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Abstract

In this thesis, we explore the relationship between lattice field theory and graph theory,
placing special emphasis on two things: the interplay between Dirac lattice operators and
matrices associated with graphs within the realm of spectral graph theory, and a new
conjecture, which we propose, on the relation between the species of lattice fermions and
the topology of the manifold the fermion is defined.

Beyond delving into fundamental concepts of spectral graph theory, such as degree and
Laplacian matrices, we introduce a novel matrix named as "anti-symmetrized adjacency
matrix", specifically tailored for cycle digraphs (7*-lattice) and simple directed paths
(B!'-lattice). The one of nontrivial relations between graph theory matrices and lattice
operators is that the lattice action can be given by the bilinear form of an anti-symmetrized
adjacency matrix and a vector of fermion fields. It means that the anti-symmetrized
adjacency matrix, along with its extensions to higher dimensions, are equivalent to the
matrix-representation of the naive lattice Dirac operators. Accordingly, we identify the
number of "fermion species" as the number of zero-eigenvalues of the anti-symmetrized
adjacency matrix. Furthermore, the number of fermion species is given by the topology of
the weighted digraph. In particular, the maximum number of them is uniquely determined
by the number of cycle digraphs in the whole digraph.

Our conjecture claims that a maximum number of fermion species on a finite lattice
defined by discretizing D-dimensional manifold is equal to the summation of the Betti
numbers of the manifold when the lattice fermion has several basic properties, including
locality, vs-hermiticity, and hermiticity. For this conjecture, we can be provide rigorous
proofs.

The maximum count of fermion species in a free lattice fermion operator is equivalent
to the cumulative sum of all Betti numbers when the D-dimensional graph results from
a cartesian product of cycle digraphs (7" lattice) and simple directed paths (B! lattice).
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Chapter 1

Introduction

The lattice discretization of the field theory [1] is one of the most powerful tools to non-
perturbative aspects of quantum gauge theories such as Quantum Chromo Dynamics
(QCD). The lattice field theory are defined on the discrete euclidean space (or lattice)
with a lattice constant cp,;. Accordingly, the continuum field theory is equivalent to the
quantum mechanics with uncountably infinite degrees of freedom while the lattice theory
is equivalent to the quantum mechanics with countably infinite degrees of freedom. When
we consider the finite volume of the lattice, the degrees of freedom are finite thus the
lattice theory is equivalent to the quantum mechanics with finite degrees of freedom. In
other words, the path integral can be calculated by using ab initio methods. In such a
mathematically well-defined theory, we can calculate quantities in a non-perturbative way
and there are no divergences in the lattice theory that occur in continuum theory. And
one of outstanding advantages in the lattice field theory is that the gauge field is quantized
in a gauge-invariant way: The gauge field on the lattice, which is called a link variable, is
defined on the link of lattice sites as an element of the gauge group. The gauge-symmetric
action is defined as a closed loop called a plaquette action. Non-perturbative physics has
been investigated by lattice gauge field theory and use of the numerical Monte-Carlo
simulation on lattice field theory [2].

However, there is a notorious problem called “Fermion doubling” in the lattice the-
ory. This problem is that the chirally-symmetric fermion action on the lattice inevitably
obtains degenerate degrees of freedom in a multiple number of two if we impose basic
presuppositions as locality, translation symmetry and hermiticity. We call these multiple
fermions “fermion species”. This multiplicity of fermions on the lattice originates from
the boundary condition for the finite volume lattice. The lattice with periodic boundary
condition can be regarded as the D-dimensional torus spacetime. The no-go theorem
by Nielsen and Ninomiya [3-5] uncovers the background of this multiplicity by relating
the Dirac operator of lattice fermions to the Poincaré—Hopf theorem [6], which shows the
relation between the Euler characteristic y(M) of the compact and orientable differen-
tiable manifold M and the index of the vector function defined on M. In the case of
lattice fermions, the Dirac operator in the momentum space can be regarded as a vector
function defined on the torus up to the y-matrix where the Euler characteristic is zero.
The index here stands for the net number of zeros of the vector function, counted with
signs + depending on the slope of the zero crossing. For the Dirac operator this index



is identified as the chiral charge for each species, which means the sign in front of ~;
differently assigned to each zero. A conclusion from the Poincaré-Hopf theorem is that
the index should be zero for the zero Euler characteristic. This means that the number of
zeros of the Dirac operator with a positive chiral charge should be equal to the number of
zeros with a negative chiral charge. Lattice fermions should therefore appear in a multiple
number of two, half of which have a positive chiral charge or chirality and the others have
a negative charge.

One of the methods to avoid fermion doubling is Wilson fermion [7]. In this for-
mulation we add a chiral symmetry breaking term called the Wilson term to the naive
fermion action, which assigns O(1/a) mass to doublers. In the classical continuum limit
we acquire a single fermion mode because doublers are decoupled with infinite mass. As
others methods, Domain-wall or overlap fermions [8-12|, and staggered fermions [I3-19|
have been proposed to bypass the problems and have been broadly used in the lattice
simulation. Apart from them, relatively new approaches have been proposed, including
the generalized Wilson fermions [20-21], the staggered-Wilson fermions |['7,24,28-39], the
minimally doubled fermion [40-60] and the central-branch Wilson fermion [24,32, 61, 62].
However, we will not discuss these formulations in this thesis because it is a digression
from the main point of the story.

In the our works [63,64|, we figured out the non-trivial relation between spectral graph
theory and lattice field theory, and investigated the number of zero-eigenvalues of lattice
Dirac operators in terms of graph theory. We proposed a conjecture [64] claiming, “under
certain conditions, the mazimal number of Dirac zero-modes of a free lattice fermion is
equal to the sum of Betti numbers of the graph (lattice) on which the fermion is defined".
This conjecture is consistent with the known fact on naive lattice fermions: the species of
the four-dimensional naive fermion is sixteen, which is interpreted as the sum of the Betti
number of four-dimensional torus (7). This thesis organizes and systematically relates
these works and adds recent work.

we investigate operators in lattice field theory using spectral graph theory and present
partial evidence supporting the conjecture regarding the interplay between Dirac zero-
modes and the Betti numbers of the graph [64]. Beyond fundamental concepts in graph
theory, such as the adjacency matrix and Laplacian matrix, we introduce an "anti-
symmetrized adjacency matrix" and explore its rank in relation to graph topology. It is
noteworthy that the anti-symmetrized adjacency matrix, along with its higher-dimensional
extensions, coincide with a naive Dirac operator for the free lattice theory. Leveraging
this equivalences, we elucidate the counts of fermion species for free Dirac operators on
the lattice, linking them to Betti numbers associated with graph topology: The maxi-
mal number of fermion species for a free fermion operator is equated to the sum of all
Betti numbers of the graph (lattice). This holds true for D-dimensional graphs struc-
tured as cartesian products of cycle digraphs (7" lattice) and simple directed paths (B!
lattice). We also discuss our result indicating that the naive and massless fermion on a
certain graph corresponding to a D-dimensional sphere has two fermion species, which is
consistent to the fact that the sum of Betti numbers of the D-dimensional sphere is two.

This thesis is constructed as follows: In Chapter. B we review lattice field theory. We
review naive fermion and Wilson fermion. In Chapter. B we review graph theory and
matrices defined in the theory. We review the basic theorems and show a novel theorem



regarding the anti-symmetrized adjacency matrix. In Chapter. @ we study lattice Dirac
fields in terms of graph theory, and derive the number of fermion species by use of the novel
theorem. In Chapter. B we propose a new conjecture about the relation between fermion
species and topology. And we prove the theorems on the femrion species. Chapter. B is
devoted to the summary and discussion.



Chapter 2

Lattice field theory

In this chapter, we will review the lattice fermions. This chapter is divided into four
sections. The fist section will review the naive fermion, placing special emphasis on the
spectra of lattice Dirac operator and fermion species. And we will mention a problem
in lattice field theory called “fermion doubling”. Furthermore, we will review a theorem
about fermion species. The theorem called as “Nielsen—Ninomiya no-go theorem”, claims
that multiple fermion species appear when the necessary physical conditions are imposed
on the lattice fermion action. In the remaining two sections, we will review “Wilson
fermion” and “Domain-wall fermion” as methods of avoiding the fermion doubling.

Before this discussion, we define the lattice field theory. Let Lat be a finite volume
D-dimensional hypercubic lattice® bellow

D
Lat = {n = Clat Znuﬂ
pn=1

where ¢, is the lattice constant, which is a minimum length between sites on each di-
rection in the lattice. And fi is the standard basis in D-dimensional hypercubic lattice,
which is the object between the closest lattice sites. We term it as “u-link”. Its sites are
represented by D integer as n = (ny,ng, -+ ,np). For simplicity, we consider that the
lattice constant is ¢, = 1. In this chapter, we consider the lattice with periodic boundary
condition unless otherwise stated. The lattice is defined as

D
Latperiodic =4qn= E me
p=1

where the added conditions are the periodic boundary condition.

In the lattice field theory, the field is defined on the lattice sites. It is given by v, for
n € Lat. We mention one advantage of the lattice field theory. It is that the gauge field
is quantized in a gauge invariant way. The gauge field on the lattice is defined on the link
between lattice sites as an element in the compact gauge group such as the Lie group:
U(N) and SU(N). It is given by U,, = exp [igciatA,(n)] with the coupling constant

n, €[1,N,] C N} (2.1)

(2.2)

AN, eN st. n+ Nyji~n,
n, €[1,N, ) CN

Lattice field theory can be defined on Euclidean space. However, for convenience we define this theory
restrictively to the finite volume D-dimensional hypercubic lattice in this these.
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g and the gauge field A,. The gauge field A, is an element in the Lie algebra since
Ay =2, AL(n)T* € SU(N) where T is a generator of Lie algebra SU(N). Here, SU(N)
is the Lie algebra SU(N) for SU(N). The generator T* is N-square matrix satisfying

tr 7 =0, (T =1° (2.3)
1
tr 77" = §5ab, [T°,T%] = ifT° (2.4)
where tr is the trace of the matrix and [A, B] is [T“, Tb] = AB — BA. Furthermore, we
introduce the gauge coupling g and the corresponding gauge field A,(n) in the continuum.

The link variable is assumed to satisfy Uy, = UJW. The case of two dimensions with
the link variable is depicted in Fig. 271

Figure 2.1: The two dimensional lattice and the fields defined on its sites. Here, v, is the
fields.

2.1 Naive fermon

In this section we will review the naive lattice fermion from the view points of the spectra
of the lattice Dirac operator and the fermion species.

Firstly, we discuss about the lattice fermion action of the naive fermion. We consider
the lattice as Latperiodic Since the translation invariance is imposed on the four-dimensional
hyeprcubic lattice. In the later chapter, this lattice is equivalent to 7%-lattice. Then, a
lattice action of naive fermion is given by

4
I - - _
Sut = cilat E E it [¢n7uUn,u¢n+ﬂ - @/}n—&-ﬂ'YMU;,u@bn + m@/}n@bn} (2'5)
n pu=1 a

where 1),,, m are the fermionic fields and mass for fermions with a dimensions 1/cj,
respectively. And U, , is called the link variable. y-matrices and U,, 1, act on the fermionic
fields 1,,. The sum ) is the summation over lattice sites n = (ny, ne, n3, n4) in the lattice.
In lattice field theory we can nondimensionalize fermion actions by redefining fields and



3/2 : . . .
mass as cla/t U, — ¥, and mc; — m. The dimensionless actions are given by

4
1.- . _
Sut = Z Z 5 [wn’)/uUn,ywnJ,-ﬂ - wn+ﬂ7uUrt,u¢n + mwnwn]

n pu=1

4
= Z Z %%DHW

n pu=1

(2.6)

where D, = (Ty, —T-,) /2 with T4, ¢, = Up+y¥nrs. We term D, as “lattice Dirac
operator”. In a free theory, we just set U, , = 1. If we consider the free naive fermion,
the lattice fermion action is given by

Sfree — 1

4
nf § Z Z [&n’-}/ﬂwn-ﬂl - @Zn—i-ﬂ’)/u"ﬁn + m'&nwn} (27)

n  p=1

and 16 fermion species are known to occur in the theory. The case of two dimensions is
depicted in Fig. 22

Figure 2.2: In the free theory, the two dimensional lattice and the fields defined on its
sites.

Secondary, we discuss a notorious problem called a “doubling problem” in the lattice
field theory. To show this problem, let us look into this by rewriting a free lattice fermion
action in the momentum expression with the lattice spacing being explicit as

W/Clat d4 _ 4
Sii” = / / (2754 ¥(=p) [Z D usin (cuipy) +m | ¥(p)
—T/Clat pn=1 28
B /w/cm dp >
B —7/Clat (27)4 ¢(_p> (p)w(p)

where we define the 4-vector momentum as p, for 4 = 1,2,3,4. And D(p) is the Dirac
operator in the momentum space. The four-dimensional lattice (or discretization space
time) results in restriction of the euclidean momentum space as —m/cla < Py < T/Clat,
which is called the Brillouin zone. Then, a lattice fermion propagator obtained from this
action is given by

—is(p) +m

) 2

Gue(p) = D™ (p) =



where s(p) = Zizl Y sin (clatpy). The zero point of the Dirac operator or the pole of
the lattice fermion propagator in the momentum space D(p) = s(p) + m = 0 corresponds
fermion degrees of freedom. In the massless case, this Dirac operator has 16 zeros within
the Brillouin zone since the momentum p,, takes 0 or m/cjy;. The spectra of Dirac operator
in the case of four-dimensional lattice with 16* sites is depicted in Fig. EZ3. Then, the

Im
0
|
—| IMRRHONNOK K o ¢ SNONAERIDININ

-1.0 -0.5 0.0 05 1.0

Figure 2.3: The spectra of Dirac operator in the case of four-dimensional lattice with 164
sites. 16 degeneracies exist at zero.

number of zeros is 16. In the D-dimensions, the Dirac operator has 2 zeros since the D-
dimensional Dirac operator in the momentum space is D(p) = iZle Yy Sin (Clatpy) + m.
What multiple zeros appear in this way is called “fermion doubling”. And these zeros are
called “fermion species” (or doubler).

2.2 Nielsen—Ninomiya no-go theorem

In the previous section, we discussed about the naive fermion and fermion doubling.
In particular, we showed how fermion doubling occurs in term of the spectra of Dirac
operator.

This section is discussed about a notorious theorem about fermion doubling and its
proof This theorem is called “Nielsen—Ninomiya no-go theorem” [3-5|. The theorem claims
below.

Theorem 1 (Nielsen—Ninomiya no-go theorem). Let S be a free lattice fermion action on
the finite volume four-dimensional hypercubic lattice. This action satisfies five conditions:

(a) bilinear form of the fermion fields,  (b) chiral symmetry,
(c) translation invariance,  (d) hermiticity,  (e) locality.

Then, the multiple fermion species appear in the lattice theory.

The proof is based on the work of Karsten [40].
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Proof. For the assumed conditions, the lattice action have to satisfy as follows:

(a)

The lattice fermion action is given by

= > U@ F (@, y)e(y) (2.10)

where 1(z) is defined on the lattice sites and F'(x,y) is a function acting on the
fermion fields ¢(x) and depending two lattice site x, y.

The lattice actiop must have the invariant for the chiral transformation defined as
Y = e and Y’ = e®5. Accordingly, the lattice action can be written as

=D @)Ll y)e) (2.11)

z,y p=1

where F),(x,y) are a function of the classical number, which corresponds the lattice
Dirac operator. Indeed, this lattice action has the chiral symmetry since the lattice
action performed the chiral transformation is

=D U @nFule, v (y) = S (2.12)

zy p=1

where we used 7,75 = —757,. Note that what the mass term adds to the lattice
action is forbidden since the lattice action with the mass term m breaks the chiral
symmetry below

St = ZZ@D ) {yuFul,y) +m}y ! (y)
wy (2.13)

—5f+mzz¢ )e* 1 (y) .

z,y p=1

For this condition, the function F'(z,y) only depends on z—y, i.e. F,(z,y) = F,(x—y).
Meanshile, The lattice action can be rewritten as the action in the momentum space
with a momentum p.

By use of the chiral symmetry and the bilinear form of the fermion fields, the lattice

action is given by

=D V@) nFuey)by) (2.14)

zy p=1

where (z) is defined on the lattice sites and F),(x,y) are a function of the classical num-
ber, which corresponds the lattice Dirac operator. Indeed, for the chiral transformation,
which is defined as 1’ = €51) and 1’ = e, the lattice action is

=2 V@ mFua,y)v(y) = S (2.15)

zy p=1

10



where we used 7,75 = —v57,. For the translation invariance, the lattice action is rewritten
as the action in the momentum space with a momentum p. Furthermore, the function
F(z,y) only depends on = —y, i.e. F(z,y) = F,(x —y). The hermiticity causes the
function F,(x — y) to be a real function since F*(x —y) = F,(x — y). To the function
F,(x — y) satisfy the locality, we assume |z — y|F,(x —y) — 0 for |z — y| — oo. This
means the Fourier transform of F),(z — y) is continuous.

