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Abstract

In this thesis, we explore the relationship between lattice field theory and graph theory,
placing special emphasis on two things: the interplay between Dirac lattice operators and
matrices associated with graphs within the realm of spectral graph theory, and a new
conjecture, which we propose, on the relation between the species of lattice fermions and
the topology of the manifold the fermion is defined.

Beyond delving into fundamental concepts of spectral graph theory, such as degree and
Laplacian matrices, we introduce a novel matrix named as "anti-symmetrized adjacency
matrix", specifically tailored for cycle digraphs (T 1-lattice) and simple directed paths
(B1-lattice). The one of nontrivial relations between graph theory matrices and lattice
operators is that the lattice action can be given by the bilinear form of an anti-symmetrized
adjacency matrix and a vector of fermion fields. It means that the anti-symmetrized
adjacency matrix, along with its extensions to higher dimensions, are equivalent to the
matrix-representation of the naive lattice Dirac operators. Accordingly, we identify the
number of "fermion species" as the number of zero-eigenvalues of the anti-symmetrized
adjacency matrix. Furthermore, the number of fermion species is given by the topology of
the weighted digraph. In particular, the maximum number of them is uniquely determined
by the number of cycle digraphs in the whole digraph.

Our conjecture claims that a maximum number of fermion species on a finite lattice
defined by discretizing D-dimensional manifold is equal to the summation of the Betti
numbers of the manifold when the lattice fermion has several basic properties, including
locality, γ5-hermiticity, and hermiticity. For this conjecture, we can be provide rigorous
proofs.

The maximum count of fermion species in a free lattice fermion operator is equivalent
to the cumulative sum of all Betti numbers when the D-dimensional graph results from
a cartesian product of cycle digraphs (T 1 lattice) and simple directed paths (B1 lattice).
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Chapter 1

Introduction

The lattice discretization of the field theory [1] is one of the most powerful tools to non-
perturbative aspects of quantum gauge theories such as Quantum Chromo Dynamics
(QCD). The lattice field theory are defined on the discrete euclidean space (or lattice)
with a lattice constant clat. Accordingly, the continuum field theory is equivalent to the
quantum mechanics with uncountably infinite degrees of freedom while the lattice theory
is equivalent to the quantum mechanics with countably infinite degrees of freedom. When
we consider the finite volume of the lattice, the degrees of freedom are finite thus the
lattice theory is equivalent to the quantum mechanics with finite degrees of freedom. In
other words, the path integral can be calculated by using ab initio methods. In such a
mathematically well-defined theory, we can calculate quantities in a non-perturbative way
and there are no divergences in the lattice theory that occur in continuum theory. And
one of outstanding advantages in the lattice field theory is that the gauge field is quantized
in a gauge-invariant way: The gauge field on the lattice, which is called a link variable, is
defined on the link of lattice sites as an element of the gauge group. The gauge-symmetric
action is defined as a closed loop called a plaquette action. Non-perturbative physics has
been investigated by lattice gauge field theory and use of the numerical Monte-Carlo
simulation on lattice field theory [2].

However, there is a notorious problem called “Fermion doubling” in the lattice the-
ory. This problem is that the chirally-symmetric fermion action on the lattice inevitably
obtains degenerate degrees of freedom in a multiple number of two if we impose basic
presuppositions as locality, translation symmetry and hermiticity. We call these multiple
fermions “fermion species”. This multiplicity of fermions on the lattice originates from
the boundary condition for the finite volume lattice. The lattice with periodic boundary
condition can be regarded as the D-dimensional torus spacetime. The no-go theorem
by Nielsen and Ninomiya [3–5] uncovers the background of this multiplicity by relating
the Dirac operator of lattice fermions to the Poincaré–Hopf theorem [6], which shows the
relation between the Euler characteristic χ(M) of the compact and orientable differen-
tiable manifold M and the index of the vector function defined on M . In the case of
lattice fermions, the Dirac operator in the momentum space can be regarded as a vector
function defined on the torus up to the γ-matrix where the Euler characteristic is zero.
The index here stands for the net number of zeros of the vector function, counted with
signs ± depending on the slope of the zero crossing. For the Dirac operator this index
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is identified as the chiral charge for each species, which means the sign in front of γ5
differently assigned to each zero. A conclusion from the Poincaré–Hopf theorem is that
the index should be zero for the zero Euler characteristic. This means that the number of
zeros of the Dirac operator with a positive chiral charge should be equal to the number of
zeros with a negative chiral charge. Lattice fermions should therefore appear in a multiple
number of two, half of which have a positive chiral charge or chirality and the others have
a negative charge.

One of the methods to avoid fermion doubling is Wilson fermion [7]. In this for-
mulation we add a chiral symmetry breaking term called the Wilson term to the naive
fermion action, which assigns O(1/a) mass to doublers. In the classical continuum limit
we acquire a single fermion mode because doublers are decoupled with infinite mass. As
others methods, Domain-wall or overlap fermions [8–12], and staggered fermions [13–19]
have been proposed to bypass the problems and have been broadly used in the lattice
simulation. Apart from them, relatively new approaches have been proposed, including
the generalized Wilson fermions [20–27], the staggered-Wilson fermions [17,24,28–39], the
minimally doubled fermion [40–60] and the central-branch Wilson fermion [24,32,61,62].
However, we will not discuss these formulations in this thesis because it is a digression
from the main point of the story.

In the our works [63,64], we figured out the non-trivial relation between spectral graph
theory and lattice field theory, and investigated the number of zero-eigenvalues of lattice
Dirac operators in terms of graph theory. We proposed a conjecture [64] claiming, “under
certain conditions, the maximal number of Dirac zero-modes of a free lattice fermion is
equal to the sum of Betti numbers of the graph (lattice) on which the fermion is defined".
This conjecture is consistent with the known fact on naive lattice fermions: the species of
the four-dimensional naive fermion is sixteen, which is interpreted as the sum of the Betti
number of four-dimensional torus (T 4). This thesis organizes and systematically relates
these works and adds recent work.

we investigate operators in lattice field theory using spectral graph theory and present
partial evidence supporting the conjecture regarding the interplay between Dirac zero-
modes and the Betti numbers of the graph [64]. Beyond fundamental concepts in graph
theory, such as the adjacency matrix and Laplacian matrix, we introduce an "anti-
symmetrized adjacency matrix" and explore its rank in relation to graph topology. It is
noteworthy that the anti-symmetrized adjacency matrix, along with its higher-dimensional
extensions, coincide with a naive Dirac operator for the free lattice theory. Leveraging
this equivalences, we elucidate the counts of fermion species for free Dirac operators on
the lattice, linking them to Betti numbers associated with graph topology: The maxi-
mal number of fermion species for a free fermion operator is equated to the sum of all
Betti numbers of the graph (lattice). This holds true for D-dimensional graphs struc-
tured as cartesian products of cycle digraphs (T 1 lattice) and simple directed paths (B1

lattice). We also discuss our result indicating that the naive and massless fermion on a
certain graph corresponding to a D-dimensional sphere has two fermion species, which is
consistent to the fact that the sum of Betti numbers of the D-dimensional sphere is two.

This thesis is constructed as follows: In Chapter. 2 we review lattice field theory. We
review naive fermion and Wilson fermion. In Chapter. 3 we review graph theory and
matrices defined in the theory. We review the basic theorems and show a novel theorem
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regarding the anti-symmetrized adjacency matrix. In Chapter. 4 we study lattice Dirac
fields in terms of graph theory, and derive the number of fermion species by use of the novel
theorem. In Chapter. 5 we propose a new conjecture about the relation between fermion
species and topology. And we prove the theorems on the femrion species. Chapter. 6 is
devoted to the summary and discussion.
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Chapter 2

Lattice field theory

In this chapter, we will review the lattice fermions. This chapter is divided into four
sections. The fist section will review the naive fermion, placing special emphasis on the
spectra of lattice Dirac operator and fermion species. And we will mention a problem
in lattice field theory called “fermion doubling”. Furthermore, we will review a theorem
about fermion species. The theorem called as “Nielsen–Ninomiya no-go theorem”, claims
that multiple fermion species appear when the necessary physical conditions are imposed
on the lattice fermion action. In the remaining two sections, we will review “Wilson
fermion” and “Domain-wall fermion” as methods of avoiding the fermion doubling.

Before this discussion, we define the lattice field theory. Let Lat be a finite volume
D-dimensional hypercubic lattice1 bellow

Lat ≡

{
n = clat

D∑
µ=1

nµµ̂

∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ N

}
(2.1)

where clat is the lattice constant, which is a minimum length between sites on each di-
rection in the lattice. And µ̂ is the standard basis in D-dimensional hypercubic lattice,
which is the object between the closest lattice sites. We term it as “µ-link”. Its sites are
represented by D integer as n = (n1, n2, · · · , nD). For simplicity, we consider that the
lattice constant is clat = 1. In this chapter, we consider the lattice with periodic boundary
condition unless otherwise stated. The lattice is defined as

Latperiodic ≡

{
n =

D∑
µ=1

nµµ̂

∣∣∣∣∣ ∃Nµ ∈ N s.t. n+Nµµ̂ ∼ n ,

nµ ∈ [1, Nµ] ⊂ N

}
(2.2)

where the added conditions are the periodic boundary condition.
In the lattice field theory, the field is defined on the lattice sites. It is given by ψn for

n ∈ Lat. We mention one advantage of the lattice field theory. It is that the gauge field
is quantized in a gauge invariant way. The gauge field on the lattice is defined on the link
between lattice sites as an element in the compact gauge group such as the Lie group:
U(N) and SU(N). It is given by Un,µ = exp [igclatAµ(n)] with the coupling constant

1Lattice field theory can be defined on Euclidean space. However, for convenience we define this theory
restrictively to the finite volume D-dimensional hypercubic lattice in this these.
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g and the gauge field Aµ. The gauge field Aµ is an element in the Lie algebra since
Aµ ≡

∑
aA

a
µ(n)T

a ∈ SU(N) where T a is a generator of Lie algebra SU(N). Here, SU(N)
is the Lie algebra SU(N) for SU(N). The generator T a is N -square matrix satisfying

trT a = 0 , (T a)† = T a (2.3)

trT aT b =
1

2
δab ,

[
T a, T b

]
= ifabcT c (2.4)

where tr is the trace of the matrix and [A,B] is
[
T a, T b

]
≡ AB − BA. Furthermore, we

introduce the gauge coupling g and the corresponding gauge field Aµ(n) in the continuum.
The link variable is assumed to satisfy Un+µ̂,−µ = U †

n,µ. The case of two dimensions with
the link variable is depicted in Fig. 2.1

ψn

n

ψn+µ̂

n+ µ̂

µ̂

Un,µ

Figure 2.1: The two dimensional lattice and the fields defined on its sites. Here, ψn is the
fields.

2.1 Naive fermon
In this section we will review the naive lattice fermion from the view points of the spectra
of the lattice Dirac operator and the fermion species.

Firstly, we discuss about the lattice fermion action of the naive fermion. We consider
the lattice as Latperiodic since the translation invariance is imposed on the four-dimensional
hyeprcubic lattice. In the later chapter, this lattice is equivalent to T 4-lattice. Then, a
lattice action of naive fermion is given by

Snf = c4lat
∑
n

4∑
µ=1

1

2clat

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn +mψ̄nψn

]
(2.5)

where ψn, m are the fermionic fields and mass for fermions with a dimensions 1/clat,
respectively. And Un,µ is called the link variable. γ-matrices and Un,±µ act on the fermionic
fields ψn. The sum

∑
n is the summation over lattice sites n = (n1, n2, n3, n4) in the lattice.

In lattice field theory we can nondimensionalize fermion actions by redefining fields and
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mass as c3/2lat ψn → ψn and mclat → m. The dimensionless actions are given by

Snf =
∑
n

4∑
µ=1

1

2

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn +mψ̄nψn

]
=
∑
n

4∑
µ=1

ψ̄nγµDµψn

(2.6)

where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. We term Dµ as “lattice Dirac
operator”. In a free theory, we just set Un,µ = 1. If we consider the free naive fermion,
the lattice fermion action is given by

Sfree
nf =

1

2

∑
n

4∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn +mψ̄nψn

]
(2.7)

and 16 fermion species are known to occur in the theory. The case of two dimensions is
depicted in Fig. 2.2.

ψn

n

ψn+µ̂

n+ µ̂

µ̂

Figure 2.2: In the free theory, the two dimensional lattice and the fields defined on its
sites.

Secondary, we discuss a notorious problem called a “doubling problem” in the lattice
field theory. To show this problem, let us look into this by rewriting a free lattice fermion
action in the momentum expression with the lattice spacing being explicit as

Sfree
nf =

∫ π/clat

−π/clat

d4p

(2π)4
ψ̄(−p)

[
i

4∑
µ=1

γµ sin (clatpµ) +m

]
ψ(p)

=

∫ π/clat

−π/clat

d4p

(2π)4
ψ̄(−p)D(p)ψ(p)

(2.8)

where we define the 4-vector momentum as pµ for µ = 1, 2, 3, 4. And D(p) is the Dirac
operator in the momentum space. The four-dimensional lattice (or discretization space
time) results in restriction of the euclidean momentum space as −π/clat < pµ ≤ π/clat,
which is called the Brillouin zone. Then, a lattice fermion propagator obtained from this
action is given by

Gnf(p) = D−1(p) =
−is(p) +m

s2(p) +m2
(2.9)
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where s(p) ≡
∑4

µ=1 γµ sin (clatpµ). The zero point of the Dirac operator or the pole of
the lattice fermion propagator in the momentum space D(p) = s(p) +m = 0 corresponds
fermion degrees of freedom. In the massless case, this Dirac operator has 16 zeros within
the Brillouin zone since the momentum pµ takes 0 or π/clat. The spectra of Dirac operator
in the case of four-dimensional lattice with 164 sites is depicted in Fig. 2.3. Then, the

みなすことができるため， のゼロ点の指数の和は となる．また指数の符号はカイラリティ

の符号に対応しているため，上記の結論を言い換えるとカイラリティが正の フェルミオン

の個数と負の フェルミオンの個数は等しく出現する．したがって が出現し，ダブ

リング問題が生じる．この部分についての詳しい説明は付録 に記載する．

Figure 2.3: The spectra of Dirac operator in the case of four-dimensional lattice with 164

sites. 16 degeneracies exist at zero.

number of zeros is 16. In the D-dimensions, the Dirac operator has 2D zeros since the D-
dimensional Dirac operator in the momentum space is D(p) = i

∑D
µ=1 γµ sin (clatpµ) +m.

What multiple zeros appear in this way is called “fermion doubling”. And these zeros are
called “fermion species” (or doubler).

2.2 Nielsen–Ninomiya no-go theorem
In the previous section, we discussed about the naive fermion and fermion doubling.
In particular, we showed how fermion doubling occurs in term of the spectra of Dirac
operator.

This section is discussed about a notorious theorem about fermion doubling and its
proof This theorem is called “Nielsen–Ninomiya no-go theorem” [3–5]. The theorem claims
below.

Theorem 1 (Nielsen–Ninomiya no-go theorem). Let S be a free lattice fermion action on
the finite volume four-dimensional hypercubic lattice. This action satisfies five conditions:

(a) bilinear form of the fermion fields, (b) chiral symmetry,
(c) translation invariance, (d) hermiticity, (e) locality.

Then, the multiple fermion species appear in the lattice theory.

The proof is based on the work of Karsten [40].
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Proof. For the assumed conditions, the lattice action have to satisfy as follows:

(a) The lattice fermion action is given by

Sf =
∑
x,y

ψ̄(x)F (x, y)ψ(y) (2.10)

where ψ(x) is defined on the lattice sites and F (x, y) is a function acting on the
fermion fields ψ(x) and depending two lattice site x, y.

(b) The lattice action must have the invariant for the chiral transformation defined as
ψ′ = eiθγ5ψ and ψ̄′ = ψeiθγ5 . Accordingly, the lattice action can be written as

Sf =
∑
x,y

D∑
µ=1

ψ̄(x)γµFµ(x, y)ψ(y) (2.11)

where Fµ(x, y) are a function of the classical number, which corresponds the lattice
Dirac operator. Indeed, this lattice action has the chiral symmetry since the lattice
action performed the chiral transformation is

S ′
f =

∑
x,y

D∑
µ=1

ψ̄′(x)γµFµ(x, y)ψ
′(y) = Sf (2.12)

where we used γµγ5 = −γ5γµ. Note that what the mass term adds to the lattice
action is forbidden since the lattice action with the mass term m breaks the chiral
symmetry below

S ′
f,m =

∑
x,y

D∑
µ=1

ψ̄′(x) {γµFµ(x, y) +m}ψ′(y)

= Sf +m
∑
x,y

D∑
µ=1

ψ̄(x)e2iθγ5ψ(y) .

(2.13)

(c) For this condition, the function F (x, y) only depends on x−y, i.e. Fµ(x, y) = Fµ(x−y).
Meanshile, The lattice action can be rewritten as the action in the momentum space
with a momentum p.

By use of the chiral symmetry and the bilinear form of the fermion fields, the lattice
action is given by

Sf =
∑
x,y

D∑
µ=1

ψ̄(x)γµFµ(x, y)ψ(y) (2.14)

where ψ(x) is defined on the lattice sites and Fµ(x, y) are a function of the classical num-
ber, which corresponds the lattice Dirac operator. Indeed, for the chiral transformation,
which is defined as ψ′ = eiθγ5ψ and ψ̄′ = ψeiθγ5 , the lattice action is

S ′
f =

∑
x,y

D∑
µ=1

ψ̄′(x)γµFµ(x, y)ψ
′(y) = Sf (2.15)
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where we used γµγ5 = −γ5γµ. For the translation invariance, the lattice action is rewritten
as the action in the momentum space with a momentum p. Furthermore, the function
F (x, y) only depends on x − y, i.e. F (x, y) = Fµ(x − y). The hermiticity causes the
function Fµ(x − y) to be a real function since F ∗(x − y) = Fµ(x − y). To the function
Fµ(x − y) satisfy the locality, we assume |x − y|Fµ(x − y) → 0 for |x − y| → ∞. This
means the Fourier transform of Fµ(x− y) is continuous.

As a result, the lattice action in the momentum space is given by

Sf =

∫ π/clat

−π/clat

d4p

(2π)4
ψ̄(−p)

[
i
∑
µ

γµFµ(p)

]
ψ(p) (2.16)

where Fµ(p) is the Fourier transform of Fµ(x − y). Furthermore, the function Fµ(p) is a
continuous and real vector field defined on the four-dimensional torus. Since an inverse
of propagator for this action in the Brillouin zone should be approximated to the Dirac
operator, the inverse of propagator for this action in the Brillouin zone is

G−1(p) = i
∑
µ

γµp̃µ +O(p̃2) = i
∑
µ

γµFµ(p) (2.17)

where p̃ is a physical momentum defined by p̃ ≡ (p− p̄)2. Accordingly, zeros of Fµ(p)
corresponds to the zeros of Dirac operator. Here, by use of Poincaré–Hopf theorem mul-
tiple zeros of Fµ(p) appear since the Euler characteristic of the four-dimensional torus is
zero.

