.7 m,
presented schematically in Figure 4.1. For clarifying the solids
behaviours, two different kinds of solids, sand and coloured bakelite

were used for the mixed-sized slurry flow experiments: particle sizes
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ranging from 1.21 mm to 2.18 mm; maximum concentration of 25 %.

Details of the transport conditions are summarised in Table 4.1.

For the mixed-sized slurry flow, solids were fed into the mixing
tank and transported through the pipeline by the centrifugal Warman
pump. Delivered concentration was adjusted by varying the volume of
the solids and the speed of the motor that drove the pump with the flow
control panel. The range of transport velocities was 70 cm/s to 230 cm/s.
At half-hour intervals, the movement of solids was visually monitored at
the illuminated observation section, and digital and video cameras
captured images for confirming flow patterns. After the slurry flow
stabilised, the pressure drops at the interval of 1.89 m were measured
with the differential pressure transducer. A weighing cage was used to
collect solids at the outlet of the loop and determine the delivered

concentrations from the values of the weight.

4.2.2 Characteristics of reported data

4.2.2.1 Boothroyde et al. data

Boothroyde et al. carried out field tests to find the correlations for
predicting hydraulic gradient of colliery spoil flow in pipes. It consists
of a 200 mm diameter- primary circuit of 100 m length, and 250 mm and
150 mm subsidiary loops conveying granite particles of 12 mm diameter

and Markham coal fines of 0.2 mm. For the analysis of the correlations,
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the data of the 200 mm circuit was used in the report. Summary of the

data is displayed in Table 4.2.

4.2.2.2 Shook et al. data

The data of Shook et al. represented a range of practical pipeline
transport conditions and solids flow phenomena. Two horizontal systems
of 2-inch-closed and 4-inch-open loops were used in the experimental
research with sand particles of 0.198 mm to 0.54 mm sizes and specific
gravity of 2.65. The slurries were transported at mean velocities of 55
cm/s to 378 cm/s, and concentration by volume of up to 42 %. Full

contents of the experiments can be found in Table 4.3.

~133 ~



Akita University

Chapter 4: The Multi-Sized Slurry Flows in Horizontal Pipes: Innovated Models and Verification

snyesedde [eluswiiadxs ayy Jo wedbelp onewayds Ty a4nbi4

sdureT QI 16D IRMRATIOD ¥
BIDWIED) [ENSKT G 19190l ONRUSewona?d @
BISWED) 03PIA ) I3IAAU] JOJSISURILT, (§)
Iaonpsuel] (dwng odA1-eSnymua)) A
2INssAJ [BNUAIRIIA &) dung mewrep
TR UreN)S SHIRuA(T 2
I_RPRATOD AV (D
mdwo) [euosad @
[SUBd [ORUOD MO @)
9%e)D SumBem @
12D PEOT (&)
v

w §8'T YSRH

que) SUIXIN (@)
JOSU2SOUIIaN T, @

W/ '§7 PSR 2dig ISIWSURIL 29
W 79°7 daewer 2did I219TMOT J O1RUSEWoNod[H (I

~134 ~



Akita University

Chapter 4: The Multi-Sized Slurry Flows in Horizontal Pipes: Innovated Models and Verification

Table 4.1 Slurry transport conditions of the laboratory experiments

Solids Sand Bakelite
Particle diameter, d (mm) 1.21~1.71 1.71~2.18
Specific gravity of solids, ds (-) 2.67 1.40
Pipe diameter, D (cm) 2.62

Loop length, | (m) 25.7

Terminal velocity, V; (cm/s) 16.63 7.24
Mean flow velocity, Vi, (cm/s) 70 ~ 230

Delivered concentration, C (%) 2~25
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Table 4.2 Summarised characteristics of Boothroyde et al. data

Solids Granite Markham coal fines
Particle diameter, d (mm) 12 0.2
Specific gravity of solids, ds (-) 2.8 1.5

Pipe diameter, D (cm) 20.3

Mean flow velocity, Vi, (cm/s) 206.9 ~672.3

Delivered concentration, C (%) 27.3 ~50
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Table 4.3 Slurry transport conditions of the representative data of Shook et al.