As a result, the lattice action in the momentum space is given by

T/ Clat 4 3
Sf:/ d ¢ [ Zﬁ)/,u

—70/Clat (27T)

b(p) (2.16)

where F),(p) is the Fourier transform of F,(x — y). Furthermore, the function F,(p) is a
continuous and real vector field defined on the four-dimensional torus. Since an inverse
of propagator for this action in the Brillouin zone should be approximated to the Dirac
operator, the inverse of propagator for this action in the Brillouin zone is

G lp) =i Z%pu +0(p°) =1 Z% (2.17)

where p is a physical momentum defined by § = (p — p)°. Accordingly, zeros of F, w(p)
corresponds to the zeros of Dirac operator. Here, by use of Poincaré—Hopf theorem mul-
tiple zeros of F),(p) appear since the Euler characteristic of the four-dimensional torus is
ZEero. [

As an example of this theorem, we showed the naive fermion in the previous section.
The latice action of naive fermion satisfies the bilinear form, the hermiticity, and locality.
And it has the translation invariance and the chiral symmetry since this action has the
periodicity of the lattice sites in each direction and no terms breaking the chiral symmetry
(mass term). As shown in the previous section, the fermion doubling occurs in the naive
fermion and the number of fermion species is sixteen.

In addition, an obtained important consequence of this theorem is that the fermion
doubling can be avoided by breaking at least one of its conditions. In subsequent sections,
we will review “Willson fermion” and “Domain-wall fermion” as ways to avoid fermion
doubling.

2.3 Wilson fermion

In the previous sections, we showed the naive lattice femrion. In this and the following
sections, we will introduce two methods to avoid fermion doubling. In particular, this
section is discussed about Wilson fermoin.

Let us review about Wilson femrion. The Wilson fermion lifts degeneracy of sixteen
species into five branches by introducing the species-splitting term called the Wilson
term, which breaks the chiral symmetry explicitly. The free action for Wilson fermion in

11



four-dimensions is given by

Swi = ZZ%W u¢n+mz¢”¢"+rzz% o (2.18)

n p=1 n p=1

- nf+SW

where D, = (I, —T_,) /2 and C, = (T4, +1-,) /2 with Ty, = UpapyVnsp. m is
a mass parameter and r is a Wilson parameter. Sy is the naive lattice fermion action
in Eq. (E232) and Sw is the Wilson term. Note that the lattice on which this Wilson
fermion is defined is T*-lattice in Eq. (E231). So, we consider the lattice with the periodic
boundary condition in each direction. The Wilson term is explicitly expressed as

4
_ r _ _ _
Sw=m Z Ynhn — B Z Z [¢nUn,#¢n+ﬂ + wnﬂlU;,,uwn - 2%%] . (2.19)
n n pu=1
In a free theory, the Wilson term is
free =m Z 77Z)n¢n S Z Z 77Z}n¢n—‘,—,u, + wn—&-,uqvbn 2wnwn] (220)
n pu=1

because of U, , = 1. In the momentum space the free action is given by

Siree — /_ dp [ {Z iyusinp, +m+r Z (1-— cospu)} Q/J(p)] (2.21)

pn=1 pn=1
since we take Fourier transform

Uy = / ’ dp e~ (p) (2.22)

—T

with np = Zizl nupu. Accordingly, what was the fermion species in the naive fermion
has the mass M (p) which depends on the mass parameter and the Wilson parameter as

follows: )

m any p, = 1 in p.
m+2r one p, = m/cl otherwise p, =0 in p.
M(p) = m+4r two p, = 7/cla otherwise p, =0inp. . (2.23)

m + 6r three p, = m/cia otherwise p, = 0 in p.

(m+8r anyp, = T/Clat N p.

By restoring the lattice spacing as m — mcp,, and M (p) — 1. M (p), the mass is rewritten

as
p

m any p, = 1 in p.
m +2r/cla  one p, = m/cjay otherwise p, =0 in p.
M(p) = § m+4r/cy  two p, = 7/t otherwise p, =0 inp. . (2.24)

m + 6r/clay  three p, = m/ciay otherwise p, =0 in p.

| M+ 8r/clay  any p, = /clat in p.

12



When we take the contium limit (cj,y — 0), the masses other than m diverge in the
continuum limit. It means that for 16 fermion species of the naive fermion, 1 species is
reserved and the other species are split as unphysical poles. The complex Dirac spectra
of the free and m = 0, » = 1 case is depicted in Fig. Z4. However if we take m = —2 and

* *
* *
E o * * * * *
* sk ¥ ¥ * ¥ *
* ¥ *

Figure 2.4: The complex Dirac spectra for Wilson fermion of the free and m = 0, r = 1.
There are five branches where 1, 4, 6, 4 and 1 fermion modes correspond. The most left
branch is called a physical branch.

r = 1, the of Dirac operator has 4 zeros since the Dirac operator is

D(p) = Z{Wu sinp, + (1 — cospu)} -2 (2.25)

p=1

and the momentum of the zeros are
p=(m0,0,0),(0,7,0,0),(0,0,7,0),(0,0,0,) (2.26)

where we assume ¢,y = 1 This choice of the mass parameter describe four fermions at
least classically. Besides, for m = — 4 we have six modes while we have four modes for m
= — 6. For m = — 8 we again have a single mode. The sum of them are sixteen. Thus
the fermion modes which we obtain from the Wilson fermion depends on the choice of the
mass parameter. We call these five choices of the mass parameter “branches”.

2.4 Domain-wall fermion

In the previous section, we introduced the Wilson fermion as one of methods to avoid the
fermion doubling. This method made branching fermion species by adding a mass term
called “Wilson term” into the lattice action. However, there is a breaking chiral symmetry
in this lattice action. Since it conflicts with the conditions of no-go theorem, we can avoid
fermion-doubling in a simple way.

13



In this section, we will review another method to avoid the problem called Domain-wall
fermion. To construct the four dimensional fermion, this method starts with considering
a five dimensional fermion with the mass depending a coordinate in the fifth direction.
It was firstly proposed by Kaplan [§]. Subsequently, this method was applied to lattice
fermion by Shamir and Furman [9,10].

First, we will review Kaplan’s way. For simplicity, we consider his idea in continuum
theory. The five dimensional fermion action is given by

5
SKaplan - /d4$d$5 QZ(I7'I”U5) [Z 7“3“ - m<$5)] ¢($7$5) (227)
pn=1

where x is the coordinate in the four-dimensional space and x5 is the coordinate in the
fifth direction. m(zs) is the mass parameter depending the coordinate x5 and satisfies

mo x5 >0
m(xs) = mee(xs) = < 0 x5 =0 (2.28)

—my x5 <0

where €(x5) is the step function. By the mass parameter m(x;), the left-handed chiral
fermion can be localized in the four-dimensional hyperplane (z5 = 0). We can show it by
solve the equation of motion for this action, i.e.

[Z VO — m(%)] (x,25) = 0. (2.29)

To solve this equation, we consider 1 (z, x5) = ¢(x) f(x5) where ¢(z) is the four-dimensional
fermion field and f(x5) is the scalar function. Now, we assume that the four-dimensional
chiral fermion has the translation invariance in the four-dimensional hyperplane. By
this assumption, the femrion fields ¢(x) can be Fourier transformed as ¢(z) = u(p)e™*.
Accordingly, the equation of motion is

[i Z’M%] u(p) f(ws) + [1505 f (v5) — m(zs) f(2s)] u(p) = 0. (2.30)

where 05 is the partial differentiation with respect to the variable x5. By assuming that
u(p) have to satisfy the massless Dirac equation below

iZ%pH] u(p) =0, (2.31)

and u(p) are the eigenmodes of 75 with +1 or —1 as eigenvalues, u(p) and f(s) are

Ysu(p) = u(p) (2.32)
f(z5) = C exp [£mgolzs|] (2.33)
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Figure 2.5: This figure plots f(z5) = Cexp [—myp|z5|] in the range —7 to 7 in the case of
C=1landmg=1>0.
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Figure 2.6: This figure plots f(z5) = Cexp [mg|zs|] in the range —7 to 7 in the case of
C=1landmg=1>0.



where C' is the constant. These two equations imply that left-handed fermion be localized
in the four-dimensional hyperplane (z5 = 0) when the mass myq is positive, i.e. mg > 0.
Indeed, we show it in the case of mg > 0. Then, f(z5) is chosen f(z5) = Cexp [—mg|xs]]
as the normalizable solution since exp [mg|xs|] diverges in the range —oo to co as shown
in Fig. 23 and Fig. 8. And to satisfy Eq.2230 and Eq.EZ32, u(p) is determined by the
eigenmode of 5 with —1 as eigenvalue (left-handed fermion), i.e. ysu(p) = —u(p). For
these results, ¥ (x,15) = Cu(p)f(x5)e®® is localized in the four-dimensional hyperplane
(x5 = 0) for larger the mass mg as shown in Fig. P74. Thus, we can realize the left-handed

0.8 4

0.6

0.4

021

0.0

-6 -4 -2 0 2 a 6

Figure 2.7: This figure plots f(z5) = Cexp [—myp|z5|] in the range —7 to 7 in the case of
C =1 and my = 10'° > 0.

chiral fermion in the four-dimensional hyperplane by this way. By contrast, we can realize
the left-handed chiral fermion in the four-dimensional hyperplane in the case of my < 0.

However, this idea cannot be applied directly on the five dimensional finite volume
hypercubic lattice since the boundary condition in the five dimensional direction makes a
significant contribution to the function f(x5). For instance, we restrict the range in the
five dimensional direction to — N5 to N5 and impose the periodic boundary condition. For
this boundary condition, the mass parameter m(xs) is

my 0 < x5 < Nj
m(l'g',) = 0 Ty = O7 N5, —N5 (234)
—myg —Ny<x5<0
as shown in Fig. 8. It means that there is the boundary where the mass changes in the
four dimensional hyperplane (z5 = N;5) boundary. And the change in its mass is opposite

in sign to the change around z5 = 0, i.e. —m(x5 — N5) = m(x5). Accordingly, the right-
handed fermion is localized in the boundary (x5 = N;). Thus, in the five dimensional
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m(xs)

T5

Figure 2.8: This figure plots the mass parameter m(z5) when imposed the periodic bound-
ary condition —N5 ~ Nj.

finite volume hypercubic lattice the whole is describing one Dirac fermion. And it is
possible to avoid fermion doubling by adding the mass depending xs.

Next, we review domain-wall fermion in the lattice theory. Specifically, we show a
way in lattice of constructing zero-mass chiral fermions while avoiding fermion-doubling.
We consider a finite volume five-dimensional hypercubic lattice imposed the Dirichlet
boundary condition on the fifith direction and the periodic boundary condition on other
directions. Namely,

4
Lpy, = {n = Znu,&+n55

p=1

(2.35)

AN, eN st. n+ Nyi~n,
n, € [1,N,] C N for v € [1, 5]

where 5 is the standard basis of the fifth direction. The domail-wall fermion action in this
lattice is

4
SDW — Z &n,r% [Z ’Y,u,D,u + 75D5] ¢TL,')’L5
pn=1

n,ns

(2.36)
Ynns

n,n5

+ ) Vg [—MD +Y (1=Cu)+(1-C)

where Dstn ns = (Unns+1 — Ynns—1) /2, CsWnns = (Unng+1 + Ynns—1) /2 and My is a mass
parameter. The sum Zn,n5 is the summation over five-dimensional lattice sites n,ns =
(n1,n2,n3,n4;n5). Note that there are two differences regarding boundary conditions and
dynamical (or non-dynamical) variables between the fifth direction and other directions:
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e On the fifth directions, 1, ,, satisfies ¥, 0 = ¥, n;41 = 0 since we impose the
Dirichlet boundary condition, and its interval is 1 < n5 < Nj5. On other directions,
we impose the periodic boundary condition, and those intervals are 1 < n, < N,,.

e The link variables in the fifth direction are not dynamical while those in other
directions can be dynamical. Accordingly, we can consider the coordinate of the
fifth direction to be the flavour’s degree of freedom.

Since there are non-dynamical variables in the fifith direction, we can rewrite the lattice
action as

4
SDW = Z Z &n,n5ﬁ)/;¢Duwn,n5

n,ns p=1 ) (237)
F30 Y s (M 4 2P
m,n ns’ng

where Pp = (1 +75) /2 and P, = (1 —v5) /2. The operator M, M are the mass terms
given by

M:zn:i’ nnf = 1+ 1-C,) — M myns — ¥Ym.n
5 5w M ;( H) 0] (8 ns (% n5+1 (238)
= W¢m,n5 - ¢m,n5+1
and
(MT)?;ZQ%,% = |1 + Z (1 - Cu) - MO wm,ns - wm,ng,fl
B (2.39)
= W¢m,n5 - wm,ng—l
respectively. As an example, the operators M, M in the case of N5 = 5 are
W -1
W -1
M™ = w -1 (2.40)
W -1
W
and
w
-1 W
(MTy™™ = -1 W (2.41)
-1 W
-1 W

respectively. A difference between this action and Eq. 2221 is that it has an off-diagonal
and non-hermitian mass term with respect to coordinates in five directions. By deriving
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zero-modes of this mass term, we realize the chiral fermion avoiding fermion doubling.
Let ¢,. be zero-modes of the operator M, i.e.

Z Mn5n’5¢ng = W¢n5 - ¢n5+1 =0. (2.42)
ns

If W] < 1 and N5 — oo, there is a non-trivial solution obtained as ¢,, = W™ 1¢;.
Indeed, this solution satisfies Eq. EZ42. And this mode can be normalized as ¢,, =

V1 —W2Wns—1 By contrast, a solution for an MZSHL ¢n, = 0 s obtained as

Gy = V1 — W2 (2.43)

if W] <1 and N5 — oc.

And finally, we discuss the condition || < 1 necessary for the existence of zero-mode
solutions. Because of W =1+ (1 — C},) — M, and Fourier transformation, the condition
is

0<My—> (1—cosk,)<2. (2.44)
o
Therefore, the relation between the momentum of £,, the range of mass parameter My,
and the number of massless fermion are given in Table. 271. It indicates that this method
can avoid fermion doubling.

Table 2.1: Classification of the number of massless fermion in DW fermion

momentum k, the range of My the number of massless fermion
any k, =0 0< My<?2 1
one k, = 7 otherwise k, =0 2< My< 4 4
two k, = m otherwise k, = 0 4 < My<6 6
three k, = m otherwise k£, = 0 6 < My<8 4
any k, = m 8 < My < 10 1
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Chapter 3

Spectral graph theory

In this chapter, we will introduce spectral graph theory in order to discuss lattice fermions
in term of graph theory. This chapter is divided into three sections. In the first section,
we will introduce some basic concepts about graph. Next section introduces matrices as-
sociated with graphs. The point of focus is that novel matrices called as anti-symmetrized
adjacency matrices is defined. Final section mentions two theorems about the relationship
between the nullity of matrices associated with graphs and the topology of the graphs.
These theorems will be used in order to discuss the number of fermion species in later
chapters.

3.1 Graphs

In this section, we will introduce some definieions of graphs and operation between graphs
used in this paper.

We firstly introduce basic notions and definitions in graph theory. The definiitions of
graph is given as bellow [65-68)|.

Definition 1 (graph). A graph G is a pair G = (V, E), where V is a set of vertices of
the graph and E is a set of edges of the graph.

As examples, we can depict two graph in Fig. B0 with V' = {1,2,3,4} and F =
{{1,2},{1,3},{1,4},{3,4}}. Here, we note that {7, j} stands for an edge from i to j. If
every adjacent vertices can be joined by an edge, the graph is referred to as “connected".
Each of connected pieces of a graph is referred to as a “connected component". The two
graphs in Fig. BT are connected, where they have single connected components. They
have no directed edge, which will be discussed next definition.

Definition 2 (directed graph or digraph). A directed graph (or digraph) is a pair (V, E)
of sets of vertices and edges together with two maps init : £ — V and ter : E — V. The
two maps are assigned to every edge e;; with an initial vertex init(e;;) = v; € V and a
terminal vertex ter(e;;) = v; € V. The edge e;; is said to be directed from init(e;;) to
ter(e;;). If init(e;;) = ter(e;;), the edge e;; is called a loop.
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@

Figure 3.1: These examples are graphs having a pair G = (V, E) with V' = {1,2, 3,4} and
E= {{17 2}7 {1’ 3}’ {17 4}7 {37 4}}

As examples of directed graph, two graph in Fig. B2 are digraphs with V' = {1,2,3, 4}
and E = {{1,2},{1,3},{1,4},{3,4}}. Initial vertex and terminal vertices are assigned
as init({,j}) = i, ter({i, j}) = J.

@

Figure 3.2: These examples are graphs having a pair (V,FE) with V = {1,2,3,4}
and £ = {{1,2},{1,3},{1,4},{3,4}}. The initial vertices of edges are init({1,2}) =
1,init({1,3}) = 1,init({1,4}) = 1,init({3,4}) = 3, while the terminal vertices are
init({1,2}) = 2, init({1,3}) = 3,init({1,4}) = 4, init({3,4}) = 4.

Weighted graphs are defined as follows.

Definition 3 (weighted graph). The weighted graph has a value (the weight) for each
edge in a graph or a digraph.

We depict an example of weighted graphs in Fig. B33. It is a weighted and directed
graph, each of whose edge has a weight as follows: w({1,2}) = 1, w({2,3}) = 2,
w({4,1}) =3, w({2,1}) = —4, w({1,4}) = -1, w({4,3}) = —2.

At the end of this section we introduce cartesian product which operations between
graphs [69-171].

Definition 4 (cartesian product). The cartesian product of two simple graphs Gy and
Go is the graph G = G1 O Gy with V(G) = V(Gy) x V(G2) in which vertices (vy,v2) and
(v}, vh) are adjacent iff either vy = v} and vy,v| are adjacent in Gy or vy = v} and ve, v}
are adjacent in Gs.

As example of cartesian product, a graph G = G;O0G; in Fig. B4 has V(G) =
V(Gy) x V(Gy) with V(Gy) = {v1,ve,v3} and V(Ge) = {v],v,v5} where E(Gy) =
{{v1, vo}, {v2, v3}} and E(Ga) = {{vy, v3}, {v3, vi}}.
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@ ®

Figure 3.3: This digraph is weighted. Blue edges in the graph are those with positive
weights, while red edges are those with negative weights.