As an example of this theorem, we showed the naive fermion in the previous section.
The latice action of naive fermion satisfies the bilinear form, the hermiticity, and locality.
And it has the translation invariance and the chiral symmetry since this action has the
periodicity of the lattice sites in each direction and no terms breaking the chiral symmetry
(mass term). As shown in the previous section, the fermion doubling occurs in the naive
fermion and the number of fermion species is sixteen.

In addition, an obtained important consequence of this theorem is that the fermion
doubling can be avoided by breaking at least one of its conditions. In subsequent sections,
we will review “Willson fermion” and “Domain-wall fermion” as ways to avoid fermion
doubling.

2.3 Wilson fermion
In the previous sections, we showed the naive lattice femrion. In this and the following
sections, we will introduce two methods to avoid fermion doubling. In particular, this
section is discussed about Wilson fermoin.

Let us review about Wilson femrion. The Wilson fermion lifts degeneracy of sixteen
species into five branches by introducing the species-splitting term called the Wilson
term, which breaks the chiral symmetry explicitly. The free action for Wilson fermion in

11



four-dimensions is given by

SWf =
∑
n

4∑
µ=1

ψ̄nγµDµψn +m
∑
n

ψ̄nψn + r
∑
n

4∑
µ=1

ψ̄n (1− Cµ)ψn

= Snf + SW

(2.18)

where Dµ ≡ (T+µ − T−µ) /2 and Cµ ≡ (T+µ + T−µ) /2 with T±µψn = Un,±µψn±µ̂. m is
a mass parameter and r is a Wilson parameter. Snf is the naive lattice fermion action
in Eq. (4.32) and SW is the Wilson term. Note that the lattice on which this Wilson
fermion is defined is T 4-lattice in Eq. (4.31). So, we consider the lattice with the periodic
boundary condition in each direction. The Wilson term is explicitly expressed as

SW = m
∑
n

ψ̄nψn −
r

2

∑
n

4∑
µ=1

[
ψ̄nUn,µψn+µ̂ + ψ̄n+µ̂U

†
n,µψn − 2ψ̄nψn

]
. (2.19)

In a free theory, the Wilson term is

Sfree
W = m

∑
n

ψ̄nψn −
r

2

∑
n

4∑
µ=1

[
ψ̄nψn+µ̂ + ψ̄n+µ̂ψn − 2ψ̄nψn

]
(2.20)

because of Un,µ = 1. In the momentum space the free action is given by

Sfree
Wf =

∫ π

−π

dp

[
ψ̄(p)

{
4∑

µ=1

iγµ sin pµ +m+ r
4∑

µ=1

(1− cos pµ)

}
ψ(p)

]
(2.21)

since we take Fourier transform

ψn =

∫ π

−π

dp e−inpψ(p) (2.22)

with np ≡
∑4

µ=1 nµpµ. Accordingly, what was the fermion species in the naive fermion
has the mass M(p) which depends on the mass parameter and the Wilson parameter as
follows:

M(p) =



m any pµ = 1 in p.
m+ 2r one pµ = π/clat otherwise pµ = 0 in p.
m+ 4r two pµ = π/clat otherwise pµ = 0 in p.
m+ 6r three pµ = π/clat otherwise pµ = 0 in p.
m+ 8r any pµ = π/clat in p.

. (2.23)

By restoring the lattice spacing as m→ mclat and M(p) → clatM(p), the mass is rewritten
as

M(p) =



m any pµ = 1 in p.
m+ 2r/clat one pµ = π/clat otherwise pµ = 0 in p.
m+ 4r/clat two pµ = π/clat otherwise pµ = 0 in p.
m+ 6r/clat three pµ = π/clat otherwise pµ = 0 in p.
m+ 8r/clat any pµ = π/clat in p.

. (2.24)
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When we take the contium limit (clat → 0), the masses other than m diverge in the
continuum limit. It means that for 16 fermion species of the naive fermion, 1 species is
reserved and the other species are split as unphysical poles. The complex Dirac spectra
of the free and m = 0, r = 1 case is depicted in Fig. 2.4. However if we take m = −2 and

Figure 2.4: The complex Dirac spectra for Wilson fermion of the free and m = 0, r = 1.
There are five branches where 1, 4, 6, 4 and 1 fermion modes correspond. The most left
branch is called a physical branch.

r = 1, the of Dirac operator has 4 zeros since the Dirac operator is

D(p) =
4∑

µ=1

{
iγµ sin pµ + (1− cos pµ)

}
− 2 (2.25)

and the momentum of the zeros are

p = (π, 0, 0, 0) , (0, π, 0, 0) , (0, 0, π, 0) , (0, 0, 0, π) (2.26)

where we assume clat = 1 This choice of the mass parameter describe four fermions at
least classically. Besides, for m = － 4 we have six modes while we have four modes for m
= － 6. For m = － 8 we again have a single mode. The sum of them are sixteen. Thus
the fermion modes which we obtain from the Wilson fermion depends on the choice of the
mass parameter. We call these five choices of the mass parameter “branches”.

2.4 Domain-wall fermion
In the previous section, we introduced the Wilson fermion as one of methods to avoid the
fermion doubling. This method made branching fermion species by adding a mass term
called “Wilson term” into the lattice action. However, there is a breaking chiral symmetry
in this lattice action. Since it conflicts with the conditions of no-go theorem, we can avoid
fermion-doubling in a simple way.
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In this section, we will review another method to avoid the problem called Domain-wall
fermion. To construct the four dimensional fermion, this method starts with considering
a five dimensional fermion with the mass depending a coordinate in the fifth direction.
It was firstly proposed by Kaplan [8]. Subsequently, this method was applied to lattice
fermion by Shamir and Furman [9,10].

First, we will review Kaplan’s way. For simplicity, we consider his idea in continuum
theory. The five dimensional fermion action is given by

SKaplan =

∫
d4xdx5 ψ̄(x, x5)

[
5∑

µ=1

γµ∂µ −m(x5)

]
ψ(x, x5) (2.27)

where x is the coordinate in the four-dimensional space and x5 is the coordinate in the
fifth direction. m(x5) is the mass parameter depending the coordinate x5 and satisfies

m(x5) = m0ϵ(x5) =


m0 x5 > 0

0 x5 = 0

−m0 x5 < 0

(2.28)

where ϵ(x5) is the step function. By the mass parameter m(x5), the left-handed chiral
fermion can be localized in the four-dimensional hyperplane (x5 = 0). We can show it by
solve the equation of motion for this action, i.e.[

5∑
µ=1

γµ∂µ −m(x5)

]
ψ(x, x5) = 0 . (2.29)

To solve this equation, we consider ψ(x, x5) = ϕ(x)f(x5) where ϕ(x) is the four-dimensional
fermion field and f(x5) is the scalar function. Now, we assume that the four-dimensional
chiral fermion has the translation invariance in the four-dimensional hyperplane. By
this assumption, the femrion fields ϕ(x) can be Fourier transformed as ϕ(x) = u(p)eipx.
Accordingly, the equation of motion is[

i

4∑
µ=1

γµpµ

]
u(p)f(x5) + [γ5∂5f(x5)−m(x5)f(x5)] u(p) = 0. (2.30)

where ∂5 is the partial differentiation with respect to the variable x5. By assuming that
u(p) have to satisfy the massless Dirac equation below[

i
4∑

µ=1

γµpµ

]
u(p) = 0 , (2.31)

and u(p) are the eigenmodes of γ5 with +1 or −1 as eigenvalues, u(p) and f(s) are

γ5u(p) = ±u(p) (2.32)
f(x5) = C exp [±m0|x5|] (2.33)
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Figure 2.5: This figure plots f(x5) = C exp [−m0|x5|] in the range −7 to 7 in the case of
C = 1 and m0 = 1 > 0.

Figure 2.6: This figure plots f(x5) = C exp [m0|x5|] in the range −7 to 7 in the case of
C = 1 and m0 = 1 > 0.
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where C is the constant. These two equations imply that left-handed fermion be localized
in the four-dimensional hyperplane (x5 = 0) when the mass m0 is positive, i.e. m0 > 0.
Indeed, we show it in the case of m0 > 0. Then, f(x5) is chosen f(x5) = C exp [−m0|x5|]
as the normalizable solution since exp [m0|x5|] diverges in the range −∞ to ∞ as shown
in Fig. 2.5 and Fig. 2.6. And to satisfy Eq.2.31 and Eq.2.32, u(p) is determined by the
eigenmode of γ5 with −1 as eigenvalue (left-handed fermion), i.e. γ5u(p) = −u(p). For
these results, ψ(x, x5) = Cu(p)f(x5)e

ipx is localized in the four-dimensional hyperplane
(x5 = 0) for larger the mass m0 as shown in Fig. 2.7. Thus, we can realize the left-handed

Figure 2.7: This figure plots f(x5) = C exp [−m0|x5|] in the range −7 to 7 in the case of
C = 1 and m0 = 1010 > 0.

chiral fermion in the four-dimensional hyperplane by this way. By contrast, we can realize
the left-handed chiral fermion in the four-dimensional hyperplane in the case of m0 < 0.

However, this idea cannot be applied directly on the five dimensional finite volume
hypercubic lattice since the boundary condition in the five dimensional direction makes a
significant contribution to the function f(x5). For instance, we restrict the range in the
five dimensional direction to −N5 to N5 and impose the periodic boundary condition. For
this boundary condition, the mass parameter m(x5) is

m(x5) =


m0 0 < x5 < N5

0 x5 = 0, N5,−N5

−m0 −N5 < x5 < 0

(2.34)

as shown in Fig. 2.8. It means that there is the boundary where the mass changes in the
four dimensional hyperplane (x5 = N5) boundary. And the change in its mass is opposite
in sign to the change around x5 = 0, i.e. −m(x5 −N5) = m(x5). Accordingly, the right-
handed fermion is localized in the boundary (x5 = N5). Thus, in the five dimensional
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x5

m(x5)

0−N5 N5 2N5

−m0

m0

Figure 2.8: This figure plots the mass parameter m(x5) when imposed the periodic bound-
ary condition −N5 ∼ N5.

finite volume hypercubic lattice the whole is describing one Dirac fermion. And it is
possible to avoid fermion doubling by adding the mass depending x5.

Next, we review domain-wall fermion in the lattice theory. Specifically, we show a
way in lattice of constructing zero-mass chiral fermions while avoiding fermion-doubling.
We consider a finite volume five-dimensional hypercubic lattice imposed the Dirichlet
boundary condition on the fifith direction and the periodic boundary condition on other
directions. Namely,

LDw ≡

{
n =

4∑
µ=1

nµµ̂+ n55̂

∣∣∣∣∣ ∃Nµ ∈ N s.t. n+Nµµ̂ ∼ n ,

nν ∈ [1, Nν ] ⊂ N for ν ∈ [1, 5]

}
(2.35)

where 5̂ is the standard basis of the fifth direction. The domail-wall fermion action in this
lattice is

SDw =
∑
n,n5

ψ̄n,n5

[
4∑

µ=1

γµDµ + γ5D5

]
ψn,n5

+
∑
n,n5

ψ̄n,n5

[
−M0 +

∑
µ

(1− Cµ) + (1− C5)

]
ψn,n5

(2.36)

whereD5ψn,n5 ≡ (ψn,n5+1 − ψn,n5−1) /2, C5ψn,n5 ≡ (ψn,n5+1 + ψn,n5−1) /2 andM0 is a mass
parameter. The sum

∑
n,n5

is the summation over five-dimensional lattice sites n, n5 =
(n1, n2, n3, n4;n5). Note that there are two differences regarding boundary conditions and
dynamical (or non-dynamical) variables between the fifth direction and other directions:
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• On the fifth directions, ψn,n5 satisfies ψn,0 = ψn,N5+1 = 0 since we impose the
Dirichlet boundary condition, and its interval is 1 ≤ n5 ≤ N5. On other directions,
we impose the periodic boundary condition, and those intervals are 1 ≤ nµ ≤ Nµ.

• The link variables in the fifth direction are not dynamical while those in other
directions can be dynamical. Accordingly, we can consider the coordinate of the
fifth direction to be the flavour’s degree of freedom.

Since there are non-dynamical variables in the fifith direction, we can rewrite the lattice
action as

SDw =
∑
n,n5

4∑
µ=1

ψ̄n,n5γµDµψn,n5

+
∑
m,n

∑
n5,n′

5

ψ̄m,n5

[
MPL +M †PR

]mn

n5n′
5
ψn,n′

5

(2.37)

where PR ≡ (1+ γ5) /2 and PL ≡ (1− γ5) /2. The operator M , M † are the mass terms
given by

Mmn
n5n′

5
ψn,n′

5
≡

[
1 +

∑
µ

(1− Cµ)−M0

]
ψm,n5 − ψm,n5+1

= Wψm,n5 − ψm,n5+1

(2.38)

and

(M †)mn
n5n′

5
ψn,n′

5
≡

[
1 +

∑
µ

(1− Cµ)−M0

]
ψm,n5 − ψm,n5−1

= Wψm,n5 − ψm,n5−1

(2.39)

respectively. As an example, the operators M , M † in the case of N5 = 5 are

Mmn =


W −1

W −1
W −1

W −1
W

 (2.40)

and

(M †)mn =


W
−1 W

−1 W
−1 W

−1 W

 (2.41)

respectively. A difference between this action and Eq. 2.27 is that it has an off-diagonal
and non-hermitian mass term with respect to coordinates in five directions. By deriving
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zero-modes of this mass term, we realize the chiral fermion avoiding fermion doubling.
Let ϕn5 be zero-modes of the operator M , i.e.∑

n′
5

Mn5n′
5
ϕn′

5
= Wϕn5 − ϕn5+1 = 0 . (2.42)

If |W | < 1 and N5 → ∞, there is a non-trivial solution obtained as ϕn5 = W n5−1ϕ1.
Indeed, this solution satisfies Eq. 2.42. And this mode can be normalized as ϕn5 =√
1−W 2W n5−1. By contrast, a solution for

∑
n′
5
M †

n5n′
5
ϕn′

5
= 0 is obtained as

ϕn5 =
√
1−W 2WN5−n5 (2.43)

if |W | < 1 and N5 → ∞.
And finally, we discuss the condition |W | < 1 necessary for the existence of zero-mode

solutions. Because of W = 1 + (1− Cµ)−M0 and Fourier transformation, the condition
is

0 < M0 −
∑
µ

(1− cos kµ) < 2 . (2.44)

Therefore, the relation between the momentum of kµ, the range of mass parameter M0,
and the number of massless fermion are given in Table. 2.1. It indicates that this method
can avoid fermion doubling.

Table 2.1: Classification of the number of massless fermion in DW fermion

momentum kµ the range of M0 the number of massless fermion
any kµ = 0 0 < M0 < 2 1
one kµ = π otherwise kµ = 0 2 < M0 < 4 4
two kµ = π otherwise kµ = 0 4 < M0 < 6 6
three kµ = π otherwise kµ = 0 6 < M0 < 8 4
any kµ = π 8 < M0 < 10 1

19



Chapter 3

Spectral graph theory

In this chapter, we will introduce spectral graph theory in order to discuss lattice fermions
in term of graph theory. This chapter is divided into three sections. In the first section,
we will introduce some basic concepts about graph. Next section introduces matrices as-
sociated with graphs. The point of focus is that novel matrices called as anti-symmetrized
adjacency matrices is defined. Final section mentions two theorems about the relationship
between the nullity of matrices associated with graphs and the topology of the graphs.
These theorems will be used in order to discuss the number of fermion species in later
chapters.

3.1 Graphs
In this section, we will introduce some definieions of graphs and operation between graphs
used in this paper.

We firstly introduce basic notions and definitions in graph theory. The definiitions of
graph is given as bellow [65–68].

Definition 1 (graph). A graph G is a pair G = (V,E), where V is a set of vertices of
the graph and E is a set of edges of the graph.

As examples, we can depict two graph in Fig. 3.1 with V = {1, 2, 3, 4} and E =
{{1, 2}, {1, 3}, {1, 4}, {3, 4}}. Here, we note that {i, j} stands for an edge from i to j. If
every adjacent vertices can be joined by an edge, the graph is referred to as “connected".
Each of connected pieces of a graph is referred to as a “connected component". The two
graphs in Fig. 3.1 are connected, where they have single connected components. They
have no directed edge, which will be discussed next definition.

Definition 2 (directed graph or digraph). A directed graph (or digraph) is a pair (V,E)
of sets of vertices and edges together with two maps init : E → V and ter : E → V . The
two maps are assigned to every edge eij with an initial vertex init(eij) = vi ∈ V and a
terminal vertex ter(eij) = vj ∈ V . The edge eij is said to be directed from init(eij) to
ter(eij). If init(eij) = ter(eij), the edge eij is called a loop.
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Figure 3.1: These examples are graphs having a pair G = (V,E) with V = {1, 2, 3, 4} and
E = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}.

As examples of directed graph, two graph in Fig. 3.2 are digraphs with V = {1, 2, 3, 4}
and E = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}. Initial vertex and terminal vertices are assigned
as init({i, j}) = i, ter({i, j}) = j.

Figure 3.2: These examples are graphs having a pair (V,E) with V = {1, 2, 3, 4}
and E = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}. The initial vertices of edges are init({1, 2}) =
1, init({1, 3}) = 1, init({1, 4}) = 1, init({3, 4}) = 3, while the terminal vertices are
init({1, 2}) = 2, init({1, 3}) = 3, init({1, 4}) = 4, init({3, 4}) = 4.

Weighted graphs are defined as follows.

Definition 3 (weighted graph). The weighted graph has a value (the weight) for each
edge in a graph or a digraph.

We depict an example of weighted graphs in Fig. 3.3. It is a weighted and directed
graph, each of whose edge has a weight as follows: w({1, 2}) = 1, w({2, 3}) = 2,
w({4, 1}) = 3, w({2, 1}) = −4, w({1, 4}) = −1, w({4, 3}) = −2.

At the end of this section we introduce cartesian product which operations between
graphs [69–71].

Definition 4 (cartesian product). The cartesian product of two simple graphs G1 and
G2 is the graph G = G1 □G2 with V (G) = V (G1)× V (G2) in which vertices (v1, v2) and
(v′1, v

′
2) are adjacent iff either v2 = v′2 and v1, v′1 are adjacent in G1 or v1 = v′1 and v2, v′2

are adjacent in G2.

As example of cartesian product, a graph G = G1 □G2 in Fig. 3.4 has V (G) =
V (G1) × V (G2) with V (G1) = {v1, v2, v3} and V (G2) = {v′1, v′2, v′3} where E(G1) =
{{v1, v2}, {v2, v3}} and E(G2) = {{v′1, v′2}, {v′2, v′3}}.
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Figure 3.3: This digraph is weighted. Blue edges in the graph are those with positive
weights, while red edges are those with negative weights.
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Figure 3.4: This graph is constructed by cartesian product of G1 and G2.