Pipeline loop Closed Open
Carrier Water
Pipe diameter, D (cm) 5.25 10.30
Mixture of solids in : | Mixture of solids in :
0.198 0.198
Particle diameter, d (mm) 0.210 0.210
0.297
0.540 0.540
Mean flow velocity, V,, (cm/s) 55.8 ~ 378.0 86.0 ~ 374.0
Delivered concentration, C (%) 5~42 1.4~419
Temperature, t ( °C) 60.0 ‘ 21.1 ‘ 10.0 21.1
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4.3 Analysis of reported correlations

4.3.1 The Wasp method

The model developed by Wasp et al., has been used satisfactorily
for compound slurries, homogeneous-heterogeneous slurries [BD-161.171,
The procedure is composed of calculation blocks as illustrated in Figure

4.2. When a mixed-sized slurry of different sizes of d; d,, ---, dy with
corresponding volume concentration qi1, g2, -+, g, flows in a horizontal

pipe, each size fraction of slurry can be divided into the homogeneous
and heterogeneous parts, qvi and qu; respectively, as shown in Figure 4.3,
according to Wasp method. This method has analytical restrictions for
application to multi-sized slurries:

(1) the criteria for splitting the multi-sized slurry into vehicle and

heterogeneous portions;

qw Vt
log——=-18—"— . 4.1
qo ﬂ'K'V* ( )
(2) applicability of the Durand-Condolios equation;
$=82p 1 (4.2)
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r'y >y

1. Split into homogeneous and heterogeneous portions

Friction velocity, V, =V _/(1/8)

Terminal velocity Vi of solid size fraction di

AN

q,/ a,

Concentration of graded particle, g. = (Total volume of slurry, g ) x (Proportion, Pi)

After the third iteration , qi(n) =0 -1

Concentration of homogeneous portion of each solid fraction, q,; =0 (qW/q0 )i
Concentration of heterogeneous portion of each solid fraction, q; =9, -9,

2. Excess hydraulic gradient of heterogeneous flow, iy

pi+ Drag coefficient of solid particle of diameter of diameter d, for free settling in water
Re=DV_plu
AW - Colebrook equation: A = f (Re, D/¢)
2
i =2V, /29D
. . 2.15
k=821 {gD(6,-1)/V_}

After the third iteration, above factors are constant.
iy =k Cyr C

IH =2 IHi

Di

3. Hydraulic gradient of the vehicle flow, iy

Concentration of vehicle = Sum of concentrations of homogeneous portion of each di 1y = 2 Qyj

2 (16.60v)
Viscosity of vehicle, Hy [Thomas equation:  p =x {1 +2.5qy + 10.05q, + 0.00273e H
Density of vehicle, Py =P {1+C @+ 1)}

Re = DVm/')sI /,uSI

A - Colebrook equation: 4 = f (Re, D/e)
2

i =AV 3§ /2gD

\ vm v

4, Total hydraulic gradient, i

A

Hydraulic gradient of mixed slurry, i

i = i(n)

Figure 4.2  Flowchart of the calculation procedure of the Wasp method
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4.3.1.1 Criteria for splitting the slurry into two flows

Wasp et al. 13 [*2] discussed multi-sized slurry flows containing
solids of different sizes d;, d2, ..., d,. Each portion of the solids is then
split into vehicle and heterogeneous parts depending on transport
conditions, as shown in Figure 4.3, by using the Eq. (4.1) as a criteria;
where 8 = 1 and x = 0.35 for slurry flow *?; q,, and qo are the in-situ
concentrations of solids at the point 92 % from the bottom and at the
centre of the pipe respectively; V. is the terminal velocity of the solids,
and V=« is friction velocity. Eq. (4.1) could be derived from the O’Brien

equation 3" which is only valid for low concentration slurries [*4).