G Gs
v3@ i@ N —& - 9
(s, o) (v, 0h) [ (vs, )
V2@ O ve = [ 2 L 2
’ (2, )| (2, 0p) [ (v2,0h)
@ )

(Ulrvll) (Ul,’t/z) (Ulvvé)

Figure 3.4: This graph is constructed by cartesian product of G; and Gs.

3.2 Matrices associated with graphs

For using later section, we here introduce definitions of matrices associated with graphs.
We introduce a definition of a degree matrix.

Definition 5 (Degree matrix). A degree matriz D of a graph is a |V| x |V| matriz defined

Di; = { deg(v;) 1= . (3.1)

0 otherwise

The degree deg(v;) of a vertex v; counts the number of times an edge terminates at
that vertex. As an example we exhibit an degree matrix D of a graph in Fig. B

3000
0
0
2

(3.2)

o O O
o O =
[eoll VN an]

On the other hand, the degree matrix D of a graph in Fig. B2 is
0000

o O O
OO =
o = O
N OO

We next introduce a definition of an introduce matrix for undirected matrices.
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Definition 6 (Incidence matrix (undirected)). An incidence matriz B of a undirected
graph is a |V| x |E| matriz defined as

1 a vertex v; is incident with edge e;
0 otherwise
As an example we exhibit an incidence matrix B of a graph in Fig. B
1 101
01 00
B = 101 01" (3.5)
0011

where we define ey; = €9, €13 = €1, €314 = €3, €47 = €4.

Definition 7 (Incidence matrix (directed)). An incidence matriz B of a directed graph
is a |V| x |E| matriz defined as

—1 an edge e; leaves a vertex v;
Bij =41 an edge e; enters a vertex v; . (3.6)

0 otherwise

The incidence matrix B of a graph in Fig. B2 is

-1 -1 0 -1
o 1 0 0

B = 1 0 -1 0 (3.7)
0o 0 1 1

where we again define ey; = €9, €13 = €1, €34 = €3, €47 = €4.
We introduce a definition of an adjacency matrix. An adjacency matrix for wighted
graphs is defined as follows.

Definition 8 (adjacency matrix). The adjacency matriz A of a graph is the |V| x |V|

matrix given by

0 otherwise ’

Ay — {wij if there is a edge from i to j (3.5)

where w;; 1s the weight of an edge from i to j.

As examples, we exhibit an adjacency matrix A of a graph in Fig. B and Fig. B33

AG) = (3.9)

=)
S O O
_ o O =
O = O =
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0 1 0 -1
—40 2 0

A=1"% 0 o o (3.10)
3 .0 -2 0

where G, G’ denote the graph in Fig. B and Fig. B3 respectively. And we assumed that
the weight of every edge in the graph G in Fig. BIis 1, or w(e € G) = 1. In general, the
adjacency matrix of a directed graph is asymmetric since the existence of an edge from ¢
to j does not necessarily imply that there is also an edge from j to 7.

The Laplacian matrix is defined by the degree, adjacency and incidence matrices as
follows.

Definition 9 (Laplacian matrix). The Laplacian matriz L of a graph is the |V| x |V
matrix given by

L=D-A=BB" (3.11)

D, A are degree, adjacency matrices of a undirected and unweighted graph, while B is an
incidence matriz of directed graph.

For a graph in Fig. B, the Laplacian matrix is

3 -1 -1 —1
-1 1 0 0
L=|"7 o 9 _1|- (3.12)

-1 0 -1 2

One can easily check out L = D — A = BBT.
In addition to the standard definitions of graph matrices, we introduce a specific
adjacency matrix of directed graph as an “anti-symmetrized adjacency matrix" as follows.

Definition 10 (Anti-symmetrized adjacency matrix). The anti-symmetrized adjacency
matriz Aus of a directed and weighted graph having no multiple edges is the |V| x |V
matrix given by -1

Wi i=a and j = f for edge {a, B}
(Aas)ij = —w;rj i =0 and j = « for edge {a, 5} (3.13)
0 otherwise

where w;; 1s the weight of an edge from i to j.

The anti-symmetrized adjacency matrix of a directed graph is anti-symmetric. As
example, the anti-symmetrized adjacency matrix A,s of a graph in Fig. B2 is

11
0 0

Aps = 0 1l (3.14)

0
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3.3 Useful theorems of matrices associated with graphs

In this section, we will discuss useful theorems of Laplacian and anti-symmertized adja-
cency matrices. These theorems claim a non-trivial relationship between the nullity of
matrices associated with graph and topology of the graph. In later section, these theo-
rems will be used when we prove the relationship between the zero-modes of the difference
matrix in lattice action and the topology of the graph.

3.3.1 Betti numbers and Laplacian

The topology of a graph is known to be detected by matrices associated with the graph.

Theorem 2 (Betti numbers and Laplacian). The zeroth Betti numbers 5y(G) of the graph
G are related to the rank of graph Laplacian.

|V| — rank L(G) = Bo(G) (3.15)
where PBo(G) is also the number of connected components of the graph G.

It means that the number of exact zero eigenvalues of the Laplacian matrix agrees
with 5y(G) which is equal to the number of connected components of the graph. A proof
of this theorem refers to the proof on eigenvalues of Laplacian matrix [/2]. The proof is
given below.

Proof. Firstly, we prove it for a graph with a single connected component. The zeroth
Betti number is fy(G) = 1 since the graph has a single connected component. So, we
will prove |V| — rank L(G) = By(G) = 1. Let v € CVI be a vector, where v = Z'Z‘jl xie;
with e; is the standard basis. |V is the set of vertices in the graph G. The bilinear form
v L(GQ)v is

v L(G)v = v {D(G) — A(G)}v =v'D(G)v — vTA(G)v, (3.16)

where D(G) and A(G) are the degree matrix of G and the adjacency matrix of G respec-
tively. Based on the definitions of degree matrix and adjacency matrix,

14
VIL(G)o = deg(vi)|ail* — Y (T + Tjxs)
i=1 {ij}eE
= Y (@l + 1) = D (@ +zm)
{ij}eE {ij}eE (3.17)
= Z (@ — 7;) (7 — )
{i,j}eE
- ¥ l-af
{i,j}eFE

where {i,j} stands for an edge between one vertex v; and other vertex v;. Furthermore,
E is the set of edges in G.
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If the vector v is a zero-mode (zero-eigenvector) of the Laplacian L(G), the bilinear
form v!L(G)v satisfies the following equation,

> -’ =0. (3.18)

{i,j}€FE

From this and |z; — z;]* > 0, 2; = z; for any edge {i,j} € E is obtained. Since we
consider a graph with single connected component, the components of the zero-mode v
must satisfy 1 = x5 = --- = x)y|. If there is x; # x; in components of zero-mode v, the
graph can be divided into G; and G5 such that there is no edges between G; and G,.
But, this is inconsistent with the fact that the graph has single connected component.
We then have that the zero-mode v for Laplacian L(G) is unique and explicitly written
as v = sz\ e; with a € C. Hence, |V| —rank L(G) = (y(G) = 1 holds for a graph G
with single connected component since the rank of Laplacian is L(G) = |V| — 1.
Secondary, we prove it for a graph with £ > 1 connected components. The zeroth
Betti number for this graph is 8y(G) = k since the zeroth Betti number is equal to the
number of connected components. As a result, we will prove |V|—rank L(G) = (y(G) = k
The graph can be divided into k graphs with single component such that there are no
edges between each two of graphs. They are denoted as G, for v € {1,2,---  k}. These
edges satisty F(G,) N E(G,) = 0 for v # p since there are no edges between each two of
connected graphs. Furthermore, the number of vertices of G, is denoted as |V(G,)| and

Zzlj:l |[V(G,)| = |V]|. Then, a Laplacian L(G) is a block matrix as

LG
1(E) - e @i 3.19)

L(Gy)

since E(G,)NE(G,) = 0 for v # p. And & denotes the direct sum. The rank of Laplacian
L(G) is obtained as

k
rank L(G) = rank [EB L(G,)

where we used the property of the direct sum. The rank of each matrix L(G,) is
rank L(G,) = |V(G,)| — 1 because each matrix L(G,) is a Laplacian for the graph G,
with single component. Consequently, the rank of Laplacian L(G) is

rankL(G)zZ(W |—1> Zyv MN=S1=V|-k. (321

v=1

k

= Z rank L(G)) (3.20)

v=1

Hence, |V| —rank L(G) = 5o(G) = k holds for the graph G with k connected components.
We now conclude that |V| — rank (G) = 5o(G) holds for generic graphs. O
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3.3.2 Betti numbers and anti-symmetrized adjacency matices

We discuss a useful theorem of anti-symmetrized adjacency matrices. The theorem can
be applied to anti-symmetrized adjacency matrix of only certain weighted digraphs. To
discuss the theorem, we introduce the weighted digraph. Let G is the weighted digraph,
which has y-matrices as the weight and be constructed by a cartesian product of only the
cycle digraph and the simple directed path. The cycle digraph and the simple directed
path are denoted by D) and D®a™h) pespectively. The digraph G is explicitly written
as
GEG:[DGQD DGD

wlec C)=n, (3.22)

where G, € {foyde), D,Spath)} for p € {1,2,--- , D} and w(e) denote the weight of edge
e. The symbol [J stands for the cartesian product, Furthermore, 7, is D-dimensional
gamma matrices satisfying Clifford algebra as {v,,7v,} = 20,,. The cycle digraph has a

pair as
V(D,L(tcyde)) = {17 2., |V|M}

E(D;(Lcyde)) = {{17 2}7 {27 3}7 T {|V|# -1, |V|#}= {|V|#7 1}} :

where V(foyde)) is a set of vertices and F (Dﬁcyde)) a set of edges. So, this digraph has
|V|,, vertices and |V, directed edges. By contrast, the simple directed path has a pair as

(3.23)

V(D(path)) = {17 27 T ‘V‘M}

I

" (3.24)
E(D;(Lpa 1)> = {{17 2}7 {27 3}7 T 7{|V’u -1, ’V’u}}

where V(DFP*™) and E(DP*™) are a set of vertices and a set of edges respectively. So,
this digraph has |V|, vertices and |V/|, — 1 directed edges unlike the cycle digraph. These
digraph is depicted in Fig. B3. Then, the number of vertices of G is |[V| = 25:1 V1,

@

(N @) @

(a) D(¥ele) with N vertices. (b) DPa) with N vertices.

Figure 3.5: The two graphs correspond to a cycle digraph D<) and a simple directed
path D®*) regpectively.

27



O~ O~

) ©) ) ©)
/ \ / \
/® ) \ /® -
\

@\®/@ @\@/@
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(b) Dgpath)DDgpath) is identified as a two dimensional disk with directed edge.
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(c) Dgcyde)DDépath) is identified as an cylinder with directed edge.

Figure 3.6: Three examples for G in Eq. (322) and manifolds corresponding to them are
depicted.
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where |V, stands for the number of vertices of G,. Some examples are depicted in
Fig. B8.

Next, we show the anti-symmetrized adjacency matrix for digraph G in Eq. (B222). The
anti-symmetrized adjacency matrix is |V/| square matrix constructed with tensor product
(or Kronecker product) [69-71]. This matrix is exiplicitly written as

AaS(G) - Z { (® 1V|D+lu> ® A;s(Gu) ® (® 1I\/'lp) } @ Y (3'25)

pn=1 v=1

where 1)y, is the identity matrix of size [V|, and A} (G,) is an anti-symmetrized adja-
cency matrix for digraph G, with each component set to 1. The matrix A/ (G,,) for the

cycle digraph G, = D[ is |V, square matrix represented as
0 1 0 0O 0 -1
-1 0 1 -+ 0 0 O
0 -1 0 0 0 O
cycle . . .
A (D) = | g | (3.26)
0 0 0 0o 1 O
0O 0 0 - -1 0 1
1 0 0 0 -1 0

and the matrix A/ (G,,) for the simple directed path G, = DP*™ is [V|, square matrix
represented as

0 1 0 0 0 0
10 1 0 0 0
0 —1 0 0 0 0
A (D) = : - : . (3.27)
0 0 0 0 1 0
0 0 0 -+ -1 0 1
0 0 0 0 -1 0

Note that the components of A’ (D™, A’ (DPP*™) represent adjacent between ver-
tices in each graph. In particular, the (1,|V|,) component and the (|V|,,1) compo-
nent in A;S(D,(fyde)) represent the property of the cycle digraph D,(fyde), which has an
edge leaving |V|, and entering 1. The matrix A;S(D,Spath) ) also represents the property
of the cycle digraph DF*™ as well as A/ (D). As some examples of A (G), we
show the anti-symmetrized adjacency matrices of D\ 0 D{¥)  pEatt) g pleath) - 4nq

D§CY“€) O Dépath). These anti-symmetrized adjacency matrices are
AaS(D:(lcyCle) I:] Décycle)) — 1|V‘2 ® A;S(DgcyCle)) ® ’71 —I'_ A;S(DéCyCle)) ® 1|V‘1 ® 72 , (328&)
AaS<D§Pa‘ch) 0 Dépath)) _ ]—|V|2 ® A;S(Dgpath)) QY1 + Aas(Dépath)) ® 1|V|1 R e, (328b)

Ao (DS O DP™MY = 1, @ A (DY) @9y + AL (DP*™) @ 11y, @792 (3.28¢)

as
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respectively.

At the end of this section, we will discuss an useful theorem related to the anti-
symmetrized adjacency matrices. We claim the following theorem about the relationship
between the rank of A,s(G) for the digraph in Eq. (B222) and the topology of the digraph.

Theorem 3 (Betti numbers and anti-symmetrized adjacency matices). For the graphs G
constructed a cartesian-product of only the cycle digraph and the simple directed path, the
following equation holds;

|[V| - rank v — rank A, (G) < rank~ - H{Bo )+ b1(G )} (3.29)

where |V| is the number of vertices in G and rank~y is the rank of gamma matrices.
When the graph G is constructed by d cycle digraphs and (D — d) simple directed paths,
this equation is rewritten as

dim (ker A,(G))

<2, 3.30
rank y (3:30)

It means that the maximum number of zero-eigenvalues of anti-symmetrized adjacency
matrix A,s(G) divided by the rank of y-matrices is determined by the zeroth Betti number
and first Betti number of each digraph G,. The proof of this theorem is given below.

Proof. We consider four digraphs: the cycle digraph with even vertices, the one with odd
vertices, the simple directed path with even vertices, and the one with odd vertices. The
digraph G is constructed by a cartesian product of these digraphs. Then, the right side
is Eq. (B229) is obtained as

rank - H{ﬁo )+ 5i(G) }

= rank -~ - H {ﬁ cYCle)_l_ﬁ D(cycle } H {50 path )+ By(D (path) )} (3.31)

pcese uPeSP

= ranky - 21%°

where S¢ = { ) G, = D(Cyde)} and SP = { } G, = D(path)}. We used the known facts

that Bo(D')) + B, (D)) = 2 and Bo(DP*™)+ B, (DFP*™) = 1 since the cycle digraph
is homeomorphic to the circle S' and the simple directed path is homeomorphic to the
line segment B'. As a result, what we have to do is prove

V| - rank v — rank A, (G) < rank~y - 215 (3.32)

To prove above inequality, we will derive the number of zero-eigenvalues of A,5(G).
The diagonalization of A,s(G) can be derived as

U=7, { <® 1|VD+1V> (UhAL (G <® 1|vp) } Qs (3:33)
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where U is an unitary matrix defined as U = ®5:1 U, and U, is the unitary matrix for
the diagonalization of A/ (G,). For later use, we define four sets as

Se={n|G,= Dl |y, = even}, S°={u|G,= D) |y, = odd},
SPe={p|G,= D) 7| = even}, SP°={u|G,= D) ) = odd} .

(3.34)

respectively. Consequently, the diagonalization of A,s(G) are obtained as

UTA (G U)
2 ce — 1 2 co — 1
Z ’yuc e SlIl < ﬂ-(mﬂ ) ) Z ’y,uc o SlIl (ﬂ-(mu—))
cceScc ’V’MCE coeSco ‘VHCO (335)
™, p,eT M, p,oTl
+ ypecos( ® ) ypocos( ’ ) S -
upépe ' |V|“pe+1 P;PO g |V|Mp°+1

as shown in Appendix.
If the anti-symmetrized adjacency matrix A.s(G) has zero-eigenvalues, the diagonal
components satisfy (UTAaS(G)U) .. = 0. This equation is exiplicitly written as

27 (myee — 1) 27 (myeo — 1)
Z ’yuce Sln (WM—) Z ’yMCO SlIl (WM—

ceeSce MCC CDESCO N/CO (3 36)
T, p,eT ™M, ,p,oTl '
+ vpecos( £ ) vpocos< £ )zO.
HP;N ' |V|“pe +1 uPOGZSPO ' |V|”p0 +1

However, since y-matrices are linearly independent, the coefficient of each y-matrices must
be zero. Accordingly, the conditions for the matrix A,s(G) to have zero-eigenvalues are

below
2 p,e — 1 2 p,0 — 1
sin (—W(m“ )> = sin (—W(m” ))
|V|uP’e |V‘up’°

(3.37)
~ cos (u) cos (u) 0
|V |upe + 1 |V |upo + 1 ’
The solutions of this equation are
V]wo +1
muc,e = 1’ muc,o = 0’ mMpo = HILPT—F (338)
o V \% 1
muc,e = |Tuw + 1, m’uc,o = O, m/_Lpo = ||N++ (339)

if SP¢ = (). Then, the number of solutions is 2!/°“°l. Note that there are no solutions if
SPe =£ () since there is no myp. € N satisfying Eq. (B337). Because of them, the number
of zero-eigenvalues of A,s(G) depends on the number of vertices in each digraph G, as
shown in Table. BTl. Hence, the rank of A,(G) is obtain as
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Table 3.1: Classification of the number of zero eigenvalues for A,.(G),)

V|, =even | |V], =odd

G, = Do) 2 1
G

— [(path) 0 1

I

ranky - (JV] —271)  Spe =

3.40
ranky - |V SPe £ () (3.40)

rank A,5(G) = {

since the diagonal components (Z/ITAaS(G) Ll) . Contain y-matrices. Therefore, the fol-
lowing inequality has been prove

D
V| - rank v — rank A, (G) < ranky - 215 = rank ~ - H{ﬁo(G#) + 51(G“)} (3.41)

pn=1
since |S¢| < S°. With |S°| = d, the nullity of A.(G) divided by the rank of y-matrices

satisfies an inequality below
dim (ker A.5(G))

rank
since dim (ker A,5(G)) = |V/| - ranky — rank A,5(G). O

< 2¢ (3.42)

In later chapter, we will use Thm. B in order to investigate the maximum number of
zero-modes in the matrix-representation Dirac lattice operator.
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Chapter 4

Lattice fermions and Graph theory

4.1 Lattice fermions as spectral graph theory

In this section, we will discuss lattice fermions on D-dimensional hypercubic lattices in
term of spectral graph theory. Note that we assume periodic boundary condition or
Dirichlet boundary condition as boundary condition on each direction in the lattices.