3.2 Matrices associated with graphs
For using later section, we here introduce definitions of matrices associated with graphs.

We introduce a definition of a degree matrix.

Definition 5 (Degree matrix). A degree matrix D of a graph is a |V |×|V | matrix defined
as

Dij =

{
deg(vi) i = j

0 otherwise
. (3.1)

The degree deg(vi) of a vertex vi counts the number of times an edge terminates at
that vertex. As an example we exhibit an degree matrix D of a graph in Fig. 3.1

D =


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 . (3.2)

On the other hand, the degree matrix D of a graph in Fig. 3.2 is

D =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 . (3.3)

We next introduce a definition of an introduce matrix for undirected matrices.

22



Definition 6 (Incidence matrix (undirected)). An incidence matrix B of a undirected
graph is a |V | × |E| matrix defined as

Bij =

{
1 a vertex vi is incident with edge ej
0 otherwise

. (3.4)

As an example we exhibit an incidence matrix B of a graph in Fig. 3.1

B =


1 1 0 1
0 1 0 0
1 0 1 0
0 0 1 1

 , (3.5)

where we define e21 = e2, e13 = e1, e34 = e3, e41 = e4.

Definition 7 (Incidence matrix (directed)). An incidence matrix B of a directed graph
is a |V | × |E| matrix defined as

Bij =


−1 an edge ej leaves a vertex vi
1 an edge ej enters a vertex vi
0 otherwise

. (3.6)

The incidence matrix B of a graph in Fig. 3.2 is

B =


−1 −1 0 −1
0 1 0 0
1 0 −1 0
0 0 1 1

 . (3.7)

where we again define e21 = e2, e13 = e1, e34 = e3, e41 = e4.
We introduce a definition of an adjacency matrix. An adjacency matrix for wighted

graphs is defined as follows.

Definition 8 (adjacency matrix). The adjacency matrix A of a graph is the |V | × |V |
matrix given by

Aij =

{
wij if there is a edge from i to j
0 otherwise

, (3.8)

where wij is the weight of an edge from i to j.

As examples, we exhibit an adjacency matrix A of a graph in Fig. 3.1 and Fig. 3.3

A(G) =


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 . (3.9)
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A(G′) =


0 1 0 −1
−4 0 2 0
0 0 0 0
3 0 −2 0

 . (3.10)

where G, G′ denote the graph in Fig. 3.1 and Fig. 3.3 respectively. And we assumed that
the weight of every edge in the graph G in Fig. 3.1 is 1, or w(e ∈ G) = 1. In general, the
adjacency matrix of a directed graph is asymmetric since the existence of an edge from i
to j does not necessarily imply that there is also an edge from j to i.

The Laplacian matrix is defined by the degree, adjacency and incidence matrices as
follows.

Definition 9 (Laplacian matrix). The Laplacian matrix L of a graph is the |V | × |V |
matrix given by

L = D − A = BBT (3.11)

D,A are degree, adjacency matrices of a undirected and unweighted graph, while B is an
incidence matrix of directed graph.

For a graph in Fig. 3.1, the Laplacian matrix is

L =


3 −1 −1 −1
−1 1 0 0
−1 0 2 −1
−1 0 −1 2

 . (3.12)

One can easily check out L = D − A = BBT .
In addition to the standard definitions of graph matrices, we introduce a specific

adjacency matrix of directed graph as an “anti-symmetrized adjacency matrix" as follows.

Definition 10 (Anti-symmetrized adjacency matrix). The anti-symmetrized adjacency
matrix Aas of a directed and weighted graph having no multiple edges is the |V | × |V |
matrix given by -1

(Aas)ij =


wij i = α and j = β for edge {α, β}
−w†

ij i = β and j = α for edge {α, β}
0 otherwise

(3.13)

where wij is the weight of an edge from i to j.

The anti-symmetrized adjacency matrix of a directed graph is anti-symmetric. As
example, the anti-symmetrized adjacency matrix Aas of a graph in Fig. 3.2 is

Aas =


0 1 1 1
−1 0 0 0
−1 0 0 1
−1 0 −1 0

 . (3.14)
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3.3 Useful theorems of matrices associated with graphs
In this section, we will discuss useful theorems of Laplacian and anti-symmertized adja-
cency matrices. These theorems claim a non-trivial relationship between the nullity of
matrices associated with graph and topology of the graph. In later section, these theo-
rems will be used when we prove the relationship between the zero-modes of the difference
matrix in lattice action and the topology of the graph.

3.3.1 Betti numbers and Laplacian

The topology of a graph is known to be detected by matrices associated with the graph.

Theorem 2 (Betti numbers and Laplacian). The zeroth Betti numbers β0(G) of the graph
G are related to the rank of graph Laplacian.

|V | − rankL(G) = β0(G) (3.15)

where β0(G) is also the number of connected components of the graph G.

It means that the number of exact zero eigenvalues of the Laplacian matrix agrees
with β0(G) which is equal to the number of connected components of the graph. A proof
of this theorem refers to the proof on eigenvalues of Laplacian matrix [72]. The proof is
given below.

Proof. Firstly, we prove it for a graph with a single connected component. The zeroth
Betti number is β0(G) = 1 since the graph has a single connected component. So, we
will prove |V | − rankL(G) = β0(G) = 1. Let v ∈ C|V | be a vector, where v =

∑|V |
i=1 xiei

with ei is the standard basis. |V | is the set of vertices in the graph G. The bilinear form
v†L(G)v is

v†L(G)v = v†
{
D(G)− A(G)

}
v = v†D(G)v − v†A(G)v , (3.16)

where D(G) and A(G) are the degree matrix of G and the adjacency matrix of G respec-
tively. Based on the definitions of degree matrix and adjacency matrix,

v†L(G)v =

|V |∑
i=1

deg(vi)|xi|2 −
∑

{i,j}∈E

(x̄ixj + x̄jxi)

=
∑

{i,j}∈E

(
|xi|2 + |xj|2

)
−
∑

{i,j}∈E

(x̄ixj + x̄jxi)

=
∑

{i,j}∈E

(x̄i − x̄j) (xi − xj)

=
∑

{i,j}∈E

|xi − xj|2

(3.17)

where {i, j} stands for an edge between one vertex vi and other vertex vj. Furthermore,
E is the set of edges in G.
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If the vector v is a zero-mode (zero-eigenvector) of the Laplacian L(G), the bilinear
form v†L(G)v satisfies the following equation,

v†L(G)v =
∑

{i,j}∈E

|xi − xj|2 = 0 . (3.18)

From this and |xi − xj|2 ≥ 0, xi = xj for any edge {i, j} ∈ E is obtained. Since we
consider a graph with single connected component, the components of the zero-mode v
must satisfy x1 = x2 = · · · = x|V |. If there is xi ̸= xj in components of zero-mode v, the
graph can be divided into G1 and G2 such that there is no edges between G1 and G2.
But, this is inconsistent with the fact that the graph has single connected component.
We then have that the zero-mode v for Laplacian L(G) is unique and explicitly written
as v = α

∑|V |
i=1 ei with α ∈ C. Hence, |V | − rankL(G) = β0(G) = 1 holds for a graph G

with single connected component since the rank of Laplacian is L(G) = |V | − 1.
Secondary, we prove it for a graph with k > 1 connected components. The zeroth

Betti number for this graph is β0(G) = k since the zeroth Betti number is equal to the
number of connected components. As a result, we will prove |V |−rankL(G) = β0(G) = k.
The graph can be divided into k graphs with single component such that there are no
edges between each two of graphs. They are denoted as Gν for ν ∈ {1, 2, · · · , k}. These
edges satisfy E(Gν) ∩ E(Gρ) = ∅ for ν ̸= ρ since there are no edges between each two of
connected graphs. Furthermore, the number of vertices of Gν is denoted as |V (Gν)| and∑k

ν=1 |V (Gν)| = |V |. Then, a Laplacian L(G) is a block matrix as

L(G) =


L(G1)

L(G2)
. . .

L(Gk)

 =
k⊕

ν=1

L(Gν) (3.19)

since E(Gν)∩E(Gρ) = ∅ for ν ̸= ρ. And ⊕ denotes the direct sum. The rank of Laplacian
L(G) is obtained as

rankL(G) = rank

[
k⊕

ν=1

L(Gν)

]
=

k∑
ν=1

rankL(Gν) (3.20)

where we used the property of the direct sum. The rank of each matrix L(Gν) is
rankL(Gν) = |V (Gν)| − 1 because each matrix L(Gν) is a Laplacian for the graph Gν

with single component. Consequently, the rank of Laplacian L(G) is

rankL(G) =
k∑

ν=1

(
|V (Gν)| − 1

)
=

k∑
ν=1

|V (Gν)| −
k∑

ν=1

1 = |V | − k . (3.21)

Hence, |V |− rankL(G) = β0(G) = k holds for the graph G with k connected components.
We now conclude that |V | − rank (G) = β0(G) holds for generic graphs.
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3.3.2 Betti numbers and anti-symmetrized adjacency matices

We discuss a useful theorem of anti-symmetrized adjacency matrices. The theorem can
be applied to anti-symmetrized adjacency matrix of only certain weighted digraphs. To
discuss the theorem, we introduce the weighted digraph. Let G is the weighted digraph,
which has γ-matrices as the weight and be constructed by a cartesian product of only the
cycle digraph and the simple directed path. The cycle digraph and the simple directed
path are denoted by D(cycle) and D(path) respectively. The digraph G is explicitly written
as

G ≡ G1 □G2 □ · · · □GD

w(e ∈ Gµ) = γµ
(3.22)

where Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
for µ ∈ {1, 2, · · · , D} and w(e) denote the weight of edge

e. The symbol □ stands for the cartesian product, Furthermore, γµ is D-dimensional
gamma matrices satisfying Clifford algebra as {γµ, γν} = 2δµν . The cycle digraph has a
pair as

V (D(cycle)
µ ) = {1, 2, · · · , |V |µ}

E(D(cycle)
µ ) = {{1, 2}, {2, 3}, · · · , {|V |µ − 1, |V |µ}, {|V |µ, 1}} .

(3.23)

where V (D
(cycle)
µ ) is a set of vertices and E(D

(cycle)
µ ) a set of edges. So, this digraph has

|V |µ vertices and |V |µ directed edges. By contrast, the simple directed path has a pair as

V (D(path)
µ ) = {1, 2, · · · , |V |µ}

E(D(path)
µ ) = {{1, 2}, {2, 3}, · · · , {|V |µ − 1, |V |µ}}

(3.24)

where V (D
(path)
µ ) and E(D

(path)
µ ) are a set of vertices and a set of edges respectively. So,

this digraph has |V |µ vertices and |V |µ− 1 directed edges unlike the cycle digraph. These
digraph is depicted in Fig. 3.5. Then, the number of vertices of G is |V | =

∑D
µ=1 |V |µ

1

2

3

4

5

6

N

.

.

.

(a) D(cycle) with N vertices.

1

2

3

.

.

.

N

(b) D(path) with N vertices.

Figure 3.5: The two graphs correspond to a cycle digraph D(cycle) and a simple directed
path D(path) respectively.
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(a) D
(cycle)
1 □D

(cycle)
2 is identified as a two dimensional torus with directed edge.

□ ∼

1

2

3

.

.

.

N
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3

.

.

.

N

(b) D
(path)
1 □D

(path)
2 is identified as a two dimensional disk with directed edge.

□ ∼

1

2

3

.

.

.

N

1

2

3

4

5

6

N

.

.

.

(c) D
(cycle)
1 □D

(path)
2 is identified as an cylinder with directed edge.

Figure 3.6: Three examples for G in Eq. (3.22) and manifolds corresponding to them are
depicted.
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where |V |µ stands for the number of vertices of Gµ. Some examples are depicted in
Fig. 3.6.

Next, we show the anti-symmetrized adjacency matrix for digraphG in Eq. (3.22). The
anti-symmetrized adjacency matrix is |V | square matrix constructed with tensor product
(or Kronecker product) [69–71]. This matrix is exiplicitly written as

Aas(G) =
D∑

µ=1

{(
D−µ⊗
ν=1

1|V |D+1−ν

)
⊗ A′

as(Gµ)⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ (3.25)

where 1|V |µ is the identity matrix of size |V |µ and A′
as(Gµ) is an anti-symmetrized adja-

cency matrix for digraph Gµ with each component set to 1. The matrix A′
as(Gµ) for the

cycle digraph Gµ = D
(cycle)
µ is |V |µ square matrix represented as

A′
as(D

(cycle)
µ ) =



0 1 0 0 0 −1
−1 0 1 · · · 0 0 0
0 −1 0 0 0 0

... . . . ...
0 0 0 0 1 0
0 0 0 · · · −1 0 1
1 0 0 0 −1 0


(3.26)

and the matrix A′
as(Gµ) for the simple directed path Gµ = D

(path)
µ is |V |µ square matrix

represented as

A′
as(D

(path)
µ ) =



0 1 0 0 0 0
−1 0 1 · · · 0 0 0
0 −1 0 0 0 0

... . . . ...
0 0 0 0 1 0
0 0 0 · · · −1 0 1
0 0 0 0 −1 0


. (3.27)

Note that the components of A′
as(D

(cycle)
1 ), A′

as(D
(path)
2 ) represent adjacent between ver-

tices in each graph. In particular, the (1, |V |µ) component and the (|V |µ, 1) compo-
nent in A′

as(D
(cycle)
µ ) represent the property of the cycle digraph D

(cycle)
µ , which has an

edge leaving |V |µ and entering 1. The matrix A′
as(D

(path)
µ ) also represents the property

of the cycle digraph D
(path)
µ as well as A′

as(D
(cycle)
µ ). As some examples of Aas(G), we

show the anti-symmetrized adjacency matrices of D(cycle)
1 □D

(cycle)
2 , D(path)

1 □D
(path)
2 , and

D
(cycle)
1 □D

(path)
2 . These anti-symmetrized adjacency matrices are

Aas(D
(cycle)
1 □D

(cycle)
2 ) = 1|V |2 ⊗ A′

as(D
(cycle)
1 )⊗ γ1 + A′

as(D
(cycle)
2 )⊗ 1|V |1 ⊗ γ2 , (3.28a)

Aas(D
(path)
1 □D

(path)
2 ) = 1|V |2 ⊗ A′

as(D
(path)
1 )⊗ γ1 + Aas(D

(path)
2 )⊗ 1|V |1 ⊗ γ2 , (3.28b)

Aas(D
(cycle)
1 □D

(path)
2 ) = 1|V |2 ⊗ A′

as(D
(cycle)
1 )⊗ γ1 + A′

as(D
(path)
2 )⊗ 1|V |1 ⊗ γ2 (3.28c)
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respectively.
At the end of this section, we will discuss an useful theorem related to the anti-

symmetrized adjacency matrices. We claim the following theorem about the relationship
between the rank of Aas(G) for the digraph in Eq. (3.22) and the topology of the digraph.

Theorem 3 (Betti numbers and anti-symmetrized adjacency matices). For the graphs G
constructed a cartesian-product of only the cycle digraph and the simple directed path, the
following equation holds;

|V | · rank γ − rankAas(G) ≤ rank γ ·
D∏

µ=1

{
β0(Gµ) + β1(Gµ)

}
, (3.29)

where |V | is the number of vertices in G and rank γ is the rank of gamma matrices.
When the graph G is constructed by d cycle digraphs and (D − d) simple directed paths,
this equation is rewritten as

dim (kerAas(G))

rank γ
≤ 2d . (3.30)

It means that the maximum number of zero-eigenvalues of anti-symmetrized adjacency
matrix Aas(G) divided by the rank of γ-matrices is determined by the zeroth Betti number
and first Betti number of each digraph Gµ. The proof of this theorem is given below.

Proof. We consider four digraphs: the cycle digraph with even vertices, the one with odd
vertices, the simple directed path with even vertices, and the one with odd vertices. The
digraph G is constructed by a cartesian product of these digraphs. Then, the right side
is Eq. (3.29) is obtained as

rank γ ·
D∏

µ=1

{
β0(Gµ) + β1(Gµ)

}
= rank γ ·

∏
µc∈Sc

{
β0(D

(cycle)
µc ) + β1(D

(cycle)
µc )

} ∏
µp∈Sp

{
β0(D

(path)
µp ) + β1(D

(path)
µp )

}
= rank γ · 2|Sc|

(3.31)

where Sc ≡
{
µ
∣∣∣ Gµ = D

(cycle)
µ

}
and Sp ≡

{
µ
∣∣∣ Gµ = D

(path)
µ

}
. We used the known facts

that β0(D
(cycle)
µ )+β1(D

(cycle)
µ ) = 2 and β0(D

(path)
µ )+β1(D

(path)
µ ) = 1 since the cycle digraph

is homeomorphic to the circle S1 and the simple directed path is homeomorphic to the
line segment B1. As a result, what we have to do is prove

|V | · rank γ − rankAas(G) ≤ rank γ · 2|Sc| . (3.32)

To prove above inequality, we will derive the number of zero-eigenvalues of Aas(G).
The diagonalization of Aas(G) can be derived as

U †Aas(G)U =
D∑

µ=1

{(
D−µ⊗
ν=1

1|V |D+1−ν

)
⊗
(
U †
µA

′
as(Gµ)Uµ

)
⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ , (3.33)
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where U is an unitary matrix defined as U ≡
⊗D

µ=1 Uµ and Uµ is the unitary matrix for
the diagonalization of A′

as(Gµ). For later use, we define four sets as

Sc,e ≡
{
µ
∣∣ Gµ = D(cycle) , |V |µ = even

}
, Sc,o ≡

{
µ
∣∣ Gµ = D(cycle) , |V |µ = odd

}
,

Sp,e ≡
{
µ
∣∣ Gµ = D(path) , |V |µ = even

}
, Sp,o ≡

{
µ
∣∣ Gµ = D(path) , |V |µ = odd

}
.

(3.34)
respectively. Consequently, the diagonalization of Aas(G) are obtained as(

U †Aas(G)U
)
mn

= 2i

{ ∑
µc,e∈Sc,e

γµc,e sin

(
2π(mµc,e − 1)

|V |µc,e

)
+

∑
µc,o∈Sc,o

γµc,o sin

(
2π(mµc,o − 1)

|V |µc,o

)

+
∑

µp,e∈Sp,e

γµp,e cos

(
mµp,eπ

|V |µp,e + 1

)
+

∑
µp,o∈Sp,o

γµp,o cos

(
mµp,oπ

|V |µp,o + 1

)}
δmn .