4.3.1.2 Hydraulic gradient of homogeneous portion
The homogeneous portions of the slurry should be assumed to be
Newtonian flow under volume concentration of 30 % approximately 3],

In this region, the hydraulic gradient of the homogeneous portion is

calculated by the modified Darcy-Weisbach equation:

_/’i'v'vmz'é‘v
2-g-D

with the vehicle’s values of pg evaluated by:

Pa=pll+C- (-1} (4.4)
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where 2 is friction factor calculated by the Colebrook equation ¢! As
concentration increases, the slurry viscosity us increases. The value of
usi depends, however, not only on concentration but particle size
distribution, shape, size, and kinds of solids of suspension [*1. Wasp et

[12]

al. recommended an experimental correlation to estimate the

viscosity in his report:

pg= (u+A)e®Vr (4.5)

where A and B are constants depending on the characteristics of
the solids and fluid, and Vg is volumetric ratio of solids to water,

{Vr=C/(1-C)}.

If rheological characteristics could not be determined
experimentally, the Thomas equation [*8 should be recommended as an

alternative to predict the value of ug:

g = ,u{l +25 C +10.05 C2 +0.00273 e(le-ec)} ............. (4.6)

because Eq. (4.6) has been applied in the slurry industry to characterise

Newtonian rheology of mixtures with higher volume concentrations 9,
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In-situ concentration, g

Particle diameter, d

Figure 4.3  The split portions of vehicle and heterogeneous flows
based on the Wasp method
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4.3.1.3 Hydraulic gradient of heterogeneous portions; applicability

of the Durand-Condolios equation
For each heterogeneous portion of the solids in Figure 4.3, excess
hydraulic gradient iy; can be estimated by the Durand-Condolios

equation (4.2),

4= =i,

where; = i C e (4.7)
ll/:VmZ' CDm

and g-D-(6-1) e (4.8)

Wasp et al. [*! recommended Kp = 82 as the constant value in the
Eq. (4.2), although the coefficient and the index of the correlation
depend on transport conditions, as shown in Table 4.4 2. Figure 4.4
shows representative analytical results of Kp for the slurry flow in the
2.54 cm diameter pipeline based on the settling slurry model . As
concentration and particle size (in the range of d < 2 mm) decrease, the
value of Kp increases. However, the analysis of representative data of
single-size slurry of sand and bakelite, and sand-bakelite mixed slurries
in this study does not coincide with the Durand-Condolios correlation, as

shown in Figure 4.5.
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Nevertheless, according to the Wasp method, the hydraulic gradient

of each heterogeneous portion can be calculated by:

Voo |
J :82'(iw 'CHi)'{gg(é—_Di)} ............................. (4.9)
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Table 4.4 Coefficients and indices of the Durand-type equation for
heterogeneous slurries

Researcher Published year Kb n
1. Durand & Condolios 1954 81 15
2. Condolios & Chapus 1963 85 1.5
3. Bonnington 1961 71 1.5
4. Chaskelberg & Karlin 1962 78 1.4
5. Ellisetal. 1963 385 1.5
6. Kazanskij 1967 134 1.4
7. Zandi & Govatos 1962 6.3 0.354
280 1.93
8. Babcock 1970 6.3 0.254
9. Welte 1971 36 1.37

NOTE: Summarised after Kazanskij o)
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100 Pipe diameter, D =2.54 cm
) Areaindex, x=1.5
\ Specific gravity, ¢ =2.65
\ Mean flow velocity, ¥, = 80cm/s ~ 300cm/s
\ N[ Zemperature, £ = 20°C
2 T\\ C (%
> (%)
\"\
——500
-+10%
—+—15%
—=20%
25%
S0
0.1 1 10

d (mm)

Figure 4.4  Effects of transport conditions on the value of Ky in the
Durand-Condolios equation
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: Sand
100
—
<
< 10
Durand-Condolios eq.
o =82y 1f
1
1 10 100
V()
Bakelite
100
- NG
—
ak
s 10 —r,
Durand-Condolios eq.
o= 82ylF
1

100

Figure 4.5(a) Comparison of representative results of single-size slurries
of sand and bakelite against calculated results with Durand-
Condolios equation.
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Sand-bakelite mixed slurry

100 -
P
. .
< 4
\\.
z T,
< 10
\._
_‘_"-r"’a. ™, “
E .
Durand-Condolios eq. gl
B =82ylf \ .‘.l.
| HAN
1 10 104

)

Figure 4.5(b) Comparison of representative results of the sand-
bakelite mixed slurry against calculated results with
Durand-Condolios equation.
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4.3.1.4 Total hydraulic gradient of slurry
The hydraulic gradient of the multi-sized slurry can lastly be
represented as the sum of vehicle and heterogeneous components, as

follows:

I S (4.10)

The Wasp method for mixed slurries flows was developed based on

experiment data of coal pipelines [*2].