This section describes relationship between lattice fermions and graph theory and be
divided into three parts. In the first part, we will discuss lattice fermions as graphs. Lat-
tice fermions on the lattices can be represented as certain weighted digraphs. Next, we will
refer to relationship between lattice action and matrices associated with the weighted di-
graphs. Lattice fermion action can be represented as the biliner form of anti-symmetrized
adjacency matrix for the weighted digraphs. In other words, a matrix-representation of
lattice Dirac operator can be written down by anti-symmetrized adjacency matrix for
the digraphs corresponding to lattice fermions. Finally, we will show that the number of
fermion species can be derived by the nullity of the anti-symmetrized adjacency matrix
divided with the rank of v-matrices.

4.1.1 Weighted digraphs corresponding to lattice fermions

In this discussion, we will show that lattice fermions on D-dimensional hypercubic lattices
can be represented as certain directed and weighted graphs.

To discuss about the lattice fermions as graph theory, we firstly review the lattice
fermions on D-dimensional hypercubic lattices. Let L be a finite volume D-dimensional
hypercubic lattices as

D
B . A . n, €[1,N,] CZ,
L=an=2 mi= D, it D md| gy oo T g 4
=1 v -L. v

veSPBC pEeSDBC

where /i is standard basis in D-dimensional hypercubic lattice. Two set STBC, SPBC are
defined as SBC = {u | n+ N, ~n} and SPBC = {4 | u ¢ SPBC} respectively. These
sets satisfy [SFBC| 4 |SPBC| = D. n + N, ~ n stands for Periodic Boundary Condition
(PBC). By contrast, Dirichlet Boundary Condition (DBC) is n, ¢ [1, N,] = n = 0. Note
that the Dirichlet boundary condition is automatically imposed except on the direction
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with periodic boundary condition since we consider the finite volume lattice. Then, lattice
fermion action on this lattice is given as

D D
S=2_ 2 VnmuDuthn = % SO [P uUnpitonss — Gnep Ul 0] (4.2)

nel p=1 nel p=1

where D, = (T, — T_,,) /2 with T4, = Up 1 ¥nsp- D, is a difference operator called
as lattice Dirac operator. 1, is the fermionic fields on which y-matrices and U, 1, act.
And U, , is the gauge field, which is called the link variable satisfying U, 1, = UJ,M- In
a free theory, we just set U, , = 1. The sum ) _, is the summation over lattice sites
n=(ny, -+ ,np) € L.

Next, we discuss lattice fermions on the lattice as graphs. We consider the weighted
digraph G corresponding to the lattice fermions as

G:G1DGQDDGD

4.3
w(e € Gu) = Uny (43)

where G, € {foyde), Dﬁpath)} for p € {1,---,D} and w(e) denote the weight of edge e.

Yu is D-dimensional matrices, which was also described in the previous chapter. Note that
the subscript n of the link variable stands for the vertices in the digraph, i.e. n € V(G).
However, vertices in this digraph can be regarded as sites in the lattice L because V(G)
and the whole site are isomorphic as will be mentioned later. This weighted digraph is
equal to the weighted digraph in Eq. (B222) if we consider the case of a free theory. Some
examples of G have shown in Fig. B8G.

This digraph represents D-dimensional hypercubic lattice as graphs since vertices and
edges in the digraph can be regarded as sites and links in the lattice. In particular, the set
of vertices in the digraph G is isomorphic to the sites n = (ny,--- ,np) in the lattice since
the set of vertices is V(G) = V(Gy) x -+ x V(Gp) by definition of cartesian product in
Def. @. And any edge {m, n} in the digraph can correspond to a link in the lattice by being
represented asn—m = > =1 (n, —my,) ft. Simultaneously, G, in the digraph G represents
each boundary condition in D-dimensional hypercubic lattice as graph. Indeed, the cycle
digraph D™ can be recognized as a graph represented periodic boundary condition
n + Nyt ~ n as shown in Fig. B1. And the Dirichlet boundary condition corresponds to

UN

V1 V2 UN -1 UN V1
[ > > - - > >@ >0 — . V1

V2

Figure 4.1: The periodic boundary condition can be represented as the cycle digraph since
Up ~ Uy N for a site v, in 1-dim lattice.

the simple directed path since n, ¢ [1, N,] = n =0 for 1-dim lattice in each direction.

34



For these reasons, the digraph in Eq. (B23) is recognized as a digraph representing D-
dimensional hypercubic lattice with periodic boundary condition and Dirichlet boundary
condition. In the next section, we will show that it is consistent to set w(e € G,,) = v,U,
as the weight on edges in digraph G.

4.1.2 Lattice action and anti-symmetrized adjacency matrix

In here, we will discuss relationship between lattice fermion action in Eq. (E22) and anti-
symmetrized adjacency matrix of the directed and weighted graph in Eq. (223).

Based on the definition of anti-symmetrized adjacency matrix in Def. M, An anti-
symmetrized adjacency matrix for the weighted digraph in Eq. (E33) is obtained as

YuUnyu — i=mnand j=n-+pfor edge {n,n+ i}
(Aas(G))y; = § —U}, i=n+fiand j = n for edge {n,n + i} (4.4)

0 otherwise

where use of 7;5 = 7, as the property of y-matrices. Note that this anti-symmetrized
adjacency matrix is equal to the anti-symmetrized adjacency matrix in Eq. (B228) if we
consider the case of a free theory. To represent lattice fermion action, we introduce a
vector of fermion fields in D-dimensions. Namely, a vector % is ¥ = > 1,e, where
e, = ®f:1 €y, are standard basis in |V|-dimensions which satisfy orthonormal e, -
e, = Omn = HD Omun,- Om is the Kronecker delta. The component 1, is the fermion

pn=1

field on which v-matrices and the link variable U, , act. Here, we specify that the order
of components v, in the vector is (1,1,---,1) = -+ — (N, 1,--- ;1) = (1,2,--- | 1) —
-+~ — (N,N,--- ,N) in descending order. Namely,

Y(11,-,1)

V2,1, 1)

P12, 1)

VNN, N)

in term of the vector. By use of the anti-symmetrized adjacency matrix A,s(G) and the
vector 1, the lattice fermion action in Eq. (E22) can be represented as the bilinear form

%&Aas(G)’l/). Because 1 A,s(G) is
YAV = > hn(Au(@)),, Vo

m,m’'eV

D
S Y Wb~ Ui g

m,m/eV neV u=1

D
— Z Z [nuUnonss = Onia1uUS L 0n]

neV pu=1
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we can show %@Aas((}')z,b = Sp. As a result, we have also shown that it is consistent to
set w(e € G,) = v,U,, as the weight on edges in the digraph. It means that the lattice
action for the directed and weighted graph in Eq. (B232) is given as the bilinear form of
the anti-semmetrized adjacency matrix for the digraph and vector of fermionic fields.

As an example of the bilinear form, we consider the case of G = D§CVde) DDépath)
where D\ with three vertices and D™ with two vertices. This digraph is depicted
in Fig. B2

Then, an anti-symmetrized adjacency matrix for this digraph is |V| = 6

bl

Figure 4.2: This directed and weighted graph illustrates G = D§path) U Décy ) which has

path)

DP*™ with two vertices and DP™™ with three vertices.

square matrix with ~,U, , as components. It is explicitly written as

0 MU0 _’YIU(Tg’l)’l Y2U(11),2 0 0
—71U(T171)71 0 MnUe 11 0 12U@,1)2 0
T
NnUsn1  —mU, 0 0 0 12U(3,1),2
Aw(C) = Ul o g 0 U, Ul
72V (11,2 MYa2,10 NV
0 _/YZU(TQJ)Q 0 _,le(Jfl,Q)’l 0 VIU(2,2),1
0 0 —72U(T371),2 MnUs2)1 —71U(272)71 0
~ (4.7)
in term of the matrix. As a result, the bilinear form ¥ A,5(G)v is obtained as
P AL (G = D) NU 102,18 @) = P2y 11Uy 19
as (1,m2) Y1V (1,n2),1¥(2,n2) (2,;m2)M (1,n2),1 ¥ (1,n2)
na€Ve
+ 1/}(2,712)/71U(2,n2),1¢(3,n2) - 2/}(3,712)’}/1 U227n2)71w(2,n2)
+ 1/_1(3,n2)’71U(3,n2),1¢(1,n2) - &(1,712)71U237n2)71w(3,n2)> (4.8)

+ Z (1/_)(n1,1)72U(n1,1),2¢(n1,2) - 77[)(711,2)72U(Tn172)71¢(n1,1))

ni1€Vy

2
= Z Z [%Enfy,uUmudjn-i—ﬂ - QZ)”"’/},Y“U”];H#}”}

neV p=1

where V) = V(D§Cy Cle)) and V5 = V(Dépath)). As shown in these equations, each boundary
condition is reflected in the components of the anti-symmetrized adjacency matrices. Even
for G = G100 --- OGp, components of the anti-symmetrized adjacency matrix reflects
boundary conditions on each direction.

For this and previous discussions, the directed and weighted graph in Eq. (E33) is
recognized as the lattice fermions on finite volume D-dimensional hypercubic lattice with
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periodic boundary condition and Dirichlet boundary condition in term of spectral graph
theory. In the next discussion, we will show relationship between the number of fermion
species and the nullity of anti-symmetrized adjacency matrices, and derive the number of
fermion species for the lattices in Eq. (E)

4.1.3 Fermion species and the nullity of anti-symmetrized adja-
cency matrix

We will discuss about the relationship between the number of fermion species and anti-
symmetrized adjacency matrices. This discussion is limited to the free theory. Thus,
weighted digraph we are considering is the one in Eq. (B22).

Before this discussion, let us mention about fermion species. The fermion species
are given as zero-modes of lattice Dirac operator, i.e. ¢, such that D,p, = 0. In
other words, the fermion species are equivalent to zero-eigenvalues (or nullity) of the
matrix-representation of lattice Dirac operator since zero-modes of lattice Dirac operator
is elements in kernel space of the operator. Thus, the number of fermion species can be
derived by the nullity of the matrix-representation of the lattice Dirac operator. Note
that the number of fermion species is equal to the nullity of the matrix-representation of
lattice Dirac operator divided with the rank of v-matrices.

We discuss about the matrix-representation of the lattice Dirac operator and fermion
species as spectral graph theory. In the previous discussion, the bilinear form of A,(G™®)
in the free theory is

D
’(ZAaS(Gfree)w = Z Z [&nwnﬁ& - ’@nw%iﬁn} (49)

neV pu=1

in term of spectral graph theory. Meanwhile, the free lattice fermion action on the lattice
in Eq. (E0) is given as

D
Sgee = %Z Z [¢n7u¢n+ﬂ - @Z;n+ﬂ7u¢n} = 'I,ZD'I,[) (410)

nel p=1

where D is the matrix-representation of the lattice Dirac operator and the vector )
has assumed Eq. (EH). Since Sfee = 4p A, (GF**)1p/2, the matrix-representation of the
lattice Dirac operator is equal to the anti-symmetrized adjacency matrix with 1/2 as the
coefficient, i.e. D = A,(G™*)/2. Since the number of fermion species can be derived by
the matrix-representation of lattice Dirac operator, it can be derived by the nullity of anti-
symmetrized adjacency matrix for the digraph in Eq. (B222). Furthermore, the number of
fermion species is equal to the nullity of the anti-symmetrized adjacency matrix divided
with the rank of v-matrices. As a result, the number of fermion species is expressed as

dim (ker A,s(G™))
rank y

#species = (4.11)

where #species denotes the number of fermion species.
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Next, we actually derive the number of fermion species on the weighted digraph in the
free theory. The anti-symmetrized adjacency matrix A.s(G™°) in the case of free theory
is the matrix in Eq. (BZ28) since the directed and weighted graph is the one in Eq. (B=232).
For this reason, we can use the theorem in Thm. B and results obtained in its proof to
derive the number of fermion species. The maximum number of fermion species is given
by the topology of graphs based on the theorem. The reason for discussing the maximum
number is that the number of fermion species depends on vertices in each digraph G,
but the maximum number is uniquely determined by the topology. Thus, the maximum
number of fermion species in the digraph G is

dim (ker A, (G™))

= 2I¥°] 4.12
rank ~y ( )

max | #species | = max

where |S¢| is the number of the cycle digraphs in G*¢. Meanwhile, the number of fermion
species can be derived for the results obtained in the proof of the theorem. It is expressed

as
9159 pe| —
#species = 574 =0 (4.13)
0 |SP€| # 0

where |S°¢|, |SP¢| are the number of the cycle digraphs with even vertices in G and
the number of the simple directed paths with even vertices in G, respectively.

As some examples, we consider two weighted digraphs: D'¥“® 0 DP*™ where D
with three vertices and DP*™ with two vertices, D{**™ 0 D{¥) with three vertices each,
D) 0 D{¥) with three vertices each, D™ O DY) with four vertices each. These
weighted digraphs are denoted as

GW = pldd g ppet) V(D)) = 3, V(DP*)| = 2 (4.14a)
G = p{re g p{de) V(DP*™)| =3, V(D)) =3 (4.14D)
aB) — Dgcycle) DDécycle) , |V<D§cycle)>’ _3 ‘V(Décycle)” _3 (4.14c)
oW — Dgcycle) DDécycle)7 |V<D§cycle)>| — 4, ‘V(Décycle)” _4 (4.14d)

The first digraph has shown in Fig. B2, and the other digraphs are depicted in Fig. B=3.
The number of fermion species for each digraph is as follows:

e G; The number of fermion species is #species = 0 since |SP°| # 0. For Eq. (8233),
the diagonalization of the anti-symmetrized adjeecency matrix A,s(G*) is obtained
as

wAas<G<1>)u=z'Diag[vz, V371 4+ 72, —V33 +

(4.15)
- 72, \/g’Yl—’Yza —\/g’Yl—’Yz]-

An inequality #species < 2151 = 2 holds since |S¢| = 1.
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cycle cycle
(c) GW = D{¥) O p{e),

Figure 4.3: These digraphs depict three examples G?, G®) GW,

e G¥; The number of fermion species is #species = 1 since |SP¢| = 0 and |S*¢| = 0.
The diagonalization of the anti-symmetrized adjeecency matrix A,,(G®) is obtained
as

Ut AL (GP)U = z‘Diag[\/i% L0, V27,
\/571 + \/372 ; \/5% ) —\/571 + \/572 ) (4.16)
\/571 - \/372, —\/572, —\/571 - \/572

An inequality #species < 2/°°I = 2 holds since [S°| = 1.

e G®); The number of fermion species is #species = 1 since |SP¢| = 0 and |S%¢| = 0.
The diagonalization of the anti-symmetrized adjeecency matrix A,(G®) is obtained
as

uTAas<G(3)>u = \/52 Dlag[oa T, —71,
Y2, Y1+ Y2, =71 T2, (4.17)
— 72, 71— 72, —71—72]-

An inequality #species < 2/°°l = 4 holds since |S°| = 2.

e G™; The number of fermion species is #species = 4 since |SP¢| = 0 and |S®°| = 2.
The diagonalization of the anti-symmetrized adjeecency matrix A,,(G™) is obtained
as

Z/[TAab(G(4))u:ZD1ag 07 Y1, 07 -1, V2, 71"’727 Y2, _’71_’_’727

0, 71,0, =7, =72, 1 — 72, =72, =71 — )
(4.18)
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An equation #species = 21°°l = 4 holds since |S¢| = 2.

As these examples show, the number of fermion species depends on either even or odd
vertices for each digraph G, in the weighted digraph G™°. And the number of them
determines upper bound by the topology of graphs.

In later sections, we will discuss in the cases of D-dimensional hypercubic lattice
with only periodic boundary condition (T"P-lattice) and one with only Dirichlet boundary
condition (BP-lattice).