(3.35)

as shown in Appendix. B
If the anti-symmetrized adjacency matrix Aas(G) has zero-eigenvalues, the diagonal

components satisfy
(
U †Aas(G)U

)
mn

= 0. This equation is exiplicitly written as

∑
µc,e∈Sc,e

γµc,e sin

(
2π(mµc,e − 1)

|V |µc,e

)
+

∑
µc,o∈Sc,o

γµc,o sin

(
2π(mµc,o − 1)

|V |µc,o

)
+

∑
µp,e∈Sp,e

γµp,e cos

(
mµp,eπ

|V |µp,e + 1

)
+

∑
µp,o∈Sp,o

γµp,o cos

(
mµp,oπ

|V |µp,o + 1

)
= 0 .

(3.36)

However, since γ-matrices are linearly independent, the coefficient of each γ-matrices must
be zero. Accordingly, the conditions for the matrix Aas(G) to have zero-eigenvalues are
below

sin

(
2π(mµp,e − 1)

|V |µp,e

)
= sin

(
2π(mµp,o − 1)

|V |µp,o

)
= cos

(
mµp,eπ

|V |µp,e + 1

)
= cos

(
mµp,oπ

|V |µp,o + 1

)
= 0 ,

(3.37)

The solutions of this equation are

mµc,e = 1 , mµc,o = 0 , mµp,o =
|V |µp,o + 1

2
(3.38)

or
mµc,e =

|V |µc,e

2
+ 1 , mµc,o = 0 , mµp,o =

|V |µp,o + 1

2
(3.39)

if Sp,e = ∅. Then, the number of solutions is 2|S
c,e|. Note that there are no solutions if

Sp,e ̸= ∅ since there is no mµp,e ∈ N satisfying Eq. (3.37). Because of them, the number
of zero-eigenvalues of Aas(G) depends on the number of vertices in each digraph Gµ as
shown in Table. 3.1. Hence, the rank of Aas(G) is obtain as

31



Table 3.1: Classification of the number of zero eigenvalues for Aas(Gµ)

|V |µ = even |V |µ = odd

Gµ = D(cycle) 2 1

Gµ = D(path) 0 1

rankAas(G) =

{
rank γ ·

(
|V | − 2|S

c,e|) Sp,e = ∅
rank γ · |V | Sp,e ̸= ∅

(3.40)

since the diagonal components
(
U †Aas(G)U

)
mn

contain γ-matrices. Therefore, the fol-
lowing inequality has been prove

|V | · rank γ − rankAas(G) ≤ rank γ · 2|Sc| = rank γ ·
D∏

µ=1

{
β0(Gµ) + β1(Gµ)

}
(3.41)

since |Sc,e| ≤ Sc. With |Sc| = d, the nullity of Aas(G) divided by the rank of γ-matrices
satisfies an inequality below

dim (kerAas(G))

rank γ
≤ 2d (3.42)

since dim (kerAas(G)) = |V | · rank γ − rankAas(G).

In later chapter, we will use Thm. 3 in order to investigate the maximum number of
zero-modes in the matrix-representation Dirac lattice operator.
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Chapter 4

Lattice fermions and Graph theory

4.1 Lattice fermions as spectral graph theory
In this section, we will discuss lattice fermions on D-dimensional hypercubic lattices in
term of spectral graph theory. Note that we assume periodic boundary condition or
Dirichlet boundary condition as boundary condition on each direction in the lattices.

This section describes relationship between lattice fermions and graph theory and be
divided into three parts. In the first part, we will discuss lattice fermions as graphs. Lat-
tice fermions on the lattices can be represented as certain weighted digraphs. Next, we will
refer to relationship between lattice action and matrices associated with the weighted di-
graphs. Lattice fermion action can be represented as the biliner form of anti-symmetrized
adjacency matrix for the weighted digraphs. In other words, a matrix-representation of
lattice Dirac operator can be written down by anti-symmetrized adjacency matrix for
the digraphs corresponding to lattice fermions. Finally, we will show that the number of
fermion species can be derived by the nullity of the anti-symmetrized adjacency matrix
divided with the rank of γ-matrices.

4.1.1 Weighted digraphs corresponding to lattice fermions

In this discussion, we will show that lattice fermions on D-dimensional hypercubic lattices
can be represented as certain directed and weighted graphs.

To discuss about the lattice fermions as graph theory, we firstly review the lattice
fermions on D-dimensional hypercubic lattices. Let L be a finite volume D-dimensional
hypercubic lattices as

L ≡

n =
D∑

µ=1

nµµ̂ =
∑

ν∈SPBC

nν ν̂ +
∑

ρ∈SDBC

nρρ̂

∣∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ Z ,
∃Nν ∈ Z s.t. n+Nν ν̂ ∼ n

 (4.1)

where µ̂ is standard basis in D-dimensional hypercubic lattice. Two set SPBC, SDBC are
defined as SPBC ≡ {µ | n+Nµµ̂ ∼ n} and SDBC ≡

{
µ
∣∣ µ /∈ SPBC

}
respectively. These

sets satisfy |SPBC| + |SDBC| = D. n +Nµµ̂ ∼ n stands for Periodic Boundary Condition
(PBC). By contrast, Dirichlet Boundary Condition (DBC) is nµ /∈ [1, Nµ] ⇒ n = 0. Note
that the Dirichlet boundary condition is automatically imposed except on the direction
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with periodic boundary condition since we consider the finite volume lattice. Then, lattice
fermion action on this lattice is given as

SL =
∑
n∈L

D∑
µ=1

ψ̄nγµDµψn =
1

2

∑
n∈L

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.2)

where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. Dµ is a difference operator called
as lattice Dirac operator. ψn is the fermionic fields on which γ-matrices and Un,±µ act.
And Un,µ is the gauge field, which is called the link variable satisfying Un+µ̂,−µ = U †

n,µ. In
a free theory, we just set Un,µ = 1. The sum

∑
n∈L is the summation over lattice sites

n = (n1, · · · , nD) ∈ L.
Next, we discuss lattice fermions on the lattice as graphs. We consider the weighted

digraph G corresponding to the lattice fermions as

G = G1 □G2 □ · · · □GD

w(e ∈ Gµ) = γµUn,µ

(4.3)

where Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
for µ ∈ {1, · · · , D} and w(e) denote the weight of edge e.

γµ is D-dimensional matrices, which was also described in the previous chapter. Note that
the subscript n of the link variable stands for the vertices in the digraph, i.e. n ∈ V (G).
However, vertices in this digraph can be regarded as sites in the lattice L because V (G)
and the whole site are isomorphic as will be mentioned later. This weighted digraph is
equal to the weighted digraph in Eq. (3.22) if we consider the case of a free theory. Some
examples of G have shown in Fig. 3.6.

This digraph represents D-dimensional hypercubic lattice as graphs since vertices and
edges in the digraph can be regarded as sites and links in the lattice. In particular, the set
of vertices in the digraph G is isomorphic to the sites n = (n1, · · · , nD) in the lattice since
the set of vertices is V (G) = V (G1) × · · · × V (GD) by definition of cartesian product in
Def. 4. And any edge {m,n} in the digraph can correspond to a link in the lattice by being
represented as n−m =

∑D
µ=1 (nµ −mµ) µ̂. Simultaneously, Gµ in the digraphG represents

each boundary condition in D-dimensional hypercubic lattice as graph. Indeed, the cycle
digraph D

(cycle)
µ can be recognized as a graph represented periodic boundary condition

n+Nµµ̂ ∼ n as shown in Fig. 4.1. And the Dirichlet boundary condition corresponds to

となる理由

∼ ∈ N

· · ·

v1 v2
vN−1 vN v1

= ...

vN

v1

v2

Figure 4.1: The periodic boundary condition can be represented as the cycle digraph since
vn ∼ vn+N for a site vn in 1-dim lattice.

the simple directed path since nµ /∈ [1, Nµ] ⇒ n = 0 for 1-dim lattice in each direction.
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For these reasons, the digraph in Eq. (4.3) is recognized as a digraph representing D-
dimensional hypercubic lattice with periodic boundary condition and Dirichlet boundary
condition. In the next section, we will show that it is consistent to set w(e ∈ Gµ) = γµUn,µ

as the weight on edges in digraph G.

4.1.2 Lattice action and anti-symmetrized adjacency matrix

In here, we will discuss relationship between lattice fermion action in Eq. (4.2) and anti-
symmetrized adjacency matrix of the directed and weighted graph in Eq. (4.3).

Based on the definition of anti-symmetrized adjacency matrix in Def. 10, An anti-
symmetrized adjacency matrix for the weighted digraph in Eq. (4.3) is obtained as

(Aas(G))ij =


γµUn,µ i = n and j = n+ µ̂ for edge {n, n+ µ̂}
−γµU †

n,µ i = n+ µ̂ and j = n for edge {n, n+ µ̂}
0 otherwise

(4.4)

where use of γ†µ = γµ as the property of γ-matrices. Note that this anti-symmetrized
adjacency matrix is equal to the anti-symmetrized adjacency matrix in Eq. (3.25) if we
consider the case of a free theory. To represent lattice fermion action, we introduce a
vector of fermion fields in D-dimensions. Namely, a vector ψ is ψ =

∑
n ψnen where

en ≡
⊗D

µ=1 enD+1−µ
are standard basis in |V |-dimensions which satisfy orthonormal e†m ·

en = δmn ≡
∏D

µ=1 δmµnµ . δkl is the Kronecker delta. The component ψn is the fermion
field on which γ-matrices and the link variable Un,µ act. Here, we specify that the order
of components ψn in the vector is (1, 1, · · · , 1) → · · · → (N, 1, · · · , 1) → (1, 2, · · · , 1) →
· · · → (N,N, · · · , N) in descending order. Namely,

ψ ≡



ψ(1,1,··· ,1)
ψ(2,1,··· ,1)

...
ψ(N,1,··· ,1)
ψ(1,2,··· ,1)

...
ψ(N,N,··· ,N)


(4.5)

in term of the vector. By use of the anti-symmetrized adjacency matrix Aas(G) and the
vector ψ, the lattice fermion action in Eq. (4.2) can be represented as the bilinear form
1
2
ψ̄Aas(G)ψ. Because ψ̄Aas(G)ψ is

ψ̄Aas(G)ψ =
∑

m,m′∈V

ψ̄m

(
Aas(G)

)
mm′ψm′

=
∑

m,m′∈V

∑
n∈V

D∑
µ=1

ψ̄mγµ
(
Un,µδmnδm′ n+µ̂ − U †

n,µδmn+µ̂δmn

)
ψm′

=
∑
n∈V

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
,

(4.6)
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we can show 1
2
ψ̄Aas(G)ψ = SL. As a result, we have also shown that it is consistent to

set w(e ∈ Gµ) = γµUn,µ as the weight on edges in the digraph. It means that the lattice
action for the directed and weighted graph in Eq. (3.22) is given as the bilinear form of
the anti-semmetrized adjacency matrix for the digraph and vector of fermionic fields.

As an example of the bilinear form, we consider the case of G = D
(cycle)
1 □D

(path)
2

where D(cycle)
1 with three vertices and D

(path)
2 with two vertices. This digraph is depicted

in Fig. 4.2. Then, an anti-symmetrized adjacency matrix for this digraph is |V | = 6

の有用な定理

G
1

2

!

1

2

3

Figure 4.2: This directed and weighted graph illustrates G = D
(path)
1 □D

(cycle)
2 which has

D
(path)
1 with two vertices and D(path)

2 with three vertices.

square matrix with γµUn,µ as components. It is explicitly written as

Aas(G) =



0 γ1U(1,1),1 −γ1U †
(3,1),1 γ2U(1,1),2 0 0

−γ1U †
(1,1),1 0 γ1U(2,1),1 0 γ2U(2,1),2 0

γ1U(3,1),1 −γ1U †
(2,1),1 0 0 0 γ2U(3,1),2

−γ2U †
(1,1),2 0 0 0 γ1U(1,2),1 −γ1U †

(3,2),1

0 −γ2U †
(2,1),2 0 −γ1U †

(1,2),1 0 γ1U(2,2),1

0 0 −γ2U †
(3,1),2 γ1U(3,2),1 −γ1U †

(2,2),1 0


(4.7)

in term of the matrix. As a result, the bilinear form ψ̄Aas(G)ψ is obtained as

ψ̄Aas(G)ψ =
∑
n2∈V2

(
ψ̄(1,n2)γ1U(1,n2),1ψ(2,n2) − ψ̄(2,n2)γ1U

†
(1,n2),1

ψ(1,n2)

+ ψ̄(2,n2)γ1U(2,n2),1ψ(3,n2) − ψ̄(3,n2)γ1U
†
(2,n2),1

ψ(2,n2)

+ ψ̄(3,n2)γ1U(3,n2),1ψ(1,n2) − ψ̄(1,n2)γ1U
†
(3,n2),1

ψ(3,n2)

)
+
∑
n1∈V1

(
ψ̄(n1,1)γ2U(n1,1),2ψ(n1,2) − ψ̄(n1,2)γ2U

†
(n1,2),1

ψ(n1,1)

)
=
∑
n∈V

2∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.8)

where V1 ≡ V (D
(cycle)
1 ) and V2 ≡ V (D

(path)
2 ). As shown in these equations, each boundary

condition is reflected in the components of the anti-symmetrized adjacency matrices. Even
for G = G1 □ · · · □GD, components of the anti-symmetrized adjacency matrix reflects
boundary conditions on each direction.

For this and previous discussions, the directed and weighted graph in Eq. (4.3) is
recognized as the lattice fermions on finite volume D-dimensional hypercubic lattice with
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periodic boundary condition and Dirichlet boundary condition in term of spectral graph
theory. In the next discussion, we will show relationship between the number of fermion
species and the nullity of anti-symmetrized adjacency matrices, and derive the number of
fermion species for the lattices in Eq. (4.1)

4.1.3 Fermion species and the nullity of anti-symmetrized adja-
cency matrix

We will discuss about the relationship between the number of fermion species and anti-
symmetrized adjacency matrices. This discussion is limited to the free theory. Thus,
weighted digraph we are considering is the one in Eq. (3.22).

Before this discussion, let us mention about fermion species. The fermion species
are given as zero-modes of lattice Dirac operator, i.e. φp such that Dµφp = 0. In
other words, the fermion species are equivalent to zero-eigenvalues (or nullity) of the
matrix-representation of lattice Dirac operator since zero-modes of lattice Dirac operator
is elements in kernel space of the operator. Thus, the number of fermion species can be
derived by the nullity of the matrix-representation of the lattice Dirac operator. Note
that the number of fermion species is equal to the nullity of the matrix-representation of
lattice Dirac operator divided with the rank of γ-matrices.

We discuss about the matrix-representation of the lattice Dirac operator and fermion
species as spectral graph theory. In the previous discussion, the bilinear form of Aas(G

free)
in the free theory is

ψ̄Aas(G
free)ψ =

∑
n∈V

D∑
µ=1

[
ψ̄nψn+µ̂ − ψ̄n+µ̂γµψn

]
(4.9)

in term of spectral graph theory. Meanwhile, the free lattice fermion action on the lattice
in Eq. (4.1) is given as

Sfree
L =

1

2

∑
n∈L

D∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
= ψ̄Dψ (4.10)

where D is the matrix-representation of the lattice Dirac operator and the vector ψ
has assumed Eq. (4.5). Since Sfree

L = ψ̄Aas(G
free)ψ/2, the matrix-representation of the

lattice Dirac operator is equal to the anti-symmetrized adjacency matrix with 1/2 as the
coefficient, i.e. D = Aas(G

free)/2. Since the number of fermion species can be derived by
the matrix-representation of lattice Dirac operator, it can be derived by the nullity of anti-
symmetrized adjacency matrix for the digraph in Eq. (3.22). Furthermore, the number of
fermion species is equal to the nullity of the anti-symmetrized adjacency matrix divided
with the rank of γ-matrices. As a result, the number of fermion species is expressed as

#species =
dim

(
kerAas(G

free)
)

rank γ
(4.11)

where #species denotes the number of fermion species.
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Next, we actually derive the number of fermion species on the weighted digraph in the
free theory. The anti-symmetrized adjacency matrix Aas(G

free) in the case of free theory
is the matrix in Eq. (3.25) since the directed and weighted graph is the one in Eq. (3.22).
For this reason, we can use the theorem in Thm. 3 and results obtained in its proof to
derive the number of fermion species. The maximum number of fermion species is given
by the topology of graphs based on the theorem. The reason for discussing the maximum
number is that the number of fermion species depends on vertices in each digraph Gµ,
but the maximum number is uniquely determined by the topology. Thus, the maximum
number of fermion species in the digraph Gfree is

max [#species ] = max

[
dim

(
kerAas(G

free)
)

rank γ

]
= 2|S

c| (4.12)

where |Sc| is the number of the cycle digraphs in Gfree. Meanwhile, the number of fermion
species can be derived for the results obtained in the proof of the theorem. It is expressed
as

#species =

{
2|S

c,e| |Sp,e| = 0

0 |Sp,e| ̸= 0
(4.13)

where |Sc,e|, |Sp,e| are the number of the cycle digraphs with even vertices in Gfree and
the number of the simple directed paths with even vertices in Gfree, respectively.

As some examples, we consider two weighted digraphs: D(cycle)
1 □D

(path)
2 where D(cycle)

1

with three vertices and D(path)
2 with two vertices, D(path)

1 □D
(cycle)
2 with three vertices each,

D
(cycle)
1 □D

(cycle)
2 with three vertices each, D(cycle)

1 □D
(cycle)
2 with four vertices each. These

weighted digraphs are denoted as

G(1) = D
(cycle)
1 □D

(path)
2 , |V (D

(cycle)
1 )| = 3 , |V (D

(path)
2 )| = 2 (4.14a)

G(2) = D
(path)
1 □D

(cycle)
2 , |V (D

(path)
1 )| = 3 , |V (D

(cycle)
2 )| = 3 (4.14b)

G(3) = D
(cycle)
1 □D

(cycle)
2 , |V (D

(cycle)
1 )| = 3 , |V (D

(cycle)
2 )| = 3 (4.14c)

G(4) = D
(cycle)
1 □D

(cycle)
2 , |V (D

(cycle)
1 )| = 4 , |V (D

(cycle)
2 )| = 4 (4.14d)

The first digraph has shown in Fig. 4.2, and the other digraphs are depicted in Fig. 4.3.
The number of fermion species for each digraph is as follows:

• G(1); The number of fermion species is #species = 0 since |Sp,e| ̸= 0. For Eq. (3.35),
the diagonalization of the anti-symmetrized adjeecency matrix Aas(G

(1)) is obtained
as

U †Aas(G
(1))U = iDiag

[
γ2 ,

√
3γ1 + γ2 , −

√
3γ1 + γ2 ,

− γ2 ,
√
3γ1 − γ2 , −

√
3γ1 − γ2

]
.

(4.15)

An inequality #species < 2|S
c| = 2 holds since |Sc| = 1.
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の有用な定理

G
(2)

1

2

3
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3

(a) G(2) = D
(path)
1 □D

(cycle)
2 .