4.3.2 Condolios-Chapus method

To predict the hydraulic gradients of mixed-sized slurries including
a wide size distribution of solids, the following Durand-type equation

has been used [:

i, Vol Con |
¢=—7=Kp G D(6-1)| e (4.11)

According to the Condolios-Chapus method, the drag coefficient of the

solids Cpp in the Eq. (4.11) can be calculated by 2%
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wherex; is a proportion of the solids and Cp; represents the drag
coefficient of each proportion. The method can be schematically shown
in Figure 4.6. It should also be noted that no limitations of the

application range have been reported.

If the slurry contains a wide range of sizes of solids, as shown in
Figure 4.7, it should be split into two parts of vehicle and coarser solids
flows. In these commercial slurries, the Eq. (4.12) cannot be valid for

calculation of Cp,, of vehicle flows.
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(f] ((‘Dl )
dy(Cpy)

d3(Cp3)

Figure 4.6  The calculation procedure of representative drag
coefficient proportions in a mixed-sized slurry
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Concentration, C

=

d d dy dy ds dy d; ds dy dy dy d,
Particle diameter, d

Figure 4.7  Typical sieve analysis of a multi-sized slurry solids
distribution
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4.4 Theoretical consideration of the innovated models

The behaviour of slurry in pipes is dependent on not only flow
velocity, concentration, pipe diameter, and solids density, but also
particle size distribution. Fines portion of the slurry affects its rheology.
In practical pipelines, two representative types of the size distribution
could exist: type-1; all solids are larger than the critical diameter, d; >
d¢, and type-2; the slurry contains large portion of fines, as shown in

Figure 4.8.

4.4.1 Coarse-coarse particles slurry model

This model can be applied to the slurry with type-1-solids
distribution, in which the sieve analysis results can be schematically
represented by Figure 4.9. Average diameter d, has been conventionally
used as a representative diameter of the solids for predicting hydraulic
gradients of slurry. However, if the slurry contains a wide range of solid
particle sizes larger than d., the use of d, leads to the scatter of the

predicted results .
In this study, the analytical model applicable to practical design of

coarse-coarse slurry flow was proposed: based on the sieve analysis,

shown in Figure 4.9, the contributes of each size solids portion to the
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slurry flow could be summarised to calculate the hydraulic gradient for

solids ig, as follows:

is =g e, (4.14)

where igj = contributed value of particle size d;j.
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Frequency

d, d

(Critical diameter) Particle diameter

Figure 4.8  Two types of the size distribution for the innovated
models
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Frequency

(Critical diameter) Particle diameter, d

Figure 4.9  Typical sieve analysis of type-1 solids distribution
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If the solids consist of two different-sized coarse particles of d; and
d,, concentration profiles and flow behaviour models can be
schematically represented by Figures 4.10 and 4.11 respectively.
Supposing that each solid flow does not hinder the other, the hydraulic
gradient of the slurry i, as shown in Figure 4.11 is given as the sum of

all the components, as follows:

=0, +ig +ig, e

where iy is the hydraulic gradient consumed for the flow of water
flowing alone at the same velocity as slurry. The values of is; and is; due
to the coarse solids can be calculated by using the single-size-settling

slurry model of Seitshiro et al. [®!
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/D

In-situ concentration, ¢

Figure 4.10 Representative in-situ concentration profiles of
coarse-coarse particles slurry containing two
different sizes of solids
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Figure 4.11  Schematic flow behaviour of coarse-coarse slurry
containing two different sizes of solids
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Figure 4.12 shows the i-V relationships of the experimental data
of single size slurries of sand and bakelite. For analysing the data
approximately, the ¢-yw relationships can be calculated as
aforementioned in Sect. 4.3.1.3 and compared with the Durand-
Condolios correlation as shown in Figure 4.5. By using the least-square
method, a linear curve can be drawn in the range of the data to determine

the values of Kp and n.