4.2 Lattice fermions on torus

In the previous section, we discussed lattice fermions on D-dimensional hypercubic lattices
with periodic boundary condition or Dirichlet boundary condition in each direction in term
of spectral graph theory. In this section, we will discuss lattice fermions on T'P-lattice in
term of spectral graph theory. This section is divided into two parts. Fist, we will discuss
in D-dimensions. In here, we will introduce a directed and weighted graph representing
lattice fermions in D-dimensions and show that lattice fermion action is given by the
bilinear form of matrices for the weighted digraph. Furthermore, we will discuss the
number of fermion species. The second part will be discussed about lattice fermions on
T*-lattice. The lattice fermions on this lattice are the well-known naive lattice fermions.
We will show that the results of this discussion are consistent with the known results.

Before this discussion, we will mention the TP-lattice and lattice fermions on it. The
TP-lattice is a finite volume D-dimensional hypercubic lattice with only periodic boundary
condition, and be expressed as

D
TP-lattice = {n = Z Nyl
pn=1

where [ is the standard basis in D-dimensional hypercubic lattice. As previously men-
tioned, the periodic boundary condition is represented as n + N, ~ n. An illustrated
boundary condition is shown in Fig. B0 Then, a lattice fermion action on TP-lattice is
given as

(4.19)

n, € [1,N,| CZ,
AN, €Z st. n+Nyji~n

D D
Sto = Z Z &”V“D"w” - % Z Z WHWUmu@bnﬂl - q/jn-i-ﬂ’}/,qut,uqvbn} (4.20)

n p=1 n p=1

where D, = (T4, — T-,) /2 with Ty 1, = Uy 1¥nss. D, is a difference operator called
as lattice Dirac operator. v, is the fermionic fields on which y-matrices and U, 1, act.
And U, , is the gauge field, which is called the link variable satisfying U, -, = Uvi,u'
In a free theory, we just set U,, = 1. The sum ) is the summation over lattice sites
n = (ny,--+,np) in TP-lattice. The difference between this action and the action in
Eq. (E72) is that there are no terms representing Dirichlet boundary condition. In the free

and four-dimensional case, the lattice fermion action is given by

1~ (- _
Slflrfee = 5 Z Z [¢n7uwn+/l - wn-ﬂl’}/uqybn} (421)

n  p=1
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and 16 fermion species are known to occur in the theory.

4.2.1 Lattice fermions on any dimensional torus

In this subsection, we will discuss lattice fermions on T'P-lattice in term of spectral graph
theory. This subsection is divided into three parts. In the first and second part, we will
discuss a directed and weighted graph representing lattice fermion on 7'P-lattice and its
lattice action as spectral graph theory. The final part describes about the number of
fermion species and the nullity of matrices associated with the weighted digraph.

Firstly, we discuss a directed and weighted graph representing lattice fermions on
TP-lattice. For the previous section, let Gy be the directed and weighted graph corre-
sponding to the TP-lattice. It is expressed as

GTD _ Dgcycle) H Décycle) 0...0 Dg:ycle)

(4.22)
w(e € Gu) = 1uUny

where D™ is the cycle digraph with |V, vertices. Note that the subscript n of the
link variable stands for the vertices in the digraph, i.e. n € V where V is the set of
vertices in Gyp. However, vertices in this digraph can be regarded as sites in the T°-
lattice because V' and the whole site are isomorphic by definition of cartesian product
in Def @. In particular, since the set of vertices in Gpp is V = V(D; Cyde)) - x V by
cartesian product, a map f : V — TP-lattice is isomorphism. Each dlgraph D, Cyde) is a
digraph representing periodic boundary condition n + N,ji ~ n since the cycle dlgraph is
equivalent to the boundary condition by setting N, = |V|,. The case of D = 2 is depicted
in Fig. B4 Based on the definition in Def. [0, an anti-symmetrized adjacency matrix for

/®/®\®\ /®/®\®\
: ® 04 : ® ~
®, @/ \@ @/

Figure 4.4: The digraph G2 is identified as a two dimensional torus with directed edges.

the weighted digraph G7p is obtain as

YuUny — i=mnand j =n+ p for edge {n,n + i}
(Aas(Grp))i; = 4 —US, i=n+jand j =n for edge {n,n + i} (4.23)
0 otherwise

where use of 7;[ = 7, as the property of y-matrices. In the free theory, which sets U, , = 1,
this anti-symmetrized adjacency matrix is written as the following simple expression by
use of tensor product,

16 = (@1 ) o aivr o (@) oz

pn=1
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where A’_(D{7"Y) is |V| y-Square matrix in Eq.(B228).

Secondary, we show that the bilinear form ) A,q(Grp)e is equivalent to the lattice
femrion action on TP-lattice. To discuss it, we use the vector of fermion fields in D-
dimensions that is expressed as ¥ = ) ., ¥ne, where e, = ®f:1 €np.,_,- Note that
e, are the standard basis in |V|-dimensions which satisfy orthonormal ef - e, = .., =
Hi):l Omun,- And y-matrices and the link variable U, , act on the fermionic field ¢, in
the vector. By use of this vector, the bilinear form of the anti-symmetrized adjacency

matrix A.s(Grp) and the vector 1 is

PA(Cro)p = Y Cn(Au(Gro)), W

m,m/eV

D
- Z Z Wn%wUn,ud)nJrﬂ - IZ”JF’W”U’L“@%}

nevV pu=1

(4.25)

for Eq. (B223). As shown in Eq. (E20), we can show Spp = 9 A.(Gro)p /2. And by the
vector 1) the lattice action Srp can be rewritten as

D
Sro =Y > [ VuUngptnti = Gua Ul on] = $Drotp (4.26)

neVvV p=1

where Dyp is the matrix-representation of lattice Dirac operator on 7TP-lattice. As a
result, we obtain that the matrix-representation of lattice Dirac operator is equal to the
anti-symmetrized adjacency matrix for the digraph Gpp with 1/2 as the coefficient, i.e.

Drp = Aus(Grp)/2. In the case of free theory, the free lattice fermion action is also equal
t0 P Aas(GESS)p /2 since the bilinear form A, (GRS ) /2 is

D—pp—1

—1/JAas(Gfree)'¢ % Z Zlﬁm%%{ i A/ ( cycle en#} H H5WD+1 VD41 V(;mpnp
m,neV pu=1 v=1 p=1
1 D D—pp—1
= 5 Z Z,@Z}m%ﬁd]n{ému—klnﬂ - mH nu—&—l} H H(ng+17VnD+17V5mpnp
m,neV pu=1 v=1 p=1
D
= 5 Z Z&m’Yuwn{(strﬂn - 5mn+ﬂ}
m,nev u—l
= % Z Z ¢n7u¢n+,u ¢n+y7u¢n} free

n p=1

(4.27)
where we used e L Aw(D Efyde))enu = Omyt1n, — Omyn,+1 for Eq. (B28). Since the free

lattice action can be written as ST = '(bDfreet/) the matrix-representation of free lattice
Dirac operator results in DI = as(Gfree)/ 2.
Finally, we discuss the number of fermion species for the weighted digraph in the free

theory. For the theorem in Thm. B, the maximum number of fermion species is uniquely
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determined by the topology of graphs, and be expressed as

D
max | #species | = H{BO(DLCYCIQ)) + Bl(foyde))} =2P (4.28)

p=1

where Bo(D{¥)) + B1(D{¥?) = 2. On the other hands, the number of fermion species
is given by the number of the cycle digraphs with even vertices in Ggﬁ%’. It is expressed as

#species = 215! (4.29)
where |S9¢| is the number of the cycle digraphs with even vertices in Ggﬁ%e. We can
confirm this result by examining the nullity of the anti-symmetrized adjacency matrix for
the weighted digraph GI$. For Eq. (B33), the diagonalization of the anti-symmetrized

adjacency matrix for the weighted digraph Ggﬁ%e is

D
o (my, — 1
(uTAas(Ggﬁ%e) u) = 26 Y 7 sin (W(T"V—“l)) (4.30)
p=1 K

mn

for m,n € V. Since the linear independence of y-matrices and m, € Z, there are 215!
ways in which m = (my,--- ,mp) satisfies (Z/{TAaS(GgfeDe)L{)mn = 0. Thus, we have shown
Eq. (EZ29) by the anti-symmetrized adjacency matrix for the weighted digraph GfTr%e.

We comment on the meaning of m,. This m, can be interpreted as a “shifted mo-
mentum” in this case. However, it is not necessarily equivalent to the momentum since it
can be defined also on the lattice in which the momentum cannot be defined. Thus, m,
should be simply interpreted as an index for the modes in general.

In the next subsection, we will discuss in four-dimensions. This lattice fermion is the

well-known lattice fermion as naive lattice fermion.

4.2.2 Lattice fermions on four-dimensional torus

In this section, we will discuss lattice fermons on four-dimensional torus lattice, which is
as a physically significant case, in term of spectral graph theory. This lattice fermion is
known as the naive fermion. We will show that the results of this discussion are consistent
with the known results.

Before this discussion, we review the four-dimansional torus lattice and the lattice
fermion on it. The four-dimansional torus lattice is given by

4

T* lattice = {n = Z Nyl

p=1

. (4.31)
AN, €Z st. n+Nyji~n

n, €[1,N,| CZ, }

based on Eq. (B219). Then, a lattice fermion action on four-dimensions is given as

4 4
Sut = 0 Dyt = 5 3 S [t — Bl (432)

n p=1 n p=1
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where D, = (T4, —T1-,) /2 with Ty, = Upi,¥nsp. Dy, 1, are the lattice Dirac
operator and the fermionic fields respectively. And U, , is called the link variable. -
matrices and U, 1, act on the fermionic fields v,,. In a free theory, we just set U, , = 1.
The sum ) is the summation over lattice sites n = (nq,n2,n3,n4) in four-dimensional
torus lattice. In the free and four-dimensional case, the lattice fermion action is given by

free = Z Z wnf}/uwnJru wn+,u7u7/}n} (433)

n p=1
and 16 fermion species are known to occur in the theory.
First, we discuss a directed and weighted graph representing lattice fermions in four-
dimensions. The weighted digraph representing lattice fermions on four-dimensional torus
lattice (T*-lattice) is

GT4 _ Dicycle) 0 Décycle) n Décycle) ] Dz(lcycle)

(4.34)
w(e € Gu) = VuUnu

where D{ is the cycle digraph with |V, vertices. This digraph Grs is depicted in
Fig. B4. The subscript n of the link variable stands for the vertices in the digraph, i.e.

O~ O~ O~ O~
) ® ) ® ) ® ) ®
/ \ _/ \ _/ \ \
/- N /
@\®/@ @\@/® @\®/@ @\@/®

Figure 4.5: This digraph constructed cartesian-product O of four cycle digraphs D(eyele)
with |V|, = N vertices each.

n € V where V is the set of vertices in Gyp. For Def. [, an anti-symmetrized adjacency
matrix of the weighted digraph G4 is obtained as

YUn, — i=nand j =n+ [ for edge {n,n+ i}
(Aas(Gr1))y; = § —7U} i =n+ fiand j = n for edge {n,n + i} (4.35)

0 otherwise

where use of 72 = 7yu. If we consider the free theory, which sets U, , = 1, this anti-
symmetrized adjacency matrix is written as

AaS(Gfree - Z { <® Livys- v) ® AL( Cyde (® 1|Vp) } @ Y

=1
= Ly, @ Ly, @ Ly, ® A (D)) @
+ 1y, ® Ly, ® AL (DS @ Ly, ® 72
+ 1y, ® A (DSY) @ 1y, ® 1y, ® 7
+ A (DY) & Ly, ® Ly, @ Ly, @ 14

(4.36)
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where A’_(D{7"Y) is |V| y-Square matrix in Eq.(B228).

Next, we show that the lattice fermion action on four-dimensional torus lattice is
equivalent to the bilinear form 1 A,s(G7rp)1p/2. We introduce a vector of fermion fields
in four-dimensions that is ¢ =) cv Yn€, where e, = ®i:1 €n,_,- Note t_hat e, are the
standard basis in |V|-dimensions. By use of this vector, the bilinear form 1 A,s(Grp ) /2

is equal to the lattice fermion action on four-dimensional torus lattice since

L~ 1 _
% Au(Gr = 5 m;ev D (Aas(G4))
1 L _ ) (4.37)
= 5 Z Z [@Dn’YMUmuwn-i-ﬂ - wnM%U;Mwn} = Snf

neV p=1

for Eq. (B223). In the free theory, the free lattice fermion action on four-dimensional torus
lattice is equal to 9 A.(GI%)1p/2 since each term in the bilinear form is equivalent to
the difference term for each direction in the action. In particular, the first term in the
bilinear form is

1 - cycle
i <1|V|4 ® 1y, ® Ly, ® A (D) @ 71) P
1 n cycle
= 5 Z wm%%{e%lAQS(Dg v ))em }6m4n45m3n35m2n2
m,nev
1 _
- 5 ZGV 77Z)m’y177bn{(sml—i-l ny 5m1 n1+1}5m4n45m3n35m2n2 (438)
1 _
- 5 Z ¢mvl¢n{5m+in - 5mn+i}
m,nev
1
2

Z [&nﬁyuwn—s—i - &n-s-iﬁmwn]

n

where e] 1A;S(D§Cyde))em = Omy+1n, —Omy ny+1 for Eq. (B228). Accordingly, the summation

of each term in the bilinear form is obtain as

1 I o .
5P Au(GE)Y =5 3 Y [bnruthnsn — Pnsatuthn] = SiF° (4.39)

neV p=1

Thus, we have shown that the lattice fermion action on four-dimensional torus lattice
is equivalent to the bilinear form of A, (Gr4)1p/2 even if it is not the free theory.
Furthermore, by rewriting the lattice action as Sy = 9Dy, the matrix-representation
of four-dimensional lattice Dirac operator is equal to the anti-symmetrized adjacency
matrix for the weighted digraph G'r4 with 1/2 as the coeffient, i.e. Dps = A,5(Gra)/2.
And finally, we discuss the number of fermion species for the weighted digraph GfTr‘je.
Since the fermion species are equivalent to the nullity of the matrix-representation of
lattice Dirac operator, the number of fermion species can be derived by the nullity of the

anti-symmetrized adjacency matrix for Ggﬁﬁe. It is expressed as

#species = 2197 (4.40)
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where [S“°| is the number of cycle digraphs with even vertices. As this equation shows,
the number of fermion species depends on the number of vertices in each digraph D'™?.

It can be classified as shown in Table. E. However, the maximum number of them is

Table 4.1: Classification of the number of fermion species

|Sc,e| — 0 |Sc,e

=115 =2][5% =319 =4

#species 1 2 4 8 16

uniquely determined by the topology of graphs as

4

max | #species| = H{BO(foyde)) + Bl(foyde))} =2! (4.41)

p=1

for Thm. B. It is consistent with the well-known result that 16 fermion species appear in
the theory.

4.3 Lattice fermions on ball

In the previous section, we discussed the lattice fermions on torus lattice in term of
spectral graph theory. We showed three facts as follows:

e The lattice fermion on torus lattice can be represented as the directed and weighted
graph constructed by the cartesian product of only the cycle digraph with y-matrices
and link variable as the weight.

e The lattice action as spectral graph theory is given by the bilinear form of the anti-
symmetrized adjacency matrix and the vector of fermion fields. It holds even if it
is the free theory.

e The number of fermion species is derived by the number of cycle digraphs with even
vertices. However, the maximum number of them is uniquely determined by the
topology of graphs (or the number of cycle digraph).

In this section, we will discuss lattice fermions on D-dimensional hyperball lattice (B-
lattice) in term of spectral graph theory. This section is divided into two subsections.
The first subsection will be discussed in D-dimensions. Next, we will discuss in four-
dimensions.

Before this discussion begins, we mention the D-dimenional hyperball lattice and
lattice fermion action on it. We define the D-dimensional hyperball lattice as a finite
volume D-dimensional hypercubic lattice with only Dirichlet boundary condition. It is

expressed as
D

BP-lattice = {n = Znuﬂ

p=1

n, € [1,N,] C Z} : (4.42)
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The Dirichlet boundary condition is automatically imposed on each direction since we
consider a finite volume lattice and the boundary condition is n, € [1,N,] = n = 0.
Then, a lattice fermion action on BP-lattice is given as

D 1t o .
Spp = Z Z UnYuDuthn = 5 Z Z [UnYuUnyitonsi — Ynaa UL ] (4.43)

n p=1 n p=1

where D, = (T4, —T1-,) /2 with Ty, = Upi,¥nsp. Dy, 1, are the lattice Dirac
operator and the fermionic fields respectively. And U, , is the gauge field called the
link variable. The sum ) is the summation over lattice sites n = (n,--- ,np) in the
D-dimensional hyperball lattice. The difference between this action and the action in
Eq. (E220) is that there are no terms representing periodic boundary condition. In a free
theory, this lattice fermion action is written as

D
Sg% - % Z Z [%%%m - @En—&-,&%ﬂ/}n} (444)

n p=1

because we only set U, , = 1.

4.3.1 Lattice fermions on any dimensional hyperball

In this section, we will discuss lattice fermions on D-dimensional hyperball lattice in term
of spectral graph theory.

Firstly, we discuss a directed and weighted graph representing the lattice fermions
and a matrix associated the graph. For the graph in Eq. (B222), the weighted digraph
representing the lattice fermions on BP-lattice is given by

GBD _ Dgpath) DDépath) ... DDg)ath) (4 45)
w(e € Gy) =vUnp

where foath) is the simple directed path with V|, vertices. The subscript n of U, , is the
vertex in the digraph, i.e. n € V where V is the set of vertices in Ggp. However, vertices
in this digraph can be regarded as sites in the any dimensional hyperball lattice since
V' and the whole sites are isomorphic. And each digraph Dprath) is a graph representing
Dirichlet boundary condition since the vertices in each digraph only run from 1 to |V|,.
As an example, the case of D = 2 is depicted in Fig. B@. By definition in Def. [, an
anti-symmetrized adjacency matrix for the weighted digraph is obtain as

YuUnyu — i=mnand j =n+ ffor edge {n,n + i}
(Aas(Gpr))y; = —%UJW i=n+ i and j =n for edge {n,n + i} (4.46)
0 otherwise

where we used the property of y-matrices that is 7L = 7y,. If we consider in a free theory
that is we set U,, = 1, this anti-symmetrized adjacency matrix is written as a simple
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Figure 4.6: G is identified as a two dimensional disk with directed edge.

expression constructed by tensor product. Is is expressed as

D

AaS(Gfree _ Z { <® 1|V\D+1 U> ® A/ D(Path) <® 1|V|p> } X Vu (447)

pn=1

where A/_(DP*™) is |V| y-Square matrix in Eq.(8727).