の有用な定理

G
(3)

1

3

2

!

1

2

3

(b) G(3) = D
(cycle)
1 □D

(cycle)
2 .

G
(4)

1

2 3

4

!

1

2 3

4

(c) G(4) = D
(cycle)
1 □D

(cycle)
2 .

Figure 4.3: These digraphs depict three examples G(2), G(3), G(4).

• G(2); The number of fermion species is #species = 1 since |Sp,e| = 0 and |Sc,e| = 0.
The diagonalization of the anti-symmetrized adjeecency matrix Aas(G

(2)) is obtained
as

U †Aas(G
(2))U = iDiag

[√
2γ1 , 0 , −

√
2γ1 ,

√
2γ1 +

√
3γ2 ,

√
3γ2 , −

√
2γ1 +

√
3γ2 ,

√
2γ1 −

√
3γ2 , −

√
3γ2 , −

√
2γ1 −

√
3γ2

]
.

(4.16)

An inequality #species < 2|S
c| = 2 holds since |Sc| = 1.

• G(3); The number of fermion species is #species = 1 since |Sp,e| = 0 and |Sc,e| = 0.
The diagonalization of the anti-symmetrized adjeecency matrix Aas(G

(3)) is obtained
as

U †Aas(G
(3))U =

√
3iDiag

[
0 , γ1 , −γ1 ,

γ2 , γ1 + γ2 , −γ1 + γ2 ,

− γ2 , γ1 − γ2 , −γ1 − γ2

]
.

(4.17)

An inequality #species < 2|S
c| = 4 holds since |Sc| = 2.

• G(4); The number of fermion species is #species = 4 since |Sp,e| = 0 and |Sc,e| = 2.
The diagonalization of the anti-symmetrized adjeecency matrix Aas(G

(4)) is obtained
as

U †Aas(G
(4))U = iDiag

[
0 , γ1 , 0 , −γ1 , γ2 , γ1 + γ2 , γ2 , −γ1 + γ2 ,

0 , γ1 , 0 , −γ1 , −γ2 , γ1 − γ2 , −γ2 , −γ1 − γ2

]
.

(4.18)
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An equation #species = 2|S
c| = 4 holds since |Sc| = 2.

As these examples show, the number of fermion species depends on either even or odd
vertices for each digraph Gµ in the weighted digraph Gfree. And the number of them
determines upper bound by the topology of graphs.

In later sections, we will discuss in the cases of D-dimensional hypercubic lattice
with only periodic boundary condition (TD-lattice) and one with only Dirichlet boundary
condition (BD-lattice).

4.2 Lattice fermions on torus
In the previous section, we discussed lattice fermions onD-dimensional hypercubic lattices
with periodic boundary condition or Dirichlet boundary condition in each direction in term
of spectral graph theory. In this section, we will discuss lattice fermions on TD-lattice in
term of spectral graph theory. This section is divided into two parts. Fist, we will discuss
in D-dimensions. In here, we will introduce a directed and weighted graph representing
lattice fermions in D-dimensions and show that lattice fermion action is given by the
bilinear form of matrices for the weighted digraph. Furthermore, we will discuss the
number of fermion species. The second part will be discussed about lattice fermions on
T 4-lattice. The lattice fermions on this lattice are the well-known naive lattice fermions.
We will show that the results of this discussion are consistent with the known results.

Before this discussion, we will mention the TD-lattice and lattice fermions on it. The
TD-lattice is a finite volumeD-dimensional hypercubic lattice with only periodic boundary
condition, and be expressed as

TD-lattice ≡

{
n =

D∑
µ=1

nµµ̂

∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ Z ,
∃Nµ ∈ Z s.t. n+Nµµ̂ ∼ n

}
(4.19)

where µ̂ is the standard basis in D-dimensional hypercubic lattice. As previously men-
tioned, the periodic boundary condition is represented as n + Nµµ̂ ∼ n. An illustrated
boundary condition is shown in Fig. 4.1. Then, a lattice fermion action on TD-lattice is
given as

STD =
∑
n

D∑
µ=1

ψ̄nγµDµψn =
1

2

∑
n

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.20)

where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. Dµ is a difference operator called
as lattice Dirac operator. ψn is the fermionic fields on which γ-matrices and Un,±µ act.
And Un,µ is the gauge field, which is called the link variable satisfying Un+µ̂,−µ = U †

n,µ.
In a free theory, we just set Un,µ = 1. The sum

∑
n is the summation over lattice sites

n = (n1, · · · , nD) in TD-lattice. The difference between this action and the action in
Eq. (4.2) is that there are no terms representing Dirichlet boundary condition. In the free
and four-dimensional case, the lattice fermion action is given by

Sfree
nf =

1

2

∑
n

D∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
(4.21)
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and 16 fermion species are known to occur in the theory.

4.2.1 Lattice fermions on any dimensional torus

In this subsection, we will discuss lattice fermions on TD-lattice in term of spectral graph
theory. This subsection is divided into three parts. In the first and second part, we will
discuss a directed and weighted graph representing lattice fermion on TD-lattice and its
lattice action as spectral graph theory. The final part describes about the number of
fermion species and the nullity of matrices associated with the weighted digraph.

Firstly, we discuss a directed and weighted graph representing lattice fermions on
TD-lattice. For the previous section, let GTD be the directed and weighted graph corre-
sponding to the TD-lattice. It is expressed as

GTD = D
(cycle)
1 □D

(cycle)
2 □ · · · □D

(cycle)
D

w(e ∈ Gµ) = γµUn,µ

(4.22)

where D(cycle)
µ is the cycle digraph with |V |µ vertices. Note that the subscript n of the

link variable stands for the vertices in the digraph, i.e. n ∈ V where V is the set of
vertices in GTD . However, vertices in this digraph can be regarded as sites in the TD-
lattice because V and the whole site are isomorphic by definition of cartesian product
in Def 4. In particular, since the set of vertices in GTD is V = V (D

(cycle)
1 ) × · · · × V by

cartesian product, a map f : V → TD-lattice is isomorphism. Each digraph D
(cycle)
µ is a

digraph representing periodic boundary condition n+Nµµ̂ ∼ n since the cycle digraph is
equivalent to the boundary condition by setting Nµ = |V |µ. The case of D = 2 is depicted
in Fig. 4.4 Based on the definition in Def. 10, an anti-symmetrized adjacency matrix for
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.

.

.
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.
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.□ ∼

Figure 4.4: The digraph GT 2 is identified as a two dimensional torus with directed edges.

the weighted digraph GTD is obtain as

(Aas(GTD))ij =


γµUn,µ i = n and j = n+ µ̂ for edge {n, n+ µ̂}
−γµU †

n,µ i = n+ µ̂ and j = n for edge {n, n+ µ̂}
0 otherwise

(4.23)

where use of γ†µ = γµ as the property of γ-matrices. In the free theory, which sets Un,µ = 1,
this anti-symmetrized adjacency matrix is written as the following simple expression by
use of tensor product,

Aas(G
free
TD ) =

D∑
µ=1

{(
D−µ⊗
ν=1

1|V |D+1−ν

)
⊗ A′

as(D
(cycle)
µ )⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ (4.24)
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where A′
as(D

(cycle)
µ ) is |V |µ-square matrix in Eq.(3.26).

Secondary, we show that the bilinear form ψ̄Aas(GTD)ψ is equivalent to the lattice
femrion action on TD-lattice. To discuss it, we use the vector of fermion fields in D-
dimensions that is expressed as ψ =

∑
n∈V ψnen where en ≡

⊗D
µ=1 enD+1−µ

. Note that
en are the standard basis in |V |-dimensions which satisfy orthonormal e†m · en = δmn ≡∏D

µ=1 δmµnµ . And γ-matrices and the link variable Un,µ act on the fermionic field ψn in
the vector. By use of this vector, the bilinear form of the anti-symmetrized adjacency
matrix Aas(GTD) and the vector ψ is

ψ̄Aas(GTD)ψ =
∑

m,m′∈V

ψ̄m

(
Aas(GTD)

)
mm′ψm′

=
∑
n∈V

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

] (4.25)

for Eq. (4.23). As shown in Eq. (4.20), we can show STD = ψ̄Aas(GTD)ψ/2. And by the
vector ψ the lattice action STD can be rewritten as

STD =
∑
n∈V

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
= ψ̄DTDψ (4.26)

where DTD is the matrix-representation of lattice Dirac operator on TD-lattice. As a
result, we obtain that the matrix-representation of lattice Dirac operator is equal to the
anti-symmetrized adjacency matrix for the digraph GTD with 1/2 as the coefficient, i.e.
DTD = Aas(GTD)/2. In the case of free theory, the free lattice fermion action is also equal
to ψ̄Aas(G

free
TD )ψ/2 since the bilinear form ψ̄Aas(G

free
TD )ψ/2 is

1

2
ψ̄Aas(G

free
TD )ψ =

1

2

∑
m,n∈V

D∑
µ=1

ψ̄mγµψn

{
e†mµ

A′
as(D

(cycle)
µ )enµ

}D−µ∏
ν=1

µ−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

=
1

2

∑
m,n∈V

D∑
µ=1

ψ̄mγµψn

{
δmµ+1nµ − δmµ nµ+1

}D−µ∏
ν=1

µ−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

=
1

2

∑
m,n∈V

D∑
µ=1

ψ̄mγµψn

{
δm+µ̂ n − δmn+µ̂

}
=

1

2

∑
n

D∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
= Sfree

TD

(4.27)

where we used e†mµ
A′

as(D
(cycle)
µ )enµ = δmµ+1nµ − δmµ nµ+1 for Eq. (3.26). Since the free

lattice action can be written as Sfree
nf = ψ̄Dfree

TDψ, the matrix-representation of free lattice
Dirac operator results in Dfree

TD = Aas(G
free
TD )/2.

Finally, we discuss the number of fermion species for the weighted digraph in the free
theory. For the theorem in Thm. 3, the maximum number of fermion species is uniquely
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determined by the topology of graphs, and be expressed as

max [#species ] =
D∏

µ=1

{
β0(D

(cycle)
µ ) + β1(D

(cycle)
µ )

}
= 2D (4.28)

where β0(D
(cycle)
µ ) + β1(D

(cycle)
µ ) = 2. On the other hands, the number of fermion species

is given by the number of the cycle digraphs with even vertices in Gfree
TD . It is expressed as

#species = 2|S
c,e| (4.29)

where |Sc,e| is the number of the cycle digraphs with even vertices in Gfree
TD . We can

confirm this result by examining the nullity of the anti-symmetrized adjacency matrix for
the weighted digraph Gfree

TD . For Eq. (3.35), the diagonalization of the anti-symmetrized
adjacency matrix for the weighted digraph Gfree

TD is

(
U †Aas(G

free
TD )U

)
mn

= 2iδmn

D∑
µ=1

γµ sin

(
2π (mµ − 1)

|V |µ

)
(4.30)

for m,n ∈ V . Since the linear independence of γ-matrices and mµ ∈ Z, there are 2|S
c,e|

ways in which m = (m1, · · · ,mD) satisfies
(
U †Aas(G

free
TD )U

)
mn

= 0. Thus, we have shown
Eq. (4.29) by the anti-symmetrized adjacency matrix for the weighted digraph Gfree

TD .
We comment on the meaning of mµ. This mµ can be interpreted as a “shifted mo-

mentum” in this case. However, it is not necessarily equivalent to the momentum since it
can be defined also on the lattice in which the momentum cannot be defined. Thus, mµ

should be simply interpreted as an index for the modes in general.
In the next subsection, we will discuss in four-dimensions. This lattice fermion is the

well-known lattice fermion as naive lattice fermion.

4.2.2 Lattice fermions on four-dimensional torus

In this section, we will discuss lattice fermons on four-dimensional torus lattice, which is
as a physically significant case, in term of spectral graph theory. This lattice fermion is
known as the naive fermion. We will show that the results of this discussion are consistent
with the known results.

Before this discussion, we review the four-dimansional torus lattice and the lattice
fermion on it. The four-dimansional torus lattice is given by

T 4-lattice ≡

{
n =

4∑
µ=1

nµµ̂

∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ Z ,
∃Nµ ∈ Z s.t. n+Nµµ̂ ∼ n

}
(4.31)

based on Eq. (4.19). Then, a lattice fermion action on four-dimensions is given as

Snf =
∑
n

4∑
µ=1

ψ̄nγµDµψn =
1

2

∑
n

4∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.32)
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where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. Dµ, ψn are the lattice Dirac
operator and the fermionic fields respectively. And Un,µ is called the link variable. γ-
matrices and Un,±µ act on the fermionic fields ψn. In a free theory, we just set Un,µ = 1.
The sum

∑
n is the summation over lattice sites n = (n1, n2, n3, n4) in four-dimensional

torus lattice. In the free and four-dimensional case, the lattice fermion action is given by

Sfree
nf =

1

2

∑
n

4∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
(4.33)

and 16 fermion species are known to occur in the theory.
First, we discuss a directed and weighted graph representing lattice fermions in four-

dimensions. The weighted digraph representing lattice fermions on four-dimensional torus
lattice (T 4-lattice) is

GT 4 = D
(cycle)
1 □D

(cycle)
2 □D

(cycle)
3 □D

(cycle)
4

w(e ∈ Gµ) = γµUn,µ

(4.34)

where D(cycle)
µ is the cycle digraph with |V |µ vertices. This digraph GT 4 is depicted in

Fig. 4.5. The subscript n of the link variable stands for the vertices in the digraph, i.e.
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Figure 4.5: This digraph constructed cartesian-product □ of four cycle digraphs D(cycle)

with |V |µ = N vertices each.

n ∈ V where V is the set of vertices in GTD . For Def. 10, an anti-symmetrized adjacency
matrix of the weighted digraph GT 4 is obtained as

(Aas(GT 4))ij =


γµUn,µ i = n and j = n+ µ̂ for edge {n, n+ µ̂}
−γµU †

n,µ i = n+ µ̂ and j = n for edge {n, n+ µ̂}
0 otherwise

(4.35)

where use of γ†µ = γµ. If we consider the free theory, which sets Un,µ = 1, this anti-
symmetrized adjacency matrix is written as

Aas(G
free
T 4 ) =

4∑
µ=1

{(
4−µ⊗
ν=1

1|V |5−ν

)
⊗ A′

as(D
(cycle)
µ )⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ

= 1|V |4 ⊗ 1|V |3 ⊗ 1|V |2 ⊗ A′
as(D

(cycle)
1 )⊗ γ1

+ 1|V |4 ⊗ 1|V |3 ⊗ A′
as(D

(cycle)
2 )⊗ 1|V |1 ⊗ γ2

+ 1|V |4 ⊗ A′
as(D

(cycle)
3 )⊗ 1|V |2 ⊗ 1|V |1 ⊗ γ3

+ A′
as(D

(cycle)
4 )⊗ 1|V |4 ⊗ 1|V |2 ⊗ 1|V |1 ⊗ γ4

(4.36)
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where A′
as(D

(cycle)
µ ) is |V |µ-square matrix in Eq.(3.26).

Next, we show that the lattice fermion action on four-dimensional torus lattice is
equivalent to the bilinear form ψ̄Aas(GTD)ψ/2. We introduce a vector of fermion fields
in four-dimensions that is ψ =

∑
n∈V ψnen where en ≡

⊗4
µ=1 en5−µ . Note that en are the

standard basis in |V |-dimensions. By use of this vector, the bilinear form ψ̄Aas(GTD)ψ/2
is equal to the lattice fermion action on four-dimensional torus lattice since

1

2
ψ̄Aas(GT 4)ψ =

1

2

∑
m,m′∈V

ψ̄m

(
Aas(GT 4)

)
mm′ψm′

=
1

2

∑
n∈V

4∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
= Snf

(4.37)

for Eq. (4.23). In the free theory, the free lattice fermion action on four-dimensional torus
lattice is equal to ψ̄Aas(G

free
T 4 )ψ/2 since each term in the bilinear form is equivalent to

the difference term for each direction in the action. In particular, the first term in the
bilinear form is

1

2
ψ̄
(
1|V |4 ⊗ 1|V |3 ⊗ 1|V |2 ⊗ A′

as(D
(cycle)
1 )⊗ γ1

)
ψ

=
1

2

∑
m,n∈V

ψ̄mγ1ψn

{
e†m1

A′
as(D

(cycle)
1 )en1

}
δm4n4δm3n3δm2n2

=
1

2

∑
m,n∈V

ψ̄mγ1ψn

{
δm1+1n1 − δm1 n1+1

}
δm4n4δm3n3δm2n2

=
1

2

∑
m,n∈V

ψ̄mγ1ψn

{
δm+1̂n − δmn+1̂

}
=

1

2

∑
n

[
ψ̄nγµψn+1̂ − ψ̄n+1̂γµψn

]

(4.38)

where e†m1
A′

as(D
(cycle)
1 )en1 = δm1+1n1−δm1 n1+1 for Eq. (3.26). Accordingly, the summation

of each term in the bilinear form is obtain as

1

2
ψ̄Aas(G

free
T 4 )ψ =

1

2

∑
n∈V

4∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
= Sfree

nf . (4.39)

Thus, we have shown that the lattice fermion action on four-dimensional torus lattice
is equivalent to the bilinear form of ψ̄Aas(GT 4)ψ/2 even if it is not the free theory.
Furthermore, by rewriting the lattice action as Snf = ψ̄DT 4ψ, the matrix-representation
of four-dimensional lattice Dirac operator is equal to the anti-symmetrized adjacency
matrix for the weighted digraph GT 4 with 1/2 as the coeffient, i.e. DT 4 = Aas(GT 4)/2.

And finally, we discuss the number of fermion species for the weighted digraph Gfree
T 4 .

Since the fermion species are equivalent to the nullity of the matrix-representation of
lattice Dirac operator, the number of fermion species can be derived by the nullity of the
anti-symmetrized adjacency matrix for Gfree

T 4 . It is expressed as

#species = 2|S
c,e| (4.40)
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where |Sc,e| is the number of cycle digraphs with even vertices. As this equation shows,
the number of fermion species depends on the number of vertices in each digraph D(cycle)

µ .
It can be classified as shown in Table. 4.1. However, the maximum number of them is

Table 4.1: Classification of the number of fermion species

|Sc,e| = 0 |Sc,e| = 1 |Sc,e| = 2 |Sc,e| = 3 |Sc,e| = 4

#species 1 2 4 8 16

uniquely determined by the topology of graphs as

max [#species ] =
4∏

µ=1

{
β0(D

(cycle)
µ ) + β1(D

(cycle)
µ )

}
= 24 (4.41)

for Thm. 3. It is consistent with the well-known result that 16 fermion species appear in
the theory.

4.3 Lattice fermions on ball
In the previous section, we discussed the lattice fermions on torus lattice in term of
spectral graph theory. We showed three facts as follows:

• The lattice fermion on torus lattice can be represented as the directed and weighted
graph constructed by the cartesian product of only the cycle digraph with γ-matrices
and link variable as the weight.