The calculated results show good agreement against the
experimental data, as shown in Figures 4.13. As a result, a reasonable i-
Vn relationships can be drawn as shown in Figure 4.14, which illustrates
an application of the coarse-coarse model to the slurry as represented by

Eq. (4.15).
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Figure 4.12 i-Vy, relationships of the experimental data of single size
slurries of sand and bakelite
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Figure 4.13  Analytical results based on the single size settling slurry
model with sand and bakelite experimental data
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1000
~e-Sand(C:2%)

—o—Bakelite(C: 8%0)

—o—imix (sand-bakelite)

100

Hydraulic gradient, | (mmAg/m)

10

10 100 1000
Mean Velocity, ¥, (cm/s)

Figure 4.14 i-Vy, relationships from the summarised data of the
laboratory (delivered concentration of sand and
bakelite: 2 %, 8 %)
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Figure 4.15 shows analytical results against experimental data of
sand-bakelite slurry flow. Most of the data are in good agreement with

the predicted within £20 % accuracy.
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Figure 4.15 Experiment data of sand-bakelite mixed slurry against
the predicted based on the coarse-coarse model
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4.4.2 Coarse-fine particles slurry model

According to the USDA soil textural classification system, fine sand
should be separated from coarser solids of sizes larger than 0.25 mm [,

If the slurry contains large volume of fine solids of diameter smaller
than d. (= 0.25 mm), as shown in Figure 4.16, the physical

characteristics of the vehicle as a carrier fluid could be altered. The
behaviour of the modified vehicle can be characterised as a Newtonian
flow of values ps and us, which can be estimated by Eqs. (4.4) and (4.6).
Therefore, it can be presumed that the modified vehicle transports the
coarse solids of arbitrarily selected size of d, in the coarse-fine slurry
flow, as illustrated in Figure 4.17. The hydraulic gradient of the slurry i

is represented by:

where hydraulic gradients i, for modified vehicle and is for all coarse

solid portions, represented by Eq. (4.14), are estimated by using the
modified Darcy-Weisbach equation and settling slurry model [&

respectively.
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Fines d. Coarse particles

Figure 4.16 Typical sieve analysis of type-2 solids distribution
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d, (arbitrarily selected
size of coarse solids)

Figure 4.17 The schematic flow behaviour of coarse-fine slurry
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4.5 Verification of the models with experimental data

4.5.1 The Wasp method

Figure 4.18 shows the comparison of calculated hydraulic gradients
icar With the Wasp method against the experimentals iexp, Of sand-bakelite
mixed slurries in this study, and of Boothroyde et al. and Shook et al. As
concentration increases, the data tend to deviate from the predicted
values. As a result, it can be confirmed that the application of the Wasp
method could be restricted to the range of lower concentrations of slurry,

as pointed by Kaushal et al. ["!

4.5.2 The Innovated models

Application of the single size model with average diameter dn, to
the wide range-size distribution data of Shook et al. leads to large scatter,
as shown in Figure 4.19. However, the analysis of the same data based
on the innovated analytical models discussed in Sect. 4.4 results in
improved agreement, as shown in Figure 4.20 against five different
particle size distributions; 50-50 mixture to Mixture 4, although some
data are overestimated from the £20 % accuracy limit. It can be assumed
that the deviation is related with the unstable flow at low velocities
reported by Shook et al., as illustrated graphically in Figure 4.21. Figure
4.22 shows the analytical results limited to stable regions according to

the records of Shook et al.
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To verify the scale-up of the models, Boothroyde et al. data of large
size diameter and long pipeline was used. Figure 4.23 shows the

analytical results in a good agreement with the experimental data.
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Figure 4.18 Predicted results of i against the experimental data
of the laboratory, Boothroyde et al. and Shook et al.
by using the Wasp method
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Figure 4.19 Analytical results of hydraulic gradient based on the
single size settling slurry model with Shook et al. data
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Figure 4.20 Predicted results of i against Shook et al. data by using
the innovated models
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Figure 4.22 Predicted results of i against Shook et al. data in the stable
regions
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Figure 4.23 Predicted results of i against the large-scale data of Boothroyde

et al. by using the innovated models
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Conclusions