Secondary, we show that the bilinear form 1 A,,(Gpp)w is equivalent to the lattice
fermion action on BP-lattice. 1 is the vector of fermion fields in D-dimensions that is
expressed as ¢ = ) . Yne, where e, = ®5:1 €np,._,- The components 1, is the
fermionic fields in D-dimensions on which the weight ~,U,, , act. The vectors e,, are the
standard basis in |V |-dimensions which satisfy orthonormal ejn c€, = Opn = HD Omm,, -

p=1
By use of this vector, the bilinear form is

&Aas<GBD)¢ = Z 7J%?L(Aas(C:BD) )mm/¢m’

m,m/eV

D
- Z Z [onYuUnptonsi = Ynsa VU t0n)

neV pu=1

(4.48)

for Eq. (B23). As the action in Eq. (E23) shows, we can prove that the bilinear form
with the coefficient 1/2 is equal to the lattice fermion action on BP-lattice, i.e. Sgp =
YA (Gpo)1p/2. If we consider in the free theory, the bilinear form with the coefficient
1/2 is the free lattice action, or

1
2'¢ aS(Gfree ’(L’ ZZ %%%w wnﬁu%ﬂ/}n} = free (4'49)

neV pu=1

because of U,, , = 1. Therefore, the lattice fermion action for any dimensional hyperball
lattice is given by the bilinear form of the matrix A,s(Ggp) and the vector 1, regardless
of whether it is a free theory.

Finally, we discuss about the number of fermion species for the directed and weighted
graph Gpp in the free theory. The number of fermion species is given by the number of
the simple directed paths with even vertices in Gfree It is expressed as

1 |SPe| =0

4.50
0 |SPe| #£0 (4.50)

#species = {
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where [SP°| is the number of the simple directed paths with even vertices. This equation
means that there is single fermion species if there is no simple directed paths with even
vertices in the weighted digraph Gfée[?. We can confirm this result by examining the nullity
of the anti-symmetrized adjacency matrix for the weighted digraph. From Eq. (8233), the

anti-symmetrized adjacency matrix for Gfg}? is

D
. m,m
(UTAas(ngeDe) Z/{) = 2Z(5mn E Y COS (ﬁ) (451)
p=1 "

mn

for m, € V(DF*™) and m,n € V = V(D™ x ... x V(D™ There is only
one way in which m satisfies (Z/{TAas(GgfeDe) U ) ., = 0 when there are no simple directed
paths with even vertices in Gﬁﬁ%e. Otherwise, there are no ways in which m satisfies

(Z/{TAaS(GfTr%e)Z/{)mn = 0. Accordingly, the number of fermion species depends on the

vertices in the weighted digraph Ggf%e. Meanwhile, the maximum number of fermion

species is uniquely determined by the topology of graphs, and be expressed as

D
max[#species] = H{BO(D/(Lpath)) + Bl(Dlgpath))} =1 (452)

pn=1
because of ﬁo(DELpath))+ ﬁl(Dflpath)) = 1. It is consistent with the number of fermion species
when |SP¢| = 0. Therefore, there is one physical pole on the bulk of any dimensional

hyperball when the number of sites in each direction is the odd number. If we take a
thermodynamical limit for |V|, = even vertices, one of the non-zero eigenvalue approaches
to zero. Thus, lattice fermions on the finite-volume lattice of d-dimensional hyperball B¢
have one physical pole on the bulk.

We comment the reasonableness of the existence of a single fermion species on the
bulk. As well-known, the lattice fermion defined on a lattice with boundaries can have
edge modes on the boundaries. Therefore, the edge mode works to cancel the gauge
anomaly at the boundary when we introduce gauge fields or link variables. The existence
of a single fermion species on the bulk in the present lattice fermion with boundaries is
reasonable as with the case of the domain-wall fermion.

The results we have obtained in this discussion are again not so novel. However,
we have shown that we can easily find the number of fermion species by obtaining the
weighted digraph corresponding to the lattice fermions and using the theorem in Thm. B.

4.3.2 Lattice fermions on four-dimensional hyperball

In this subsection, we will show four-dimensional hyperball as a concrete example of
BP-lattice. This subsection is divided into three parts. The first part is discussed

Before this discussion, we review the four-dimensional hyperball lattice and the lattice
fermions on it. The four-dimensional hyperball lattice is expressed as

4

B'-lattice = {n = Znuﬂ

p=1

n, €[1,N,] C Z} : (4.53)
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Then, a lattice fermion action on B*-lattice is given as

4 4
SB4 = Z Z Q/_}nry,uD,uwn = % Z Z [zzn’yuUn,,uwn—o—ﬂ — '[En‘FﬂrYHUrTL,ywn] (454)

n pu=1 n p=1

where D, = (T4, —T-,) /2 with Ty, ¢, = Uy 1y¥nss. Dy, Yy, are the lattice Dirac
operator and the fermionic fields respectively. And U, , is the gauge field called the link
variable. The sum ) is the summation over lattice sites n = (n1,n2,n3,74) in the

four-dimensional hyperball lattice. In a free theory, this lattice fermion action is written
as

4
Tee 1 n n
524 — 5 Z Z [¢n7uwn+/l - wn+ﬂ7u¢n} (455)
n p=1
because we only set U, , = 1.
Firstly, we discuss about a weighted digraph representing the lattice fermions on B*-
lattice and an anti-symmetrized adjacency matrix for it. The weighted digraph is

GB4 _ D%path) ] Dépath) 0 D:(Spath) 0 Dipath)

(4.56)

w(e € Gyu) = YuUn,p
where Dipath) is the simple directed path with |V|, vertices and n is the vertex in the
digraph. Note that vertices in this digraph can be regarded as sites in the any dimensional
hyperball lattice since V' and the whole sites are isomorphic. This digraph is depicted in
Fig. B70. By definition in Def. [, an anti-symmetrized adjacency matrix for the weighted

@ —@—©—0O
Il

@ —@—O—O
L]

@ —@—®—O
[

@ —@—®—0O

Figure 4.7: This digraph constructed cartesian-product [J of four simple directed paths
D®ath) with |V|, = N vertices each.

digraph is obtained as

YuUnyu — i=mnand j =n+ pfor edge {n,n + i}
(Aas(GB‘l))ij = _’VuUi,u i=n+ i and j =n for edge {n,n + i} (4.57)
0 otherwise

where use of vl = 7,. The difference between this matrix and the matrix for Gz in
Eq. (£233) is that there are no components representing an edge leaving |V|, and entering

50



1. If we consider the free theory, which sets U, , = 1, this anti-symmetrized adjacency
matrix is written as

AaS(Gfree _ Z { <® 1|V|5 V) ® A’ D(path <® 1|V|p> } & Vi

p=1

= Ly, ® Ly, @ Ly, ® AL (D) @
+ 1y, ® vy, ® A (DF™) @ 1y, @ 72
+ 1y, ® A;s(D:(apath)) ® Ly, ® Ly, @173
+ AL (D) @ Ly, @ 1), @ Ly, © 7

(4.58)

where A (DP*™) is |V|,-square matrix in Eq.(B22).
Secondary, we show that the lattice action on four-dimensional hyperball lattice is
equivalent to the bilinear form 1 A,(Gps)/2. A vector ¢ is ¢ = Y |, ¥ne, where

en = ®i:1 es_,, are the standard basis in |V|-dimensions. Accordingly, the bilinear form
Y Aus(Gps)y is

ARG =5 S D Aul@p)), o

2
m,m’'eV

1 LI )
= 533 [P ulnstbuss = PreituUl ] = S

neV pu=1

(4.59)

for Eq. (B48). In the case of free theory, the free lattice fermion action on four-dimensional
torus lattice is equal to 1 A.(GE)p/2 since we only set U,, = 1. In particular, the
bilinear form is obtain as

1 1= - _
2¢Aas(Gfree = 5 Z Z [¢n’7u¢n+ﬂ - wn—l—ﬂ’)ﬁd)n} = Sgie . (460)

neV p=1

Furthermore, there are no terms, which represent edges leaving |V'|,, and entering 1 in each

digraph D), (path) , in the bilinear unlike 9 A,s(G"5)9p form since there are no components
representing the edges. Thus, we have shown that the lattice fermion action on four-
dimensional hyperball lattice is equivalent to the bilinear form of A, (Ggs)1p/2 even if
it is not the free theory. Furthermore, by rewriting the lattice action as Sgs = YD pgatp,
the matrix-representation of four-dimensional lattice Dirac operator is equal to the anti-
symmetrized adjacency matrix for the weighted digraph G« with 1/2 as the coeffient,
i.e. D1 = Au(Gpa)/2 as well as the case of T*-lattice.

Finally, we discuss about the number of fermion species for the directed and weighted
graph G, The number of fermion species is given by the nullity of the anti-symmetrized
adjacency matrix for Gfree since the fermion species are equivalent to the nullity of the
matrix-representation lattlce Dirac operator. Accordingly, the number of fermion species
is given by
1 [SP¢ =0

4.61
0 |SPe| #£0 (4.61)

#species = {
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where |SP¢| is the number of simple directed paths with even vertices. Thus, the number
of fermion species depends on the number of vertices in each simple directed path Dflpath).
Meanwhile, the maximum number of them is uniquely determined by the topology of

graphs. For Thm. B, the maximum number of them is obtained as

4
max | #species | = H{BO(DLpath)) + 61<Dlgpath))} -1 (4.62)

p=1

It is consistent with the maximum number of them for Ggp. Therefore, there is at most
one physical pole on the bulk of four-dimensional hyperball lattice.

4.4 Lattice fermions on hypersphere

In the previous sections, we discuss about the lattice fermions for the directed and
weighted graph constructed by cartesian product of only the cycle digraphs and the simple
directed paths. As an example outside of this graph, we will discuss about lattice fermion
on a weighted digraph which can be considered as discretized sphere.

In the continuum field theory, the fermion action on spheres gives massive fermionic
degrees of freedom since the curvature works as effective mass. It is, however, not the
case on the discretized sphere.

In this section, we will study the number of fermion species on the discretized sphere,
where we perform discretization and put a fermion on the lattice in a special manner. We
empirically show that the maximum number of fermion species on the discretized sphere
is equal to two. This section is divided into two parts. First, we will discuss about the
two-dimensional cases. The next subsection mentions the higher dimensional cases.

We begin with the two-dimensional cases. We firstly consider the following discretized
spherical coordinate system for 2-sphere, labeled by two integers (M, N):

T3 = 1 COS O, To = 1 8in by cos by, 1 = rsinfysinfy, (4.63)
2mm (N—n)m

= —— = 4.64

91 M ) 62 N _ 1 ( 6 )

where r is a radial distance and m € [1,M] € N, n € [1, N] € N. For simplicity, we
fix a radial distance as r = 1. We label lattice sites as v = (m,n). Note that there are
two special points (m, 1), (m, N) who ignore the hopping in m-direction. We call the
two points the south pole, relabeled as (0, 1), and the north pole, relabeled as (0, N),
respectively. For convenience, we call this lattice as S*-lattice.

To obtain the naive-fermion-like action on S2-lattice, we consider a directed and
weighted graph representing lattice fermions on the lattice. The weighted digraph is

GO =G UG, (4.65)
wle e G,) =0, (4.66)
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for 4 = 1,2. Each digraph G| = (V, E}), Gy = (V, E;) are given by

V={(12),(22), -, (M-2),(1,3), -, (M,N-1),(0,1), (0,N) }, (4.67)
El = {{(172)’ (2’2)}7 T {(Mv 2)’ (172)}7{(173)7 (273)}’ T {(M> 3)7 (1’3)}’ (4 68)
> {(LN_ 1)7(2>N_ 1)}7 B {(M7N_1)7(17N_ 1>}}7 .

and

N — 1)} ) {(O,N),(M,N— 1)}>

( )}7 T {<M7N_ 1)7(MaN_2)}7 (469)
{(1’2>’( )}7 ) {(M’ 2)7(071)} }

As an example, the digraph in the case of (M, 3) is depicted in Fig. B8. o, is the two-

®
© )
@
0Dy
®
(b) Gl. (C> G2-

Figure 4.8: These digraphs depict GS‘Q/I’N), G1, Go in the case of (M, 3), . In these digraph,
the south pole and the north pole are written as S and N, respectively

dimensional gamma matrices which are called “Pauli matrices”. These matrices satisfy
Clifford algebra as {0, 0,} = 20,,. Note that we include no link variables in the weight
because the present case is considered in a free theory. By definition in Def. 0, an
anti-symmetrized adjacency matrix for the digraph GS\Z’N) is obtained as

MN)y _ (1N ® Al (Dlevele)) A, (D(path)) Vi(n=-2),2
Aas(GS2 ) — ( O Qo1+ VAZ(N72)’2 02 X o9 (470)

where O}, is the k-dimensional null matrix. A’ (D)) A’ (D®Path)) are the M-square
matrix in Eq. (828) and the (N — 2)-square matrix in Eq. (B221) respectively. And
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Vi(n—2),2 is given by

1 0 1
0 O 1
Vin-2)2 = : N ; (4.71)
0 O 1
0 -1 N-22 M

where the subscripts j, k of the matrix ( );; stand for the row and column sizes. Fur-
thermore, we introduce v as a vector of fermion fields in two-dimensions. It is defined as
Y =) oy € With the standard basis e, in |V| dimensions. And 1), is the fermion fields
in two-dimensions on which the Pauli matrices act. Here, we specify the order of compo-
nents 1, in the vector as (1,2) — (2,2) —» --- —» (M,2) - (1,3) » -+ = (M,N — 1) —
(0,1) = (0, N). Namely, it is expressed as

Y,2)
Y(2,2)

¢(1\.4,2)
= P.3) ) (4.72)

Yun-1)
Pio,1)
(I

For the results in the previous sections, the lattice action for the weighted digraph is given
by the anti-symmetrized adjacency matrix and the vector of fermion fields. Accordingly,
the the naive-fermion-like action on S%-lattice is given by the bilinear form

SN — —¢Aas( GO (4.73)

Since the matrix-representation of lattice Dirac operator is equal to the anti-symmetrized

adjacency matrix with 1/2 as coefficient, the matrix-representation of lattice Dirac oper-
(M,N) .

ator for G is

DO — 5A%(G LNy (4.74)

Finally, we discuss about the number of fermion species on S*lattice. In here, we
show the number of fermion species on S*-lattice (M,3). Then, the anti-symmetrized
adjacency matrix for G(M‘5 is

), (AL (D) 1y Voo
Aus(Ggo )—( 0, ® oy + _V;ﬂ 02 ® 0y . (4.75)

Since the fermion species can be derived by the nullity of the anti-symmetrized adjacency
matrix for the digraph correspondmg to lattice fermion, we analyze the diagonalization
of the matrix. The matrix AaS(G(M3 ) can be diagonalized by the unitary matrix

U=U®1, (4.76)
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where U is the unitary matrix below

1 1 1 0 X ¥
3 & . Mt 0 X X
X

g ¢ S

A S S Co
62(M_1) g(M—l) 0 % X

0 0 - 0 5 —VMx —vMx?
0 0 0 VE VM VMxP

o~
b

—27i

with ¢ = e and y = i/v/2. Then, the spectra of the anti-symmetrized adjacency

matrix Aas(Gg‘f’N)) is obtain as

Ut A (GE MY u

o1 sin {QMW] , 01 sin {%} - +e ;018N [QW (J\]@ } \/7 \/7]

(4.78)

= 2iDiag

From Eq. BZ78, one finds that the number of fermion species is analytically two for even
M since there is a certain j satisfying j = = + 1 € N and sin [2”(1{4 1)} = 0. On the
other hand, the number of fermion species is one for odd M since there is no j satisfies
sin [M} = 0 for this case

o7 = )

These results indicate that there are up to two fermion species on the S?-lattice (M, 3).
We show that the maximal number of fermion species are two also in other cases in-
cluding (M, N) = (4,4),(5,4),(5,5), (4,5), (6,9) by numerical calculations as shown in
Appendix. C. The results are summarized in Table. Tl

In higher dimensions, we discuss the naive-fermion-like action on the cellular decom-
posed sphere in a parallel manner. We show that there are up to two fermion species on
the discretized 4-sphere (S*-lattice) labeled by four integers (N, Ny, N3, Ny) by numerical
calculation in Appendix. C2.

It is notable that the lattice fermion action on the spherical lattice has been stud-
ied in the literature in the different context [Z3-I73]. Our result is consistent with the
observations obtained in the literature.

In the end of this section, we make a comment on possible zero-mode (zero-eigenvalue)
difference giving the quantum anomaly in gravitational background. In curved space, the
difference of the numbers of left-handed and right-handed zero-modes are related to the
anomaly resulting from the gravitational background. Our argument of the existence of
two exact zero modes is not inconsistent to this difference of the numbers of zero-modes.
For example, the case with two right-handed zero-modes and zero left-handed zero-modes
are consistent with both arguments. This kind of fixing of zero modes may be due to the
specific choice of the sphere discretization or due to the lattice artifact, but there is no
contradiction so far.