• The lattice action as spectral graph theory is given by the bilinear form of the anti-
symmetrized adjacency matrix and the vector of fermion fields. It holds even if it
is the free theory.

• The number of fermion species is derived by the number of cycle digraphs with even
vertices. However, the maximum number of them is uniquely determined by the
topology of graphs (or the number of cycle digraph).

In this section, we will discuss lattice fermions on D-dimensional hyperball lattice (BD-
lattice) in term of spectral graph theory. This section is divided into two subsections.
The first subsection will be discussed in D-dimensions. Next, we will discuss in four-
dimensions.

Before this discussion begins, we mention the D-dimenional hyperball lattice and
lattice fermion action on it. We define the D-dimensional hyperball lattice as a finite
volume D-dimensional hypercubic lattice with only Dirichlet boundary condition. It is
expressed as

BD-lattice ≡

{
n =

D∑
µ=1

nµµ̂

∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ Z

}
. (4.42)
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The Dirichlet boundary condition is automatically imposed on each direction since we
consider a finite volume lattice and the boundary condition is nµ ∈ [1, Nµ] ⇒ n = 0.
Then, a lattice fermion action on BD-lattice is given as

SBD =
∑
n

D∑
µ=1

ψ̄nγµDµψn =
1

2

∑
n

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.43)

where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. Dµ, ψn are the lattice Dirac
operator and the fermionic fields respectively. And Un,µ is the gauge field called the
link variable. The sum

∑
n is the summation over lattice sites n = (n1, · · · , nD) in the

D-dimensional hyperball lattice. The difference between this action and the action in
Eq. (4.20) is that there are no terms representing periodic boundary condition. In a free
theory, this lattice fermion action is written as

Sfree
BD =

1

2

∑
n

D∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
(4.44)

because we only set Un,µ = 1.

4.3.1 Lattice fermions on any dimensional hyperball

In this section, we will discuss lattice fermions on D-dimensional hyperball lattice in term
of spectral graph theory.

Firstly, we discuss a directed and weighted graph representing the lattice fermions
and a matrix associated the graph. For the graph in Eq. (3.22), the weighted digraph
representing the lattice fermions on BD-lattice is given by

GBD = D
(path)
1 □D

(path)
2 □ · · · □D

(path)
D

w(e ∈ Gµ) = γµUn,µ

(4.45)

where D(path)
µ is the simple directed path with |V |µ vertices. The subscript n of Un,µ is the

vertex in the digraph, i.e. n ∈ V where V is the set of vertices in GBD . However, vertices
in this digraph can be regarded as sites in the any dimensional hyperball lattice since
V and the whole sites are isomorphic. And each digraph D

(path)
µ is a graph representing

Dirichlet boundary condition since the vertices in each digraph only run from 1 to |V |µ.
As an example, the case of D = 2 is depicted in Fig. 4.6. By definition in Def. 10, an
anti-symmetrized adjacency matrix for the weighted digraph is obtain as

(Aas(GBD))ij =


γµUn,µ i = n and j = n+ µ̂ for edge {n, n+ µ̂}
−γµU †

n,µ i = n+ µ̂ and j = n for edge {n, n+ µ̂}
0 otherwise

(4.46)

where we used the property of γ-matrices that is γ†µ = γµ. If we consider in a free theory
that is we set Un,µ = 1, this anti-symmetrized adjacency matrix is written as a simple
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Figure 4.6: GB2 is identified as a two dimensional disk with directed edge.

expression constructed by tensor product. Is is expressed as

Aas(G
free
BD) =

D∑
µ=1

{(
D−µ⊗
ν=1

1|V |D+1−ν

)
⊗ A′

as(D
(path)
µ )⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ (4.47)

where A′
as(D

(path)
µ ) is |V |µ-square matrix in Eq.(3.27).

Secondary, we show that the bilinear form ψ̄Aas(GBD)ψ is equivalent to the lattice
fermion action on BD-lattice. ψ is the vector of fermion fields in D-dimensions that is
expressed as ψ =

∑
n∈V ψnen where en ≡

⊗D
µ=1 enD+1−µ

. The components ψn is the
fermionic fields in D-dimensions on which the weight γµUn,µ act. The vectors en are the
standard basis in |V |-dimensions which satisfy orthonormal e†m · en = δmn ≡

∏D
µ=1 δmµnµ .

By use of this vector, the bilinear form is

ψ̄Aas(GBD)ψ =
∑

m,m′∈V

ψ̄m

(
Aas(GBD)

)
mm′ψm′

=
∑
n∈V

D∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

] (4.48)

for Eq. (4.46). As the action in Eq. (4.43) shows, we can prove that the bilinear form
with the coefficient 1/2 is equal to the lattice fermion action on BD-lattice, i.e. SBD =
ψ̄Aas(GBD)ψ/2. If we consider in the free theory, the bilinear form with the coefficient
1/2 is the free lattice action, or

1

2
ψ̄Aas(G

free
BD)ψ =

∑
n∈V

D∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
= Sfree

BD (4.49)

because of Un,µ = 1. Therefore, the lattice fermion action for any dimensional hyperball
lattice is given by the bilinear form of the matrix Aas(GBD) and the vector ψ, regardless
of whether it is a free theory.

Finally, we discuss about the number of fermion species for the directed and weighted
graph GBD in the free theory. The number of fermion species is given by the number of
the simple directed paths with even vertices in Gfree

BD . It is expressed as

#species =

{
1 |Sp,e| = 0

0 |Sp,e| ̸= 0
(4.50)
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where |Sp,e| is the number of the simple directed paths with even vertices. This equation
means that there is single fermion species if there is no simple directed paths with even
vertices in the weighted digraph Gfree

BD . We can confirm this result by examining the nullity
of the anti-symmetrized adjacency matrix for the weighted digraph. From Eq. (3.35), the
anti-symmetrized adjacency matrix for Gfree

BD is

(
U †Aas(G

free
TD )U

)
mn

= 2iδmn

D∑
µ=1

γµ cos

(
mµπ

|V |µ + 1

)
(4.51)

for mµ ∈ V (D
(path)
µ ) and m,n ∈ V = V (D

(path)
1 ) × · · · × V (D

(path)
D ). There is only

one way in which m satisfies
(
U †Aas(G

free
TD )U

)
mn

= 0 when there are no simple directed
paths with even vertices in Gfree

TD . Otherwise, there are no ways in which m satisfies(
U †Aas(G

free
TD )U

)
mn

= 0. Accordingly, the number of fermion species depends on the
vertices in the weighted digraph Gfree

TD . Meanwhile, the maximum number of fermion
species is uniquely determined by the topology of graphs, and be expressed as

max [#species ] =
D∏

µ=1

{
β0(D

(path)
µ ) + β1(D

(path)
µ )

}
= 1 (4.52)

because of β0(D
(path)
µ )+β1(D

(path)
µ ) = 1. It is consistent with the number of fermion species

when |Sp,e| = 0. Therefore, there is one physical pole on the bulk of any dimensional
hyperball when the number of sites in each direction is the odd number. If we take a
thermodynamical limit for |V |µ = even vertices, one of the non-zero eigenvalue approaches
to zero. Thus, lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd

have one physical pole on the bulk.
We comment the reasonableness of the existence of a single fermion species on the

bulk. As well-known, the lattice fermion defined on a lattice with boundaries can have
edge modes on the boundaries. Therefore, the edge mode works to cancel the gauge
anomaly at the boundary when we introduce gauge fields or link variables. The existence
of a single fermion species on the bulk in the present lattice fermion with boundaries is
reasonable as with the case of the domain-wall fermion.

The results we have obtained in this discussion are again not so novel. However,
we have shown that we can easily find the number of fermion species by obtaining the
weighted digraph corresponding to the lattice fermions and using the theorem in Thm. 3.

4.3.2 Lattice fermions on four-dimensional hyperball

In this subsection, we will show four-dimensional hyperball as a concrete example of
BD-lattice. This subsection is divided into three parts. The first part is discussed

Before this discussion, we review the four-dimensional hyperball lattice and the lattice
fermions on it. The four-dimensional hyperball lattice is expressed as

B4-lattice ≡

{
n =

4∑
µ=1

nµµ̂

∣∣∣∣∣ nµ ∈ [1, Nµ] ⊂ Z

}
. (4.53)
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Then, a lattice fermion action on B4-lattice is given as

SB4 =
∑
n

4∑
µ=1

ψ̄nγµDµψn =
1

2

∑
n

4∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
(4.54)

where Dµ ≡ (T+µ − T−µ) /2 with T±µψn = Un,±µψn±µ̂. Dµ, ψn are the lattice Dirac
operator and the fermionic fields respectively. And Un,µ is the gauge field called the link
variable. The sum

∑
n is the summation over lattice sites n = (n1, n2, n3, n4) in the

four-dimensional hyperball lattice. In a free theory, this lattice fermion action is written
as

Sfree
B4 =

1

2

∑
n

4∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
(4.55)

because we only set Un,µ = 1.
Firstly, we discuss about a weighted digraph representing the lattice fermions on B4-

lattice and an anti-symmetrized adjacency matrix for it. The weighted digraph is

GB4 = D
(path)
1 □D

(path)
2 □D

(path)
3 □D

(path)
4

w(e ∈ Gµ) = γµUn,µ

(4.56)

where D(path)
µ is the simple directed path with |V |µ vertices and n is the vertex in the

digraph. Note that vertices in this digraph can be regarded as sites in the any dimensional
hyperball lattice since V and the whole sites are isomorphic. This digraph is depicted in
Fig. 4.7. By definition in Def. 10, an anti-symmetrized adjacency matrix for the weighted
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Figure 4.7: This digraph constructed cartesian-product □ of four simple directed paths
D(path) with |V |µ = N vertices each.

digraph is obtained as

(Aas(GB4))ij =


γµUn,µ i = n and j = n+ µ̂ for edge {n, n+ µ̂}
−γµU †

n,µ i = n+ µ̂ and j = n for edge {n, n+ µ̂}
0 otherwise

(4.57)

where use of γ†µ = γµ. The difference between this matrix and the matrix for GT 4 in
Eq. (4.35) is that there are no components representing an edge leaving |V |µ and entering
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1. If we consider the free theory, which sets Un,µ = 1, this anti-symmetrized adjacency
matrix is written as

Aas(G
free
T 4 ) =

4∑
µ=1

{(
4−µ⊗
ν=1

1|V |5−ν

)
⊗ A′

as(D
(path)
µ )⊗

(
µ−1⊗
ρ=1

1|V |ρ

)}
⊗ γµ

= 1|V |4 ⊗ 1|V |3 ⊗ 1|V |2 ⊗ A′
as(D

(path)
1 )⊗ γ1

+ 1|V |4 ⊗ 1|V |3 ⊗ A′
as(D

(path)
2 )⊗ 1|V |1 ⊗ γ2

+ 1|V |4 ⊗ A′
as(D

(path)
3 )⊗ 1|V |2 ⊗ 1|V |1 ⊗ γ3

+ A′
as(D

(path)
4 )⊗ 1|V |4 ⊗ 1|V |2 ⊗ 1|V |1 ⊗ γ4

(4.58)

where A′
as(D

(path)
µ ) is |V |µ-square matrix in Eq.(3.27).

Secondary, we show that the lattice action on four-dimensional hyperball lattice is
equivalent to the bilinear form ψ̄Aas(GB4)ψ/2. A vector ψ is ψ =

∑
n∈V ψnen where

en ≡
⊗4

µ=1 e5−µ are the standard basis in |V |-dimensions. Accordingly, the bilinear form
ψ̄Aas(GB4)ψ is

1

2
ψ̄Aas(GB4)ψ =

1

2

∑
m,m′∈V

ψ̄m

(
Aas(GB4)

)
mm′ψm′

=
1

2

∑
n∈V

4∑
µ=1

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
= SB4

(4.59)

for Eq. (4.46). In the case of free theory, the free lattice fermion action on four-dimensional
torus lattice is equal to ψ̄Aas(G

free
B4 )ψ/2 since we only set Un,µ = 1. In particular, the

bilinear form is obtain as

1

2
ψ̄Aas(G

free
B4 )ψ =

1

2

∑
n∈V

4∑
µ=1

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
= Sfree

B4 . (4.60)

Furthermore, there are no terms, which represent edges leaving |V |µ and entering 1 in each
digraph D

(path)
µ , in the bilinear unlike ψ̄Aas(G

free
B4 )ψ form since there are no components

representing the edges. Thus, we have shown that the lattice fermion action on four-
dimensional hyperball lattice is equivalent to the bilinear form of ψ̄Aas(GB4)ψ/2 even if
it is not the free theory. Furthermore, by rewriting the lattice action as SB4 = ψ̄DB4ψ,
the matrix-representation of four-dimensional lattice Dirac operator is equal to the anti-
symmetrized adjacency matrix for the weighted digraph GB4 with 1/2 as the coeffient,
i.e. DB4 = Aas(GB4)/2 as well as the case of T 4-lattice.

Finally, we discuss about the number of fermion species for the directed and weighted
graph Gfree

B4 . The number of fermion species is given by the nullity of the anti-symmetrized
adjacency matrix for Gfree

B4 since the fermion species are equivalent to the nullity of the
matrix-representation lattice Dirac operator. Accordingly, the number of fermion species
is given by

#species =

{
1 |Sp,e| = 0

0 |Sp,e| ̸= 0
(4.61)

51



where |Sp,e| is the number of simple directed paths with even vertices. Thus, the number
of fermion species depends on the number of vertices in each simple directed path D(path)

µ .
Meanwhile, the maximum number of them is uniquely determined by the topology of
graphs. For Thm. 3, the maximum number of them is obtained as

max [#species ] =
4∏

µ=1

{
β0(D

(path)
µ ) + β1(D

(path)
µ )

}
= 1 . (4.62)

It is consistent with the maximum number of them for GBD . Therefore, there is at most
one physical pole on the bulk of four-dimensional hyperball lattice.

4.4 Lattice fermions on hypersphere
In the previous sections, we discuss about the lattice fermions for the directed and
weighted graph constructed by cartesian product of only the cycle digraphs and the simple
directed paths. As an example outside of this graph, we will discuss about lattice fermion
on a weighted digraph which can be considered as discretized sphere.

In the continuum field theory, the fermion action on spheres gives massive fermionic
degrees of freedom since the curvature works as effective mass. It is, however, not the
case on the discretized sphere.

In this section, we will study the number of fermion species on the discretized sphere,
where we perform discretization and put a fermion on the lattice in a special manner. We
empirically show that the maximum number of fermion species on the discretized sphere
is equal to two. This section is divided into two parts. First, we will discuss about the
two-dimensional cases. The next subsection mentions the higher dimensional cases.

We begin with the two-dimensional cases. We firstly consider the following discretized
spherical coordinate system for 2-sphere, labeled by two integers (M,N):

x3 = r cos θ2, x2 = r sin θ2 cos θ1, x1 = r sin θ2 sin θ1, (4.63)

θ1 ≡
2mπ

M
, θ2 ≡

(N − n) π

N − 1
(4.64)

where r is a radial distance and m ∈ [1,M ] ∈ N, n ∈ [1, N ] ∈ N. For simplicity, we
fix a radial distance as r = 1. We label lattice sites as v = (m,n). Note that there are
two special points (m, 1), (m,N) who ignore the hopping in m-direction. We call the
two points the south pole, relabeled as (0, 1), and the north pole, relabeled as (0, N),
respectively. For convenience, we call this lattice as S2-lattice.

To obtain the naive-fermion-like action on S2-lattice, we consider a directed and
weighted graph representing lattice fermions on the lattice. The weighted digraph is

G
(M,N)

S2 = G1 ∪G2 (4.65)
w(e ∈ Gµ) = σµ (4.66)
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for µ = 1, 2. Each digraph G1 = (V,E1), G2 = (V,E2) are given by

V =
{
(1, 2), (2, 2), · · · , (M, 2), (1, 3), · · · , (M,N − 1), (0, 1), (0, N)

}
, (4.67)

E1 =
{
{(1, 2), (2, 2)}, · · · , {(M, 2), (1, 2)}, {(1, 3), (2, 3)}, · · · , {(M, 3), (1, 3)},
· · · , {(1, N − 1), (2, N − 1)}, · · · , {(M,N − 1), (1, N − 1)}

}
,

(4.68)

and

E1 =
{
{(0, N), (1, N − 1)}, · · · , {(0, N), (M,N − 1)},
{(1, N − 1), (1, N − 2)}, · · · , {(M,N − 1), (M,N − 2)},
· · · {(1, 2), (0, 1)}, · · · , {(M, 2), (0, 1)}

}
.

(4.69)

As an example, the digraph in the case of (M, 3) is depicted in Fig. 4.8. σµ is the two-

1

2 3

4

· · ·M

N

S

(a) G
(M,N)
S2

1

2 3

4

· · ·M

N

S

(b) G1.

1

2 3

4

· · ·M

N

S

(c) G2.

Figure 4.8: These digraphs depict G(M,N)

S2 , G1, G2 in the case of (M, 3), . In these digraph,
the south pole and the north pole are written as S and N , respectively

dimensional gamma matrices which are called “Pauli matrices”. These matrices satisfy
Clifford algebra as {σµ, σν} = 2δµν . Note that we include no link variables in the weight
because the present case is considered in a free theory. By definition in Def. 10, an
anti-symmetrized adjacency matrix for the digraph G(M,N)

S2 is obtained as

Aas(G
(M,N)

S2 ) =

(
1N−2 ⊗ A′

as(D
(cycle))

O2

)
⊗σ1+

(
A′

as(D
(path)) VM(N−2),2

−V †
M(N−2),2 O2

)
⊗σ2 (4.70)

where Ok is the k-dimensional null matrix. A′
as(D

(cycle)), A′
as(D

(path)) are the M -square
matrix in Eq. (3.26) and the (N − 2)-square matrix in Eq. (3.27) respectively. And
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VM(N−2),2 is given by

VM(N−2),2 ≡


1 0
0 0

...
0 0
0 −1


N−2,2

⊗


1
1
...
1
1


M,1

, (4.71)

where the subscripts j, k of the matrix ( )j,k stand for the row and column sizes. Fur-
thermore, we introduce ψ as a vector of fermion fields in two-dimensions. It is defined as
ψ ≡

∑
v∈V ev with the standard basis ev in |V | dimensions. And ψv is the fermion fields

in two-dimensions on which the Pauli matrices act. Here, we specify the order of compo-
nents ψv in the vector as (1, 2) → (2, 2) → · · · → (M, 2) → (1, 3) → · · · → (M,N − 1) →
(0, 1) → (0, N). Namely, it is expressed as

ψ =



ψ(1,2)

ψ(2,2)
...

ψ(M,2)

ψ(1,3)
...