In this chapter, conclusions are summarised briefly as follows:

1)

2)

3)

4)

5)

6)

7)

The analysis of single size and mixed-sized data with the
Condolios-Chapus method results in large deviations from the
Durand-Condolios correlation.

The Wasp method can only be applied to slurry flows in the range
of low concentrations.

Two types of analytical models for mixed-sized slurry, depending
on the size distribution of solids, were developed for practical
pipeline design.

The application of the settling slurry model with average diameter
of solids to the multi-sized slurry flows leads to the greater scatter
in hydraulic gradient.

The mixed-sized experimental data of sand slurries shows the
applicability of the models in the stable regions.

The scale-up of the innovated models was confirmed with data of
granite-Markham fines from prototype systems and sand-bakelite
mixed slurries.

The innovated slurry models proved to satisfy the accuracy of

+20 % relative error.
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CHAPTER 5

Conclusions and Further Research

With  continued research projects, the conclusions and

recommendations of this study can be summarised as follows.

5.1 Conclusions

Reviewing reported papers in chapter 1, this study was progressed
to develop analytical models for not only settling slurry flow but also
mixed-sized slurry flows. After discussion of the theoretical analyses
with slurry flow database, the following conclusions were reached.

Extensive experimental data was useful to confirm the limits of
application of correlations for slurry design. However, it should be noted
that availability of reliable data has been limited because of lack of some
transport conditions, such as pipe friction factor, and so on. In chapter 2,
over three thousand data was successfully accumulated from different
researchers for the development of a database program. The database
program could be also beneficial in editing and storing different kinds of
experimental data.

Due to diverse transport conditions of the researchers, it was
essential to standardise the wunits of measurements. Graphical

representation was also applied to analyse and compare correlations. The
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data was also typified by using star graphs, which clearly categorised
researchers’ transport conditions.

The object of chapter 3 was to develop the settling slurry model of
single size flows in horizontal pipes. The applicability of the model was
verified by using the Slurry Flow Database developed by Seitshiro et al.,
and the design procedure for the optimum operation condition was
clarified.

Although the settling slurry model produced large scattering when
compared to wide-range data, the introduction of the general particles
Reynolds number Re,* resulted in improved agreement. Specific energy
consumption was vital to determine the most favourable conditions of

transport.

In chapter 4, the innovated models for mixed-sized slurry flow were
discussed. The models which depend on particle size distributions, were
developed based on the single size slurry model. Furthermore, other
reported methods for evaluating hydraulic gradient were discussed.

Even though the Wasp method has been used for estimating
hydraulic gradient of mixed-sized slurries, it was shown that good
results could be attained only in lower concentrations. The two
innovated models in this study were satisfactorily proved to be
indispensable for the design of slurry pipeline systems, with verification

of experimental data in prototype systems. The innovated models could
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be also applied to evaluate critical deposit velocity, which can be helpful

for determining the optimal transport conditions.

5.2 Remarks on application of the innovated models to pipeline

design

Hydraulic gradient i is one of the important parameters used in the
design of slurry pipelines. The fundamental concept of pipeline design is
to evaluate the relationship between i and mean velocity V, for specific
transport conditions. Based on the relationship, the optimum transport
velocity could be calculated.

By using the predicted values of hydraulic gradient or pressure drop
of transport line, the required energy for conveying slurry can be
determined; it could be essential to select the pump size, pipe material
and thickness, valves, and so on. More concrete details of the procedure
for the design will be discussed at the Seventh International Conference
on Materials Engineering for Resources, ICMR 2013 AKITA, held on

November 20-22, 2013, in Akita, Japan.
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