55



Chapter 5

The number of fermion species based
on topology

In the previous chapter, we have discussed that the lattice fermions on the various lattices.
In particular, the maximum number of fermion species is determined by the number of
cycle digraphs as follows:

e For G = G;0---0OGp with G, € {D,&CyCIG),Dipatll)}, the maximum number of

fermion species is

max [ #species | = 21°! (5.1)
where |S¢| is the number of cycle digraphs.
e For G = D§Cyde) .- Dgyde) (or T'P-lattice), the maximum number of fermion
species is
max [ #species | = 27 (5.2)
since the digraph G is constructed by D cycle digraphs.
e For G = DP*™MO...ODP*™ (or BP-lattice), the maximum number of fermion
species is
max | #species | = 1 (5.3)

since the digraph G is constructed by only the simple directed paths.

It means that the maximum number of fermion species is given by the topology of graphs.
Meanwhile, in this chapter we will discuss about the relationship between the maximum
number of them and the topology of manifolds. The first half of this chapter is mentioned
about a new conjecture we propose. Later in this chapter is devoted to proving this
conjecture for certain manifolds.

5.1 New conjecture about the maximal number of the
species

In this section, we will discuss about the relationship between the maximum number of
fermion species and the topology of manifolds. We predict that the maximum number
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of them is equal to the summation of the Betti numbers for the continuum manifold.
As one of the circumstantial evidences, we show that the maximum number of them on
the digraph Ggﬁie is equal to the summation of the four-dimensional torus. There are 2*
fermion species on the digraph Ggﬁfﬁe for Thm. B. Meanwhile, the summation of the Betti
number is >+_, 3,(T*) = 16 since these Betti number are

Bo(T*) = Bu(TH) =1, B(TH) = B3(T*) =4, Bo(T*) =6. (5.4)

As a result, the maximum number of them is equal to the summation of the Betti numbers
for T*. In Table. BEOl, we summarize the relation of the sum of the Betti numbers and
the maximum number of fermion species for the weighted digraph. Here, the manifold

Table 5.1: Betti numbers and Maximum numbers of fermion species

manifold M ‘ sum of §,.(M) ‘ maximal # of fermion species
1-d torus 1+1 2
2-d torus 1+2+4+1 4
3-d torus 1+34+3+1 8
4-d torus 1+44+6+4+1 16
Torus TP (1+1)° 2b
Hyperball BY 1+0+0+--- 1
Sphere S 140+0+---+1 2
TP x B? 20 x 1 2D

TP x B can be regarded as the weighted digraph below

GES pe = DI 0 0D O DM O - ODFEY (5.5)
wle € G,) =,

for G, € {D,(fyde), D&path)}. For Thm. B, the maximum number of fermion species is

max | #species ] = 27,

From these facts, we propose a new conjecture on the number of fermion species on
the discretized torus, hyperball, their direct-product space, and hypersphere. Hereafter,
we denote these manifolds as M. The conjecture is as follows:

Conjecture 1. We firstly impose the following five conditions on the free fermion action
of the discretized manifolds * M :

1. Difference operator; we adopt the anti-symmetrized adjacency matriz as the matrix-
representation of lattice Dirac operator. For this reason, the lattice action is given by

the bilinear form of the anti-symmetrized adjacency matriz and the vector of fermion
fields.

1. Ypy1 hermiticity or axis-symmetric Dirac spectrum; we only consider lattice fermions
with real-azis-symmetric Dirac eigenvalue spectrum. This condition is satisfied by
Yp+1 hermiticity in even dimensions. For this condition, we can exclude the cases of
the unphysical system.
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iii. 2P/% or 2PTD/2 spinors; this condition assures the linear independence of the lattice
action for each direction. When D is even(odd), we consider 2P/ (2(P+D/2) spinors.
This condition prohibits deliberately reducing the number of fermion species.

w. Locality; this condition leads to finite-hopping actions.

v. Finite volume lattice; Since taking the infinite volume limit changes the maximum
number of fermion species and differs from our conjecture, we discuss the finite volume
case. In other words, we consider only the case of the digraphs with finite vertices.

Our conjecture claims that, as long as these conditions hold, the maximum number of
species of free fermions on the digraph regarded as the lattice-discretized D-dimensional
manifold is equal to the summation of Betti numbers [5,.(M) over 0 < r < D for the
continuum manifold M. It is expressed as

max [ #species(*M) | = ZBT(M)’ (5.6)

where #species(* M) is the number of fermion species on the weighted digraph regarded
as the lattice-discretized manifold * M.

5.2 The theorem for the maximum number of fermion
species

In the previous section, we proposed the conjecture claiming the relationship between the
maximum number of fermion species and the topology of manifolds. In the restricted
manifolds, this conjecture can be proved. This section will mention about a theorem
which claims the non-trivial relation between the maximum number of them and the sum
of the Betti numbers for the restricted manifolds, and we will prove the theorem.

Before this discussion, we prove a novel topological lemma.

Lemma 1. For the manifold M = My X My x -+ x Mp with M, € {S*, I}, the sum of
all Betti numbers for the manifold M is equal to the product of the summation of zeroth
and first Betti numbers in each manifold M,, i.e.

D

> M) = [T{Bo0s) + B0 } (5.7)

p=1

When the manifold M is constructed by d circle and (D — d) line segments, this equation
1S rewritten as

> 8 (M) = TT{Bo(b,) + Bi(M,) =2, (5.8)

It means that the sum of all Betti numbers for the manifold M = M; x My x ---xX Mp
with M, € {S*, I} is given by the number of the circles. This theorem can be proved
using a topological theorem called the Kiinneth theorem.

58



Proof. Firstly, we show the case of D = 2. The manifold is M = M; x M, with M, €
{S', I}. Accordingly, what we have to do is to prove

> M) = [T{ (M) + 81(0,) | o

= {Bo(0) + u(0) } Bo0) + 51 01)

From the Kiinneth theorem, the r-th homology of the manifold M is written down as

H, (M) = H.(My x M) ~ € H,, (M) ® H,,(M,). (5.10)

rit+re=r
where H,.(M) stands for the r-th homology of manifold M. Since the r-th Betti number
is defined as the rank of the r-th homology, the sum of all Betti numbers is

2 2

ZﬁT(M) = Zrank H.(M)

r=0 r=0

WE

_ Z {ranka(Ml)~rankHT2(M2)}] (5.11)

0 Lri+re=r

Z Bﬁ (Ml)ﬂm (M2)] :

Lr1i+re=r

,3
ol

o

r=

Now, we can restrict r, in ﬁm(Mu) to 0 < r, <1 since the Betti number of circle St or
the line segment I are

I r,=0 . 0
T =
57’#(51> = 1 Ty = 1 ) /Bru(j) = . . , (512)
) 0 otherwise
0 otherwise

respectively Accordingly, the right-hand side in Eq. (B10) is

> [ > ﬂm(Ml)ﬁm(Mz)]

r=0 Lri+reo=r

= Bo(M1)Bo(My) + Bo(M1)B1 (M) + Br(M)Bo(Ma) + (M) 51(Ms)
= {Bo(am) + 81 (1) }{ Bo(Mz) + B (M) }

(5.13)

because of 0 < r =1y +ry < 2. As a result, we can prove that the equation in Eq. (51)
holds.

Secondary, we show the case of D > 2. Here, we assume the summation of Betti
numbers over 0 < r < D — 1 satisfies the following equation,

iﬂr(Ml XX Mp_y) = H{ﬁg(Mu) - ﬂl(Mu)} , (5.14)
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The sum of all Betti numbers for the manifold M = M; x --- x Mp is obtained as

D BM) =D | > B (My)B(My x -+ x Mp)

ri4r'=r

(5.15)
D-1 D-1
= ﬁO(Ml) ZBT/<M2 X X MD) + 61(M1> Z 5TI(M2 X X MD)
r’'=0 r’'=0

since fp(My X -+ X Mp) =0 and B_1(My X --- x Mp) = 0. By use of the assumption,
the sum of all Betti numbers results in

D D—-1 D—-1

Zﬁr(M) = Bo(M) Zﬁr/(Mz X -+ X Mp) + Bi (M) Zﬂr'(M2 X - X Mp)
= ) [T{5o(M) + 1M} +50m) TT {00 + 51040} (5.16)

ﬁ{ )+ B1(M )}

Therefore, Eq. (22) holds for the manifold M = M; x --- x Mp with M, € {S*,I}.
Finally, we show the equation in Eq. (BR). When the manifold M is constructed by
d circles and (D — d) line segments, the right side in Eq. (B7) is

ﬁ{m M)+ a0t =TT {6sh+msh} T {0+ a0}

M—]- }LGSCIrCle ueSline (517)
circle
— oI5|

where S = {4 | M, = S*} and S = {u| M, =1I}. Since |S"| = d, we have
shown Eq. (B3). O

In our conjecture, we assumed arbitrary manifolds. However, we consider the restricted
manifolds, which constructed by the directed product of only the circle S' and the line
segment [ = [0, 1]. It is expressed as

M= M; x My x---x Mp (5.18)

for M, € {S',I}. Furthermore, the circle and the cycle digraph are homeomorphic, and
the line segment is homeomorphic to the simple directed path, i.e. S' ~ D) and
I ~ D®2th)  Thege facts will be used in the later proof. We obtain the following theorem.

Theorem 4 (lattice fermion and topology). The number of fermion species of the free,
massless and naive lattice Dirac operator is equivalent to the sum of all the Betti numbers
of the manifolds, which is M = My x My x -+ x Mp with M, € {S*, I}, on which the

lattice fermion is defined:

max [ #species(*M)] = max dim (kzlia;(*M))] = Z/BT(M) (5.19)
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where the lattice-discretized manifold *M as *M = *My x - -+ x*Mp with *M,, € {*S*,*I}.
For generic case of the number of vertices (lattice sites) in G, we have

#species(*M) = dim (kre;ia;(*M)) < Zﬁr(./\/l) (5.20)

It means that the number of fermion species on the lattice-discretized manifold * M
determines upper bound by the topology of the digraph corresponding to the continuum
manifold M.

We speculate that the theorem holds for massive fermions or other lattice fermion
formulations since the introduction of mass or the modification of fermion actions never
increase the number of femrion species of free fermions.

Proof. By use of Thm. B, S* ~ D(v°l®) and [ ~ D@ the maximum number of femrion

species on the directed and weighted graph G in Eq. (B222) is

max [ #species(G) |

dim (ker Aas(G))]

a
e l rank -y

Il
o

{8(G) +51(G) | (5.21)

1

S

= {50(Mu) + 51(Mu)} = iﬁr(M) .

=
Il

Furthermore, by taking the weighted digraph G to be equal to the 2-skeleton (only vertices
and edges) of the the lattice-discretized manifold *M, we can prove

max [ #species(*M) | = max {dim (kre;ia;(*/\/l))] = Z Br(M) . (5.22)

Furthermore, we can also prove

D

#species(*M) < Zﬁr(./\/l) (5.23)

r=0

Since #species < Hle {Bo(GL) + B1(G,)}. O
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Chapter 6

Summary and discussion

In this chapter, this thesis summarizes my research on fermion species of lattice fermions in
three parts. First, I will summarized Next, [ will summarize the new formulations of lattice
fermions using spectral graph theory and discuss further application of this formulation.
And finally, I will summarize the non-trivial relation between lattice fermions and the
topology and discuss very rich understanding of this this relation.

6.1 Lattice fermions as spectral graph theory

In this thesis, we have studied the novel formulation of lattic field theory using spec-
tral graph theory and the relation between the fermion species and the Betti numbers of
graphs. We had shown that the lattice fermion on the finite volume D-dimensional hyper-
cubic lattice with the periodic boundary condition and Dirichlet boundary condition can
be represented as the directed and weighted graph constructed by the cartesian product
of the cycle digraphs and the simple directed paths below

G=G,0G0---0Gp

6.1
w(e € Gu) = 1uUny (61)

for G, € {D,(fyde), Dipath)}. In particular, the lattice fermion on torus lattice (with only

the periodic boundary condition) can be represented as the directed and weighted graph
constructed by the cartesian product of only the cycle digraph,

G = Dgcycle) 0 Dgcycle) 0...0 D(gycle)

6.2
w(e c DLcycle)> — 'VuUn,;w ( )

And the lattice fermion on hyperball lattice (with only the Dirichlet boundary condi-
tion) can be represented as the directed and weighted graph constructed by the cartesian
product of only the simple directed path,

G — Dgpath) 0 Dépath) 0...0 D(Dpath)

w(e € D;(lpath)) = VuUnp -

(6.3)
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For the weighted digraph GG, we have introduced a novel matrix associated with the graph,
called as “anti-symmetrized adjacency matrix” A,s(G). By use of this matrix, the lattice
fermion action for the weighted digraph is given by the bilinear form of the matrix and
the vector of fermion fields, i.e. S = 1 A,,(G)1p. We had shown that it holds even if it is a
free theory. Furthermore, the number of fermion species is derived by the cycle digraphs
with even vertices. However, the maximum number of them is uniquely determined by
the topology of graphs (or the number of cycle digraph). We had shown the number of
fermion species on varous lattice as follows:

e Product space of T'-lattice and B'-lattice (or the weighted digraph in Eq. (60)):

The number of fermion species is given by the number of the cycle digraphs with
even vertices and the number of the simple directed paths with even vertices. If the
weighted digraph contains the simple directed paths with even vertices, there are
no fermion species in the theory. Meanwhile, if the weighted digraph contains no
simple directed paths with even vertices, the number of fermion species is the cycle
digraphs with even vertices powers of two. It is expressed as

9I5| gpe| =

0 sl 20 (6.4)

#£species = {
where |S®¢|, |SP€| are the number of the cycle digraphs with even vertices in the
weighted digraph and the number of the simple directed paths with even vertices in
the weighted digraph, respectively. The maximum number of fermion species can
be derived by the number of the cycle digraphs. The expressed equation is

max [ #species | = 2/5°1 (6.5)
where S¢ is the number of the cycle digraphs.

e Torus lattice:

The number of fermion species on torus lattice is given by the number of the cycle
digraph with even vertices below

#species = 219°1 (6.6)

And the maximum number of them is equal to the number of cycle digraphs powers
of two. It other words, it is equal to 2 to the number of dimensions. It is expressed
as

max [ #species | = 2191 = 2P (6.7)

where D is the number of dimensions.

e Hyperball lattice:

The number of fermion species for the hyperball lattice depends on whether the
simple directed path with even vertices is included in the whole weighted digraph
below

1 [SP¢ =0

o (sl 20 (6.8)

#species = {
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As this equation shows, there is one fermion species as the maximum number of
them.

In addition to these lattices, we had shown the lattice fermion on the discretized
sphere, where we perform discretization and put a fermion on the lattice in a special way.
In this case, by taking the weighted digraph equivalent to the 2-skeleton (only vertices and
edges) of the discretized sphere, the lattice action is also obtained by the bilinear form
of the anni-symmetrized adjacency matrix for the weighted digraph and the vector of the
vector of fermion fields. And the maximum number of fermion species can be derived as
two, even in arbitrary dimensions.

Therefore, once we have a certain weighted digraph and an anti-symmetrized adjacency
matrix associated with the digraph, we can obtain a lattice action corresponding to the
graph and derive the number of fermion species.

We now discuss further application of the novel formulation of lattice fermions in term
of spectral graph theory;

1. Applications of spheres discretised in other ways:

In this thesis, we had taken the method of discretising spherical coordinates. How-
ever, as there are many other discretization methods, we will discuss these methods
and investigate lattice fermions on discretised spheres by using them in the future.

2. Lattice fermions with the gauge field:

One may ask a question whether we introduce the gauge field into our setups. Lattice
fermion operator with the U(1) background link variable giving a non-zero winding
number (topological charge) in two dimensions is regarded as the antii-symmetrized
adjacency matrix with the link variable as the components in spectral graph theory.
By use of this fact, we may be able to re-interpret the index theorem connecting
the topological charges and the Dirac zero-modes in terms of graph theory.

3. Novel lattice fermions:

We can propose novel lattice fermions by translating a matrix with desirable prop-
erties (minimal zero modes, hermiticity or chirality) to a spectral graph, which
corresponds to the lattice fermion. A fermion obtained by this procedure may cor-
respond to a lattice fermion defined on the lattice with various topology.

6.2 The number of fermion species based on topology

In this paper, we have studied operators in lattice field theory using spectral graph theory
proposed new conjecture claiming that the maximal number of exact Dirac zero-modes of
free fermions on the finite lattices we formulate in the paper is equal to the summation of
the Betti numbers of the D-dimensional manifold from which the lattice is constructed.
Our conjecture is summarized as

max [ #species(*M)]| = ZB’“(M)’ (6.9)
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where #species(* M) is the number of fermion species on the lattice, which is defined as a
lattice-discretized version *M of the manifold M. In a sense that this conjecture relates
the number of fermion species to the topology of spacetime manifold, it is complementary
to the Nielsen—Ninomiya’s no-go theorem which claims the emergence of pairs of fermion
species as a result of the cancellation of chiral charges on torus.

Furthermore, we partially proved the conjecture on the relation between the fermion
species and the Betti numbers of the graph. We have proved that the maximal number
of fermion species of a free Dirac operator agrees with the sum of all the Betti numbers
of the graph (lattice) structured as cartesian products of cycle digraphs (T lattice) and
simple directed paths (B! lattice).

We comment in the case of infinite-volume lattices things. For example, the number
of zero-modes of naive fermion on the one-dimensional lattice hyperball * B! approaches
two in an infinite-volume limit, which is the same number as that on *7. It is of great
importance that our conjecture relates the topology of a continuum manifold and the
zero-modes on a finite lattice defined by discretizing the manifold.