ψ(M,N−1)

ψ(0,1)

ψ(0,N)


. (4.72)

For the results in the previous sections, the lattice action for the weighted digraph is given
by the anti-symmetrized adjacency matrix and the vector of fermion fields. Accordingly,
the the naive-fermion-like action on S2-lattice is given by the bilinear form

S
(M,N)

S2 =
1

2
ψ̄Aas(G

(M,N)

S2 )ψ . (4.73)

Since the matrix-representation of lattice Dirac operator is equal to the anti-symmetrized
adjacency matrix with 1/2 as coefficient, the matrix-representation of lattice Dirac oper-
ator for G(M,N)

S2 is

D(M,N)

S2 =
1

2
Aas(G

(M,N)

S2 ) . (4.74)

Finally, we discuss about the number of fermion species on S2-lattice. In here, we
show the number of fermion species on S2-lattice (M, 3). Then, the anti-symmetrized
adjacency matrix for G(M,3)

S2 is

Aas(G
(M,3)

S2 ) =

(
A′

as(D
(cycle))

O2

)
⊗ σ1 +

(
1M Vm,2

−V †
m,2 O2

)
⊗ σ2 . (4.75)

Since the fermion species can be derived by the nullity of the anti-symmetrized adjacency
matrix for the digraph corresponding to lattice fermion, we analyze the diagonalization
of the matrix. The matrix Aas(G

(M,3)

S2 ) can be diagonalized by the unitary matrix

U ≡ U ⊗ 12 (4.76)
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where U is the unitary matrix below

U =
1√
M



1 1 1 0 χ χ̄
ξ ξ2 · · · ξM−1 0 χ χ̄
ξ2 ξ4 ξ2(M−1) 0 χ χ̄
...

... . . . ...
...

...
...

ξM−1 ξ2(M−1) ξ(M−1)2 0 χ χ̄

0 0 · · · 0
√

M
2

−
√
M |χ|2 −

√
M |χ|2

0 0 0
√

M
2

√
M |χ|2

√
M |χ|2


, (4.77)

with ξ ≡ e
−2πi
M and χ ≡ i/

√
2. Then, the spectra of the anti-symmetrized adjacency

matrix Aas(G
(M,N)

S2 ) is obtain as

U †Aas(G
(M,N)

S2 )U

= 2iDiag

[
σ1 sin

[
2π

M

]
, σ1 sin

[
4π

M

]
, · · · , σ1 sin

[
2π (M − 1)

M

]
, 0,−iσ2

√
M

2
, iσ2

√
M

2

]
.

(4.78)

From Eq. 4.78, one finds that the number of fermion species is analytically two for even
M since there is a certain j satisfying j = M

2
+ 1 ∈ N and sin

[
2π(j−1)

M

]
= 0. On the

other hand, the number of fermion species is one for odd M since there is no j satisfies
sin
[
2π(j−1)

M

]
= 0 for this case.

These results indicate that there are up to two fermion species on the S2-lattice (M, 3).
We show that the maximal number of fermion species are two also in other cases in-
cluding (M,N) = (4, 4), (5, 4), (5, 5), (4, 5), (6, 9) by numerical calculations as shown in
Appendix. C.1. The results are summarized in Table. C.1.

In higher dimensions, we discuss the naive-fermion-like action on the cellular decom-
posed sphere in a parallel manner. We show that there are up to two fermion species on
the discretized 4-sphere (S4-lattice) labeled by four integers (N1, N2, N3, N4) by numerical
calculation in Appendix. C.2.

It is notable that the lattice fermion action on the spherical lattice has been stud-
ied in the literature in the different context [73–75]. Our result is consistent with the
observations obtained in the literature.

In the end of this section, we make a comment on possible zero-mode (zero-eigenvalue)
difference giving the quantum anomaly in gravitational background. In curved space, the
difference of the numbers of left-handed and right-handed zero-modes are related to the
anomaly resulting from the gravitational background. Our argument of the existence of
two exact zero modes is not inconsistent to this difference of the numbers of zero-modes.
For example, the case with two right-handed zero-modes and zero left-handed zero-modes
are consistent with both arguments. This kind of fixing of zero modes may be due to the
specific choice of the sphere discretization or due to the lattice artifact, but there is no
contradiction so far.
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Chapter 5

The number of fermion species based
on topology

In the previous chapter, we have discussed that the lattice fermions on the various lattices.
In particular, the maximum number of fermion species is determined by the number of
cycle digraphs as follows:

• For G = G1 □ · · · □GD with Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
, the maximum number of

fermion species is
max [#species ] = 2|S

c| (5.1)

where |Sc| is the number of cycle digraphs.

• For G = D
(cycle)
1 □ · · · □D

(cycle)
D (or TD-lattice), the maximum number of fermion

species is
max [#species ] = 2D (5.2)

since the digraph G is constructed by D cycle digraphs.

• For G = D
(path)
1 □ · · · □D

(path)
D (or BD-lattice), the maximum number of fermion

species is
max [#species ] = 1 (5.3)

since the digraph G is constructed by only the simple directed paths.

It means that the maximum number of fermion species is given by the topology of graphs.
Meanwhile, in this chapter we will discuss about the relationship between the maximum
number of them and the topology of manifolds. The first half of this chapter is mentioned
about a new conjecture we propose. Later in this chapter is devoted to proving this
conjecture for certain manifolds.

5.1 New conjecture about the maximal number of the
species

In this section, we will discuss about the relationship between the maximum number of
fermion species and the topology of manifolds. We predict that the maximum number
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of them is equal to the summation of the Betti numbers for the continuum manifold.
As one of the circumstantial evidences, we show that the maximum number of them on
the digraph Gfree

T 4 is equal to the summation of the four-dimensional torus. There are 24

fermion species on the digraph Gfree
T 4 for Thm. 3. Meanwhile, the summation of the Betti

number is
∑4

r=0 βr(T
4) = 16 since these Betti number are

β0(T
4) = β4(T

4) = 1 , β1(T
4) = β3(T

4) = 4 , β2(T
4) = 6 . (5.4)

As a result, the maximum number of them is equal to the summation of the Betti numbers
for T 4. In Table. 5.1, we summarize the relation of the sum of the Betti numbers and
the maximum number of fermion species for the weighted digraph. Here, the manifold

Table 5.1: Betti numbers and Maximum numbers of fermion species

manifold M sum of βr(M) maximal # of fermion species
1-d torus 1 + 1 2
2-d torus 1 + 2 + 1 4
3-d torus 1 + 3 + 3 + 1 8
4-d torus 1 + 4 + 6 + 4 + 1 16

Torus TD (1 + 1)D 2D

Hyperball BD 1 + 0 + 0 + · · · 1
Sphere SD 1 + 0 + 0 + · · ·+ 1 2
TD × Bd 2D × 1 2D

TD × Bd can be regarded as the weighted digraph below

Gfree
TD×Bd = D

(cycle)
1 □ · · · □D

(cycle)
D □D

(path)
D+1 □ · · · □D

(path)
D+d

w(e ∈ Gµ) = γµ
(5.5)

for Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
. For Thm. 3, the maximum number of fermion species is

max [#species ] = 2D.
From these facts, we propose a new conjecture on the number of fermion species on

the discretized torus, hyperball, their direct-product space, and hypersphere. Hereafter,
we denote these manifolds as M. The conjecture is as follows:

Conjecture 1. We firstly impose the following five conditions on the free fermion action
of the discretized manifolds ∗M:

i. Difference operator; we adopt the anti-symmetrized adjacency matrix as the matrix-
representation of lattice Dirac operator. For this reason, the lattice action is given by
the bilinear form of the anti-symmetrized adjacency matrix and the vector of fermion
fields.

ii. γD+1 hermiticity or axis-symmetric Dirac spectrum; we only consider lattice fermions
with real-axis-symmetric Dirac eigenvalue spectrum. This condition is satisfied by
γD+1 hermiticity in even dimensions. For this condition, we can exclude the cases of
the unphysical system.
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iii. 2D/2 or 2(D+1)/2 spinors; this condition assures the linear independence of the lattice
action for each direction. When D is even(odd), we consider 2D/2(2(D+1)/2) spinors.
This condition prohibits deliberately reducing the number of fermion species.

iv. Locality; this condition leads to finite-hopping actions.

v. Finite volume lattice; Since taking the infinite volume limit changes the maximum
number of fermion species and differs from our conjecture, we discuss the finite volume
case. In other words, we consider only the case of the digraphs with finite vertices.

Our conjecture claims that, as long as these conditions hold, the maximum number of
species of free fermions on the digraph regarded as the lattice-discretized D-dimensional
manifold is equal to the summation of Betti numbers βr(M) over 0 ≤ r ≤ D for the
continuum manifold M. It is expressed as

max [#species(∗M) ] =
D∑
r=0

βr(M) , (5.6)

where #species(∗M) is the number of fermion species on the weighted digraph regarded
as the lattice-discretized manifold ∗M.

5.2 The theorem for the maximum number of fermion
species

In the previous section, we proposed the conjecture claiming the relationship between the
maximum number of fermion species and the topology of manifolds. In the restricted
manifolds, this conjecture can be proved. This section will mention about a theorem
which claims the non-trivial relation between the maximum number of them and the sum
of the Betti numbers for the restricted manifolds, and we will prove the theorem.

Before this discussion, we prove a novel topological lemma.

Lemma 1. For the manifold M = M1 ×M2 × · · · ×MD with Mµ ∈ {S1, I}, the sum of
all Betti numbers for the manifold M is equal to the product of the summation of zeroth
and first Betti numbers in each manifold Mµ, i.e.

D∑
r=0

βr(M) =
D∏

µ=1

{
β0(Mµ) + β1(Mµ)

}
. (5.7)

When the manifold M is constructed by d circle and (D− d) line segments, this equation
is rewritten as

D∑
r=0

βr(M) =
D∏

µ=1

{
β0(Mµ) + β1(Mµ)

}
= 2d . (5.8)

It means that the sum of all Betti numbers for the manifold M =M1×M2×· · ·×MD

with Mµ ∈ {S1, I} is given by the number of the circles. This theorem can be proved
using a topological theorem called the Künneth theorem.
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Proof. Firstly, we show the case of D = 2. The manifold is M = M1 ×M2 with Mµ ∈
{S1, I}. Accordingly, what we have to do is to prove

2∑
r=0

βr(M) =
2∏

µ=1

{
β0(Mµ) + β1(Mµ)

}
=
{
β0(M1) + β1(M2)

}{
β0(M2) + β1(M2)

}
.

(5.9)

From the Künneth theorem, the r-th homology of the manifold M is written down as

Hr(M) = Hr(M1 ×M2) ≃
⊕

r1+r2=r

Hr1(M1)⊗Hr2(M2) . (5.10)

where Hr(M) stands for the r-th homology of manifold M . Since the r-th Betti number
is defined as the rank of the r-th homology, the sum of all Betti numbers is

2∑
r=0

βr(M) =
2∑

r=0

rankHr(M)

=
2∑

r=0

[ ∑
r1+r2=r

{
rankHr1(M1) · rankHr2(M2)

}]

=
2∑

r=0

[ ∑
r1+r2=r

βr1(M1)βr2(M2)

]
.

(5.11)

Now, we can restrict rµ in βrµ(Mµ) to 0 ≤ rµ ≤ 1 since the Betti number of circle S1 or
the line segment I are

βrµ(S
1) =


1 rµ = 0

1 rµ = 1

0 otherwise
, βrµ(I) =

{
1 rµ = 0

0 otherwise
, (5.12)

respectively Accordingly, the right-hand side in Eq. (5.11) is

2∑
r=0

[ ∑
r1+r2=r

βr1(M1)βr2(M2)

]
= β0(M1)β0(M2) + β0(M1)β1(M2) + β1(M1)β0(M2) + β1(M1)β1(M2)

=
{
β0(M1) + β1(M2)

}{
β0(M2) + β1(M2)

} (5.13)

because of 0 ≤ r = r1 + r2 ≤ 2. As a result, we can prove that the equation in Eq. (5.9)
holds.

Secondary, we show the case of D > 2. Here, we assume the summation of Betti
numbers over 0 ≤ r ≤ D − 1 satisfies the following equation,

D−1∑
r=0

βr(M1 × · · · ×MD−1) =
D−1∏
µ=1

{
β0(Mµ) + β1(Mµ)

}
. (5.14)
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The sum of all Betti numbers for the manifold M =M1 × · · · ×MD is obtained as
D∑
r=0

βr(M) =
D∑
r=0

[ ∑
r1+r′=r

βr1(M1)βr′(M2 × · · · ×MD)

]

= β0(M1)
D−1∑
r′=0

βr′(M2 × · · · ×MD) + β1(M1)
D−1∑
r′=0

βr′(M2 × · · · ×MD)

(5.15)

since βD(M2 × · · · ×MD) = 0 and β−1(M2 × · · · ×MD) = 0. By use of the assumption,
the sum of all Betti numbers results in

D∑
r=0

βr(M) = β0(M1)
D−1∑
r′=0

βr′(M2 × · · · ×MD) + β1(M1)
D−1∑
r′=0

βr′(M2 × · · · ×MD)

= β0(M1)
D∏

µ=2

{
β0(Mµ) + β1(Mµ)

}
+ β1(M1)

D∏
µ=2

{
β0(Mµ) + β1(Mµ)

}
=

D∏
µ=1

{
β0(Mµ) + β1(Mµ)

}
.

(5.16)

Therefore, Eq. (5.7) holds for the manifold M =M1 × · · · ×MD with Mµ ∈ {S1, I}.
Finally, we show the equation in Eq. (5.8). When the manifold M is constructed by

d circles and (D − d) line segments, the right side in Eq. (5.7) is

D∏
µ=1

{
β0(Mµ) + β1(Mµ)

}
=

∏
µ∈Scircle

{
β0(S

1) + β1(S
1)
} ∏

µ∈Sline

{
β0(I) + β1(I)

}
= 2|S

circle|

(5.17)

where Scircle ≡ {µ |Mµ = S1} and Sline ≡ {µ |Mµ = I}. Since |Scircle| = d, we have
shown Eq. (5.8).

In our conjecture, we assumed arbitrary manifolds. However, we consider the restricted
manifolds, which constructed by the directed product of only the circle S1 and the line
segment I = [0, 1]. It is expressed as

M =M1 ×M2 × · · · ×MD (5.18)

for Mµ ∈ {S1, I}. Furthermore, the circle and the cycle digraph are homeomorphic, and
the line segment is homeomorphic to the simple directed path, i.e. S1 ≃ D(cycle) and
I ≃ D(path). These facts will be used in the later proof. We obtain the following theorem.

Theorem 4 (lattice fermion and topology). The number of fermion species of the free,
massless and naive lattice Dirac operator is equivalent to the sum of all the Betti numbers
of the manifolds, which is M = M1 ×M2 × · · · ×MD with Mµ ∈ {S1, I}, on which the
lattice fermion is defined:

max [#species(∗M) ] = max

[
dim (kerAas(

∗M))

rank γ

]
=

D∑
r=0

βr(M) (5.19)
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where the lattice-discretized manifold ∗M as ∗M = ∗M1×· · ·×∗MD with ∗Mµ ∈ {∗S1, ∗I}.
For generic case of the number of vertices (lattice sites) in G, we have

#species(∗M) =
dim (kerAas(

∗M))

rank γ
≤

D∑
r=0

βr(M) . (5.20)

It means that the number of fermion species on the lattice-discretized manifold ∗M
determines upper bound by the topology of the digraph corresponding to the continuum
manifold M.

We speculate that the theorem holds for massive fermions or other lattice fermion
formulations since the introduction of mass or the modification of fermion actions never
increase the number of femrion species of free fermions.

Proof. By use of Thm. 3, S1 ≃ D(cycle), and I ≃ D(path), the maximum number of femrion
species on the directed and weighted graph G in Eq. (3.22) is

max [#species(G) ] = max

[
dim (kerAas(G))

rank γ

]
=

D∏
µ=1

{
β0(Gµ) + β1(Gµ)

}
=

D∏
µ=1

{
β0(Mµ) + β1(Mµ)

}
=

D∑
r=0

βr(M) .

(5.21)

Furthermore, by taking the weighted digraph G to be equal to the 2-skeleton (only vertices
and edges) of the the lattice-discretized manifold ∗M, we can prove

max [#species(∗M) ] = max

[
dim (kerAas(

∗M))

rank γ

]
=

D∑
r=0

βr(M) . (5.22)

Furthermore, we can also prove

#species(∗M) ≤
D∑
r=0

βr(M) (5.23)

Since #species ≤
∏D

µ=1 {β0(Gµ) + β1(Gµ)}.
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Chapter 6

Summary and discussion

In this chapter, this thesis summarizes my research on fermion species of lattice fermions in
three parts. First, I will summarized Next, I will summarize the new formulations of lattice
fermions using spectral graph theory and discuss further application of this formulation.
And finally, I will summarize the non-trivial relation between lattice fermions and the
topology and discuss very rich understanding of this this relation.

6.1 Lattice fermions as spectral graph theory
In this thesis, we have studied the novel formulation of lattic field theory using spec-
tral graph theory and the relation between the fermion species and the Betti numbers of
graphs. We had shown that the lattice fermion on the finite volume D-dimensional hyper-
cubic lattice with the periodic boundary condition and Dirichlet boundary condition can
be represented as the directed and weighted graph constructed by the cartesian product
of the cycle digraphs and the simple directed paths below

G = G1 □G2 □ · · · □GD

w(e ∈ Gµ) = γµUn,µ

(6.1)

for Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
. In particular, the lattice fermion on torus lattice (with only

the periodic boundary condition) can be represented as the directed and weighted graph
constructed by the cartesian product of only the cycle digraph,

G = D
(cycle)
1 □D

(cycle)
2 □ · · · □D

(cycle)
D

w(e ∈ D(cycle)
µ ) = γµUn,µ .

(6.2)

And the lattice fermion on hyperball lattice (with only the Dirichlet boundary condi-
tion) can be represented as the directed and weighted graph constructed by the cartesian
product of only the simple directed path,

G = D
(path)
1 □D

(path)
2 □ · · · □D

(path)
D

w(e ∈ D(path)
µ ) = γµUn,µ .

(6.3)
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For the weighted digraph G, we have introduced a novel matrix associated with the graph,
called as “anti-symmetrized adjacency matrix” Aas(G). By use of this matrix, the lattice
fermion action for the weighted digraph is given by the bilinear form of the matrix and
the vector of fermion fields, i.e. S = ψ̄Aas(G)ψ. We had shown that it holds even if it is a
free theory. Furthermore, the number of fermion species is derived by the cycle digraphs
with even vertices. However, the maximum number of them is uniquely determined by
the topology of graphs (or the number of cycle digraph). We had shown the number of
fermion species on varous lattice as follows:

• Product space of T 1-lattice and B1-lattice (or the weighted digraph in Eq. (6.1)):

The number of fermion species is given by the number of the cycle digraphs with
even vertices and the number of the simple directed paths with even vertices. If the
weighted digraph contains the simple directed paths with even vertices, there are
no fermion species in the theory. Meanwhile, if the weighted digraph contains no
simple directed paths with even vertices, the number of fermion species is the cycle
digraphs with even vertices powers of two. It is expressed as

#species =

{
2|S

c,e| |Sp,e| = 0

0 |Sp,e| ̸= 0
(6.4)

where |Sc,e|, |Sp,e| are the number of the cycle digraphs with even vertices in the
weighted digraph and the number of the simple directed paths with even vertices in
the weighted digraph, respectively. The maximum number of fermion species can
be derived by the number of the cycle digraphs. The expressed equation is

max [#species ] = 2|S
c| (6.5)

where Sc is the number of the cycle digraphs.