If the theorem is established for generic cases, it has impacts on the study of lattice
field theory. For example, one can predict the number of exact Dirac zero modes of free
fermions on non-standard lattices such as discretized double torus. Future works will be
devoted to generalization and establishment of this conjecture.

Study on the connection between lattice field theory and graph theory leads to very
rich understanding on both of them. In the upcoming work of ours, we will discuss
the relation between lattice scalar field theory and topological graph theory, where the
massless scalar operator on the lattice is exactly given by the graph Laplacian operator.

65



Acknowledgements

The author is grateful to his supervisors, Prof. Masaru Onoda in the Akita University and
Prof. Tatsuhiro Misumi in the Kindai University, for guiding him and giving useful advice
on this thesis. He appreciates hearty encouragement by his parents and grandmother
during he has been enrolled in the graduate school. This work of J. Y. is supported by
the Sasakawa Scientific Research Grant from The Japan Science Society.

66



Appendix A

Lattice field theory and graph
Laplacian

A.1 Lattice boson and graph Laplacian

In this section, we show a relation between lattice boson and graph Laplacian. The graph
Laplacian defined in Def. 8 corresponds to the Laplacian in the lattice field theory at
least on the hypercubic lattices. Let G be the graphs corresponds to lattices: T'P-lattice,
BP-lattice or their cartesian products in D-dimensions. Therefore, the massless action
of D-dimensional free lattice scalar field ¢, defined on NP hypercubic-lattice sites is
expressed as

S =~ 3200 200~ dusi — G g) = BTG (A1)

with ¢ = (¢10...1, $2.0..1, ONN. N> ) - The sum >np is the summation over lattice
site n = (ny1,ng,...,np) and p = (1,2,3,..., D) with the intervals being 1 < n, < N.
L(G) is the graph Laplacian matrix we defined in Def. 8. Thus, the spectrum of free and
massless lattice boson agrees with that of the graph Laplacian matrix.

Indeed, the equivalence between the lattice scalar operator and the graph Laplacian
matrix is not restricted to the above hypercubic lattices. In the continuum limit, in which
the number of vertices approaches to an infinity with the graph topology being intact,
the graph Laplacian results in the continuum Laplacian for an arbitrary lattice or graph
G. Thus, the coincidence in Eq. (A) holds for generic lattices as

5= 686 =~ SL(G)® (A2

where B stands for the lattice operator. As we have shown in Thm. B, the number of zero
modes of the Laplacian matrix is equivalent to 0-th Betti number 5y(G). From this fact,
we derive the following theorem.

Theorem 5 (Lattice scalar zero modes). The number of zero modes of a free and massless
lattice scalar operator B is equivalent to the 0-th Betti number of the graph (lattice) 5o(G),
on which the lattice boson s defined.

dim(KerB) = dim(KerL(G)) = 5o(G). (A.3)
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For any simply connected graphs (lattices), the free boson operator has a single zero mode.

This theorem holds for any graph (lattice) in any dimensions as long as the lattice
boson operator is defined as the graph Laplacian. The assertion of this theorem for the
connected graph is consistent with the results in the work [76].

A.2 Wilson term and graph Laplacian

By introducing graph Laplacian, we can well clarify the Wilson fermion in terms of spectral
graph theory. We consider the finite volume four-dimensional hypercubic lattice imposed
the periodic boundary condition in Eq. (E22). Accordingly, the graph corresponding to
the lattice is given by Eq. (B234). From Sec. 23, the Wilson fermion action is given by

SWf = Snf + Sw (A4)

where Sy is the lattice naive fermion action given by

nf - ZZ%% uwn - _";b as( )’lp (A5)

n  p=1

and Sw is the Wilson term given by

Sw= Z Un (1 = PWp, . (A.6)

n p=1

W is the matrix-representation corresponding to the Wilson term. Then, by use of graph
Laplacian the Wilson term can be rewritten as

ZZ D~ i~ ng) = 5PLCIb (A7)

n p=1

where L(G) is the Laplacian of the graph (lattice) G. It is notable that the added matrix
W corresponding to the Wilson term is proportional to the graph Laplacian matrix as
W = L/2. Consequently, the Wilson fermion action in terms of graph theory is obtained
as

Swe = 5 [Au(G) + L(C)] . (A.8)

To discuss zero-modes of the anti-symmetrized adjacency matrix (matrix correspond-
ing to the lattice Dirac operator) and the graph Laplacian (matrix corresponding to
Wilson term), we focus the relation below

[Aus(G), L(G)] = 0. (A.9)

It means that A,(G) and L(G) are simultaneously diagonalized. As we have shown,
L(G) has a single zero eigenvalue, which is equal to the 0-th Betti number 5y = 1. This
zero-eigenvector of L(G) is also one of the zero eigenvectors of A,s(G), whose number
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is S0, B.(T*) = 16. In this sense, the Wilson term W = L(G)/2 works to preserve a
single zero-mode associated with By = 1 out of the sixteen zero-modes of the naive fermion
D = A.(G). Therefore, the Wilson term, which is equivalent to the Laplacian matrix
in arbitrary dimensions, works to preserve a single zero-mode associated with 5y = 1 out
of the 24 zero-modes of the naive fermion. This is the graph-theoretical reason why the
Wilson fermion extracts a single degree of freedom from the multiple doublers.
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Appendix B

The diagonalization of A,y(G)

The diagonalization of A,5(G) are obtained as

D —pu—
(uTAas(G) u)mn = Z’Y# { H H l\V‘D+1 l, MD 41—y D41y (l‘v‘/))mpnp Amun#}
= =1 p=1
D—p p—
- Z’YM munp (H H mD+1unD+1y5mpnp>

D— Mce Hc,971
= E ’yp,ceAm cc’rL c,e | | | | 5mD+1_,,nD+1_V5mpnp
V= =

c eeSc e p= 1
D— c o c o_1 (Bl)
+ E ’Y,U«C"A uCoMy, ( | | 5mD+1VnD+1V5mpnp)
pC0ESe0 v=1 p=1
D—pP® pPe—1
+ E 7#" CAmNp en,p,.e I I 5mD+1—VnD+1—u5mpnp
pP-eeSp.e v=1l p=1
D—pP° pPo—1
+ E Yyp: OA P01y, | | 5mD+l—ynD+l—u6mpnp )
upP-°€Sp.0 v=1 p=1

where Ay, n, = (U;A;S(G#)Uu)mw“ and n,, m, range from 1 to |V|,. Furthermore, m
and n are

m:ml—i-Z(H\Vh(m“—l)), n:n1+Z<H|V|V(nH—1)>, (B.2)

respectively. Note that these two equations denote a replacement from the label of each
site to the new labels m, n. Here we used (1|V|O‘)mana = Oman, and the properties of
Kronecker product, which is (A ® B>Q(i—1)+kz,Q(j—1)+l = A;; By for P-square matrix A and
(Q-square matrix B.

To derive the diagonal components of UT A,s(G) U, we need to derive UJ A} (G,,)U,, for

G, € {D,(fyde), D,(fath)}. In the case of A/ (DY), A unitary matrix U, is (U,)

jk
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EU-DE=D /. /IV], with € = exp (—2in/N) for j,k € V(D CyCle)). By contrast, A unitary

matrix U, that diagonalizes the matrix A’ (DP*™) is (Up);, = cos <lei11> /IVI+1

for j,k € V(Dy, ppeh) ). Accordingly, the components of A, ,,, are obtained as

A = (UL AL(GOUL),,

2i sin (2’“’”“—”) Smm, (G = D}fyde>) (B.3)

Vi '
2i cos G, = D,(Lpath))

|V| +1 5mu”u

By use of these results, the diagonalization of A,s(G) are

U AL U),
27T m D_‘uc,e Hc,e_l
ILLC e T
E Ypere sin ( ) H H 5mD+1—unD+1—u5mMCaenMCve (Smpnp
pceeSe.e v=1 p=1
D—},LC’O },LC’O—l
21 (Mmyeo — 1) 5 5 5
+ E ’}/Mco S1n |V MpP4+1—vMD+1—p VMyc,on 0 ¥mpn,
c,0
pseeSe.° v=1 p=1
D—pPe ppe—1
m,p.eT
o
+ E “Yupe COS % 1 5mD+1_,,nD+1_V5me,enMp,e 5mpnp
’ |upﬂe + — _
pPeESP-e =1 p=1

v
D—pP° pP°—1
M, p,oTl
i
+ E “Yupso COS (M——H> < 5mD+1VTLD+1V5m‘Lp,OTLHp,O(5mpnp) }
, pPe
2

pP-oeSPo v=1  p=1
W(muce Z 27T(m'uco — 1)
2 ”< [Viies ) ”“”Sm( [Vijes
ceeSce e COGSCO 1208
Myp,eT mxxi
+ Z vp,ecos(“—) Z 'YPOCOS( a ) Omn -
vt a V] upee + 1 ettt a [V w0 + 1 m

(B.4)

71



Appendix C

Numerical analysis for D-dimensional
spheres

C.1 Two-dimensional sphere

In this appendix, we show that there are up to two fermion species, or four zero-eigenvalues
in the anti-symmetrized adjacency matrix, on the discretized 2-sphere (graphs like 2-
sphere) labeled by (M, N)? by numerical calculations:

e If both the number of sites on the longitude direction M and the number of sites
on the latitude direction N are even, there is no fermion species of the matrix-

representation of lattice Dirac matrix. For instance, we consider the discretized
2-sphere labeled by (4,4), which is depicted in Fig. C.

Figure C.1: Discretized 2-sphere labeled by (4,4).

The anti-symmetrized adjacency matrix of the (4,4) sphere is

T ®Al D(cycle) Alas D(path) ®] V.
Au(Gg") = ( R ( _‘/81‘2)2 o) e,
’ (C.1)

!Hereafter, we consider the number of sites on the latitude direction N is N > 3. We set the weights
of all edges in the longitude direction to o7 and the weights of all edges in the latitude direction to 5.
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with

1 0
Vo = (0 _1>22® (C.2)

where A’ (D)), = A’ (D®Pah)), are the 4-square matrix in Eq. (8328) and the 2-
square matrix in Eq. (B227) respectively. The matrix-representation of lattice Dirac
operator on the (4,4) sphere is given by D44 = Aas(Gg‘Z4)) /2. The eigenvalues of
this matrix are depicted in Fig. C2. There is no zero-eigenvalue in D% which

means that there is no fermion species.

—_ = =

o -

Im
0
|
* % Rk

K ¥ ¥

T T T T T
-2 -1 0 1 2

Re

Figure C.2: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
DA There is no Dirac zero-modes, or equivalently no zero-eigenvalue.

e If M is odd and N is even, there is again no fermion species (no zero-eigenvalue).
For instance, we take the discretized 2-sphere labeled by (5,4). We numerically find
that the number of zero-modes or the number of femrion species is zero as shown

in Fig. C3.

e If both of M and N are odd, there is a single fermion (two zero-eigenvalues). For
instance, we consider the discretized 2-sphere labeled by (5, 5). Then, we numerically
find that the number of fermion species (two zero-eigenvalues) is one as shown in
Fig. C4 and Fig. C4. We note that a pair of eigenvalues corresponds to a single
fermion since the two-dimensional v matrices are 2 x 2 matrices. Thus, the existence
of the pair of zero-eigenvalues shown in Fig. C4 and Fig. T3 means that there is a
single fermion.

e If M is even and N is odd, there are two fermion species (four zero-eigenvalues)
on the discretized 2-sphere. For instance, we take two cases, (4,5) and (6,9). The
discretized 2-sphere (4,5) is depicted in Fig. C8.
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Figure C.3: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
DA There is no fermion species (no zero-eigenvalue) in DO,

Im
0
1
* * Rk

IR K

T T T T T
-2 -1 0 1 2

Re

Figure C.4: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
DGS) . The pair of zero eigenvalues corresponds to a single fermion.
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Figure C.5: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the Dirac matrix D®® and the horizontal axis represents the serial
number of eigenvalues. The pair of zero eigenvalues corresponds to a single fermion.

s
N

Figure C.6: Discretized 2-sphere labeled by (4,5).



The anti-symmetrized adjacency matrix of the (4,5) sphere is

/ (cycle) / (path)
Aas(G(475)) — (I3 ® AaS(D )4 0 ) ® oy + (Aas<D ; )3 ® -[4 ‘/12,2) Q oy,
2

5 —Vins O
(C.3)
with
Loy (!
Voa={0 0] @] (C.4)
—1
0 3,2 1

The matrix-representation of lattice Dirac operator on the (4,5) sphere is given
by D) = AaS(G?Q’S)) /2. The eigenvalues of this matrix are depicted in Fig. T
There are two fermion species on 2-sphere (4, 5) since there are four zero-eigenvalues
as seen from Fig. CTR.

1
1
* K%

1
|
** %

T T T T T
-2 -1 0 1 2

Re

Figure C.7: Eigenvalue distribution of the matrix-representation of lattice Dirac opera-
tor D). There are four zero-eigenvalues corresponding to two fermion species in two
dimensions.

In the case of the (6,9) 2-sphere, the anti-symmetrized adjacency matrix is

I A’ (Dfcycle) A’ (D(path) I. V.
Aas(GgZ’g)) — ( 7® as( )6 O2) ® oy + ( as( )7 K 1g 42’2> ® 0y,

~Vhs O
(C.5)
with Lo
0 0 1
0 O 1
Viea=10 0 ® 1] (C.6)
0 0 1
0 0 1
0 —1 7.2
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Figure C.8: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the matrix-representation of lattice Dirac operator D™*® and the hor-
izontal axis represents the serial number of eigenvalues. There are four zero-eigenvalues
corresponding to two fermion species in two dimensions.

The matrix-representation of lattice Dirax operator on the (6,9) sphere is given by
D69 = AaS(G(SﬁQ’Q)) /2. The eigenvalues of this matrix D) are depicted in Fig. T9.
There are again two fermion species as there are four zero-eigenvalues in D69 as
seen from from Fig. CT0.

Im
0
|
Fok WOk Rk Kk kot ok

T T T T T
-2 -1 0 1 2

Re

Figure C.9: Eigenvalue distribution of the matrix-representation of lattice Dirac operator
D69 There are two fermion species (four zero-eigenvalues).

We summarize our results in Table. C1I.
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Figure C.10: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the matrix-representation of lattice Dirac operator D) and horizontal
axis represents the serial number of eigenvalues. There are four zero-eigenvalues corre-
sponding to two fermion species in two dimensions.

Table C.1: Maximal number of the fermion species on 2-sphere (M, N)

the number of M ‘ the number of N ‘ maximal # of fermion species
even even 0
odd even 0
odd odd 1
even odd 2

C.2 Four-dimensional sphere

We discuss the discretized four-dimensional sphere. We first consider the discretized four-
dimensional spherical-coordinate system for 4-sphere labeled by four integers (N, Na, N3, Ny)
as

T = 1 CoS 0y, x4 = 7 8in 6, cos O, 23 = r8in 6, sin 65 cos 6, (C.7)

Ty = 1 8in 0, sin O3 sin 0, cos Oy, 21 = rsin 0, sin 05 sin 6, sin 6, (C.8)

where r is a radial distance and the four angles are discretized as 6, = 2—’; (np—1), 6, =
o (n; — 1) for i = 2,3,4. ny,n; € Nrun as ny € [1,Nq], n; € [1, N;]. For simplicity, we
fix a radial distance as » = 1. In a parallel manner to the discussion for 2-sphere, we label
the lattice sites as (n1,n2,n3,14). And we set the weights of all edges in the n,-direction
to Yu-

For instance, we take Ny =4 and N; = 3 for ¢ = 2,3,4. A graph corresponding to the
(4,3,3,3) 4-sphere is depicted in Fig. CT1. The anti-symmetrized adjacency matrix of
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Figure C.11: A graph corresponding to the (4, 3,3,3) 4-sphere is the 5-orthoplex inside

Petrie polygon (Ggli&?),g) )

the graph is given as

Oy Vip

A D(cycle) )
Aas( (544’373’3)) = ( o ) 06) @mn+ |- 4T,2 Oy o ® 72
! (C.9)
06 ‘/6,2 08 ‘/82
+ | Vi O ® s + <—V8*2 o;> ® Y

0>

The matrix-representation of lattice Dirac operator is given by D*333) = AaS(G§‘;3’3’3)) /2

This matrix D*333) is 10 x 10 square matrix, apart from the 4 matrix structure.

o -

o~

Im
0
1
Bk kK Kk kK

*

T T T T T
-2 -1 0 1 2

Re

Figure C.12: Eigenvalue distribution of the matrix-representation of lattice Dirac operator
D*3:33)  There are two fermion species in four dimensions, which emerge as eight zero-
eigenvalues in the figure.

Fig. CI2 and Fig. shows the eigenvalue distributions of the matrix-representtion of
lattice Dirac operator D*333) For the dicretized 4-sphere (4,3, 3,3), we find that there
are two fermion species as there are eight zero-eigenvalues of the matrix-representation of

lattice Dirac operator D*3:33),
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Figure C.13: Eigenvalues of the matrix-representation of lattice Dirac operator D(*3:33),

There are eight zero-eigenvalues corresponding to two fermion species in four dimensions.

By studying other cases, we find that the number of femrion species on the discretized
4-sphere (N1, Ny, N3, Ny) is two when the number of sites N; is even and the number of
sites IV; for i from 2 to 4 are odd, as with the case on the discretized 2-sphere (M, N).
We could not find any example where the number of femrion species goes beyond two in
four dimensions too.
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