• Torus lattice:

The number of fermion species on torus lattice is given by the number of the cycle
digraph with even vertices below

#species = 2|S
c,e| . (6.6)

And the maximum number of them is equal to the number of cycle digraphs powers
of two. It other words, it is equal to 2 to the number of dimensions. It is expressed
as

max [#species ] = 2|S
c| = 2D (6.7)

where D is the number of dimensions.

• Hyperball lattice:

The number of fermion species for the hyperball lattice depends on whether the
simple directed path with even vertices is included in the whole weighted digraph
below

#species =

{
1 |Sp,e| = 0

0 |Sp,e| ̸= 0
. (6.8)
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As this equation shows, there is one fermion species as the maximum number of
them.

In addition to these lattices, we had shown the lattice fermion on the discretized
sphere, where we perform discretization and put a fermion on the lattice in a special way.
In this case, by taking the weighted digraph equivalent to the 2-skeleton (only vertices and
edges) of the discretized sphere, the lattice action is also obtained by the bilinear form
of the anni-symmetrized adjacency matrix for the weighted digraph and the vector of the
vector of fermion fields. And the maximum number of fermion species can be derived as
two, even in arbitrary dimensions.

Therefore, once we have a certain weighted digraph and an anti-symmetrized adjacency
matrix associated with the digraph, we can obtain a lattice action corresponding to the
graph and derive the number of fermion species.

We now discuss further application of the novel formulation of lattice fermions in term
of spectral graph theory;

1. Applications of spheres discretised in other ways:

In this thesis, we had taken the method of discretising spherical coordinates. How-
ever, as there are many other discretization methods, we will discuss these methods
and investigate lattice fermions on discretised spheres by using them in the future.

2. Lattice fermions with the gauge field:

One may ask a question whether we introduce the gauge field into our setups. Lattice
fermion operator with the U(1) background link variable giving a non-zero winding
number (topological charge) in two dimensions is regarded as the antii-symmetrized
adjacency matrix with the link variable as the components in spectral graph theory.
By use of this fact, we may be able to re-interpret the index theorem connecting
the topological charges and the Dirac zero-modes in terms of graph theory.

3. Novel lattice fermions:

We can propose novel lattice fermions by translating a matrix with desirable prop-
erties (minimal zero modes, hermiticity or chirality) to a spectral graph, which
corresponds to the lattice fermion. A fermion obtained by this procedure may cor-
respond to a lattice fermion defined on the lattice with various topology.

6.2 The number of fermion species based on topology
In this paper, we have studied operators in lattice field theory using spectral graph theory
proposed new conjecture claiming that the maximal number of exact Dirac zero-modes of
free fermions on the finite lattices we formulate in the paper is equal to the summation of
the Betti numbers of the D-dimensional manifold from which the lattice is constructed.
Our conjecture is summarized as

max [#species(∗M) ] =
D∑
r=0

βr(M) , (6.9)

64



where #species(∗M) is the number of fermion species on the lattice, which is defined as a
lattice-discretized version ∗M of the manifold M. In a sense that this conjecture relates
the number of fermion species to the topology of spacetime manifold, it is complementary
to the Nielsen–Ninomiya’s no-go theorem which claims the emergence of pairs of fermion
species as a result of the cancellation of chiral charges on torus.

Furthermore, we partially proved the conjecture on the relation between the fermion
species and the Betti numbers of the graph. We have proved that the maximal number
of fermion species of a free Dirac operator agrees with the sum of all the Betti numbers
of the graph (lattice) structured as cartesian products of cycle digraphs (T 1 lattice) and
simple directed paths (B1 lattice).

We comment in the case of infinite-volume lattices things. For example, the number
of zero-modes of naive fermion on the one-dimensional lattice hyperball ∗B1 approaches
two in an infinite-volume limit, which is the same number as that on ∗T 1. It is of great
importance that our conjecture relates the topology of a continuum manifold and the
zero-modes on a finite lattice defined by discretizing the manifold.

If the theorem is established for generic cases, it has impacts on the study of lattice
field theory. For example, one can predict the number of exact Dirac zero modes of free
fermions on non-standard lattices such as discretized double torus. Future works will be
devoted to generalization and establishment of this conjecture.

Study on the connection between lattice field theory and graph theory leads to very
rich understanding on both of them. In the upcoming work of ours, we will discuss
the relation between lattice scalar field theory and topological graph theory, where the
massless scalar operator on the lattice is exactly given by the graph Laplacian operator.
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Appendix A

Lattice field theory and graph
Laplacian

A.1 Lattice boson and graph Laplacian
In this section, we show a relation between lattice boson and graph Laplacian. The graph
Laplacian defined in Def. 9 corresponds to the Laplacian in the lattice field theory at
least on the hypercubic lattices. Let G be the graphs corresponds to lattices: TD-lattice,
BD-lattice or their cartesian products in D-dimensions. Therefore, the massless action
of D-dimensional free lattice scalar field ϕn defined on ND hypercubic-lattice sites is
expressed as

Sb = −1

2

∑
n,µ

ϕn (2ϕn − ϕn+µ̂ − ϕn−µ̂) = −1

2
ϕL(G)ϕ (A.1)

with ϕ ≡ (ϕ1,0,··· ,1, ϕ2,0,··· ,1, ϕN,N,··· ,N , )
T. The sum

∑
n,µ is the summation over lattice

site n = (n1, n2, ..., nD) and µ = (1, 2, 3, ..., D) with the intervals being 1 ≤ nµ ≤ N .
L(G) is the graph Laplacian matrix we defined in Def. 9. Thus, the spectrum of free and
massless lattice boson agrees with that of the graph Laplacian matrix.

Indeed, the equivalence between the lattice scalar operator and the graph Laplacian
matrix is not restricted to the above hypercubic lattices. In the continuum limit, in which
the number of vertices approaches to an infinity with the graph topology being intact,
the graph Laplacian results in the continuum Laplacian for an arbitrary lattice or graph
G. Thus, the coincidence in Eq. (A.1) holds for generic lattices as

Sb = ϕBϕ = −1

2
ϕL(G)ϕ (A.2)

where B stands for the lattice operator. As we have shown in Thm. 2, the number of zero
modes of the Laplacian matrix is equivalent to 0-th Betti number β0(G). From this fact,
we derive the following theorem.

Theorem 5 (Lattice scalar zero modes). The number of zero modes of a free and massless
lattice scalar operator B is equivalent to the 0-th Betti number of the graph (lattice) β0(G),
on which the lattice boson is defined.

dim(KerB) = dim(KerL(G)) = β0(G) . (A.3)
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For any simply connected graphs (lattices), the free boson operator has a single zero mode.

This theorem holds for any graph (lattice) in any dimensions as long as the lattice
boson operator is defined as the graph Laplacian. The assertion of this theorem for the
connected graph is consistent with the results in the work [76].

A.2 Wilson term and graph Laplacian
By introducing graph Laplacian, we can well clarify the Wilson fermion in terms of spectral
graph theory. We consider the finite volume four-dimensional hypercubic lattice imposed
the periodic boundary condition in Eq. (2.2). Accordingly, the graph corresponding to
the lattice is given by Eq. (4.34). From Sec. 2.3, the Wilson fermion action is given by

SWf = Snf + SW (A.4)

where Snf is the lattice naive fermion action given by

Snf =
∑
n

4∑
µ=1

ψ̄nγµDµψn =
1

2
ψ̄Aas(G)ψ (A.5)

and SW is the Wilson term given by

SW =
∑
n

4∑
µ=1

ψ̄n (1− Cµ)ψn = ψ̄Wψ, . (A.6)

W is the matrix-representation corresponding to the Wilson term. Then, by use of graph
Laplacian the Wilson term can be rewritten as

SW =
1

2

∑
n

4∑
µ=1

(2ψn − ψn+µ̂ − ψn−µ̂) =
1

2
ψ̄L(G)ψ (A.7)

where L(G) is the Laplacian of the graph (lattice) G. It is notable that the added matrix
W corresponding to the Wilson term is proportional to the graph Laplacian matrix as
W = L/2. Consequently, the Wilson fermion action in terms of graph theory is obtained
as

SWf =
1

2
ψ̄ [Aas(G) + L(G)]ψ . (A.8)

To discuss zero-modes of the anti-symmetrized adjacency matrix (matrix correspond-
ing to the lattice Dirac operator) and the graph Laplacian (matrix corresponding to
Wilson term), we focus the relation below

[Aas(G), L(G)] = 0 . (A.9)

It means that Aas(G) and L(G) are simultaneously diagonalized. As we have shown,
L(G) has a single zero eigenvalue, which is equal to the 0-th Betti number β0 = 1. This
zero-eigenvector of L(G) is also one of the zero eigenvectors of Aas(G), whose number
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is
∑4

r=0 βr(T
4) = 16. In this sense, the Wilson term W = L(G)/2 works to preserve a

single zero-mode associated with β0 = 1 out of the sixteen zero-modes of the naive fermion
D = Aas(G). Therefore, the Wilson term, which is equivalent to the Laplacian matrix
in arbitrary dimensions, works to preserve a single zero-mode associated with β0 = 1 out
of the 2d zero-modes of the naive fermion. This is the graph-theoretical reason why the
Wilson fermion extracts a single degree of freedom from the multiple doublers.
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Appendix B

The diagonalization of Aas(G)

The diagonalization of Aas(G) are obtained as

(
U †Aas(G)U

)
mn

=
D∑

µ=1

γµ

{
D−µ∏
ν=1

µ−1∏
ρ=1

(
1|V |D+1−ν

)
mD+1−νnD+1−ν

(
1|V |ρ

)
mρnρ

Λmµnµ

}

=
D∑

µ=1

γµΛmµnµ

(
D−µ∏
ν=1

µ−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

)

=
∑

µc,e∈Sc,e

γµc,eΛmµc,enµc,e

(
D−µc,e∏
ν=1

µc,e−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

)

+
∑

µc,o∈Sc,o

γµc,oΛmµc,onµc,o

(
D−µc,o∏
ν=1

µc,o−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

)

+
∑

µp,e∈Sp,e

γµp,eΛmµp,enµp,e

(
D−µp,e∏
ν=1

µp,e−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

)

+
∑

µp,o∈Sp,o

γµp,oΛmµp,onµp,o

(
D−µp,o∏
ν=1

µp,o−1∏
ρ=1

δmD+1−νnD+1−ν
δmρnρ

)
,

(B.1)

where Λmµnµ ≡
(
U †
µA

′
as(Gµ)Uµ

)
mµnµ

and nα, mα range from 1 to |V |α. Furthermore, m
and n are

m = m1 +
D∑

µ=2

(
µ−1∏
ν=1

|V |ν (mµ − 1)

)
, n = n1 +

D∑
µ=2

(
µ−1∏
ν=1

|V |ν (nµ − 1)

)
, (B.2)

respectively. Note that these two equations denote a replacement from the label of each
site to the new labels m, n. Here we used

(
1|V |α

)
mαnα

= δmαnα and the properties of
Kronecker product, which is (A⊗ B)Q(i−1)+k,Q(j−1)+l = AijBkl for P -square matrix A and
Q-square matrix B.

To derive the diagonal components of U †Aas(G)U , we need to derive U †
µA

′
as(Gµ)Uµ for

Gµ ∈
{
D

(cycle)
µ , D

(path)
µ

}
. In the case of A′

as(D
(cycle)
µ ), A unitary matrix Uµ is (Uµ)jk ≡
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ξ(j−1)(k−1)/
√
|V |µ with ξ = exp (−2iπ/N) for j, k ∈ V (D

(cycle)
µ ). By contrast, A unitary

matrix Uµ that diagonalizes the matrix A′
as(D

(path)
µ ) is (Uµ)jk ≡ ij cos

(
jkπ

|V |µ+1

)
/
√

|V |µ + 1

for j, k ∈ V (D
(path)
µ ). Accordingly, the components of Λmµnµ are obtained as

Λmµnµ =
(
U †
µA

′
as(Gµ)Uµ

)
mµnµ

=

 2i sin
(

2π(mµ−1)

|V |µ

)
δmµnµ

(
Gµ = D

(cycle)
µ

)
2i cos

(
mµπ

|V |µ+1

)
δmµnµ

(
Gµ = D

(path)
µ

) .
(B.3)

By use of these results, the diagonalization of Aas(G) are(
U †Aas(G)U

)
mn

= 2i

{ ∑
µc,e∈Sc,e

γµc,e sin

(
2π(mµc,e − 1)

|V |µc,e

)(D−µc,e∏
ν=1

µc,e−1∏
ρ=1

δmD+1−νnD+1−ν
δmµc,enµc,e

δmρnρ

)

+
∑

µc,o∈Sc,o

γµc,o sin

(
2π(mµc,o − 1)

|V |µc,o

)(D−µc,o∏
ν=1

µc,o−1∏
ρ=1

δmD+1−νnD+1−ν
δmµc,onµc,o

δmρnρ

)

+
∑

µp,e∈Sp,e

γµp,e cos

(
mµp,eπ

|V |µp,e + 1

)(D−µp,e∏
ν=1

µp,e−1∏
ρ=1

δmD+1−νnD+1−ν
δmµp,enµp,e

δmρnρ

)

+
∑

µp,o∈Sp,o

γµp,o cos

(
mµp,oπ

|V |µp,o + 1

)(D−µp,o∏
ν=1

µp,o−1∏
ρ=1

δmD+1−νnD+1−ν
δmµp,onµp,o

δmρnρ

)}

= 2i

{ ∑
µc,e∈Sc,e

γµc,e sin

(
2π(mµc,e − 1)

|V |µc,e

)
+

∑
µc,o∈Sc,o

γµc,o sin

(
2π(mµc,o − 1)

|V |µc,o

)

+
∑

µp,e∈Sp,e

γµp,e cos

(
mµp,eπ

|V |µp,e + 1

)
+

∑
µp,o∈Sp,o

γµp,o cos

(
mµp,oπ

|V |µp,o + 1

)}
δmn .

(B.4)
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Appendix C

Numerical analysis for D-dimensional
spheres

C.1 Two-dimensional sphere
In this appendix, we show that there are up to two fermion species, or four zero-eigenvalues
in the anti-symmetrized adjacency matrix, on the discretized 2-sphere (graphs like 2-
sphere) labeled by (M,N)1 by numerical calculations:

• If both the number of sites on the longitude direction M and the number of sites
on the latitude direction N are even, there is no fermion species of the matrix-
representation of lattice Dirac matrix. For instance, we consider the discretized
2-sphere labeled by (4, 4), which is depicted in Fig. C.1.

Figure C.1: Discretized 2-sphere labeled by (4, 4).

The anti-symmetrized adjacency matrix of the (4, 4) sphere is

Aas(G
(4,4)

S2 ) =

(
I2 ⊗ A′

as(D
(cycle))4

O2

)
⊗ σ1 +

(
A′

as(D
(path))2 ⊗ I4 V8,2
−V †

8,2 O2

)
⊗ σ2 ,

(C.1)

1Hereafter, we consider the number of sites on the latitude direction N is N > 3. We set the weights
of all edges in the longitude direction to σ1 and the weights of all edges in the latitude direction to σ2.
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with

V8,2 =

(
1 0
0 −1

)
2,2

⊗


1
1
1
1

 . (C.2)

where A′
as(D

(cycle))4, A′
as(D

(path))2 are the 4-square matrix in Eq. (3.26) and the 2-
square matrix in Eq. (3.27) respectively. The matrix-representation of lattice Dirac
operator on the (4, 4) sphere is given by D(4,4) = Aas(G

(4,4)

S2 )/2. The eigenvalues of
this matrix are depicted in Fig. C.2. There is no zero-eigenvalue in D(4,4), which
means that there is no fermion species.

Figure C.2: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
D(4,4). There is no Dirac zero-modes, or equivalently no zero-eigenvalue.

• If M is odd and N is even, there is again no fermion species (no zero-eigenvalue).
For instance, we take the discretized 2-sphere labeled by (5, 4). We numerically find
that the number of zero-modes or the number of femrion species is zero as shown
in Fig. C.3.

• If both of M and N are odd, there is a single fermion (two zero-eigenvalues). For
instance, we consider the discretized 2-sphere labeled by (5, 5). Then, we numerically
find that the number of fermion species (two zero-eigenvalues) is one as shown in
Fig. C.4 and Fig. C.5. We note that a pair of eigenvalues corresponds to a single
fermion since the two-dimensional γ matrices are 2×2 matrices. Thus, the existence
of the pair of zero-eigenvalues shown in Fig. C.4 and Fig. C.5 means that there is a
single fermion.

• If M is even and N is odd, there are two fermion species (four zero-eigenvalues)
on the discretized 2-sphere. For instance, we take two cases, (4, 5) and (6, 9). The
discretized 2-sphere (4, 5) is depicted in Fig. C.6.
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Figure C.3: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
D(5,4). There is no fermion species (no zero-eigenvalue) in D(5,4).
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Figure C.4: Eigenvalue distribution of the matrix-representation of lattice Dirac matrix
D(5,5). The pair of zero eigenvalues corresponds to a single fermion.
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Figure C.5: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the Dirac matrix D(5,5) and the horizontal axis represents the serial
number of eigenvalues. The pair of zero eigenvalues corresponds to a single fermion.

Figure C.6: Discretized 2-sphere labeled by (4, 5).
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The anti-symmetrized adjacency matrix of the (4, 5) sphere is

Aas(G
(4,5)

S2 ) =

(
I3 ⊗ A′

as(D
(cycle))4

O2

)
⊗ σ1 +

(
A′

as(D
(path))3 ⊗ I4 V12,2
−V †

12,2 O2

)
⊗ σ2 ,

(C.3)
with

V12,2 =

1 0
0 0
0 −1


3,2

⊗


1
1
1
1

 . (C.4)

The matrix-representation of lattice Dirac operator on the (4, 5) sphere is given
by D(4,5) = Aas(G

(4,5)

S2 )/2. The eigenvalues of this matrix are depicted in Fig. C.7.
There are two fermion species on 2-sphere (4, 5) since there are four zero-eigenvalues
as seen from Fig. C.8.

Figure C.7: Eigenvalue distribution of the matrix-representation of lattice Dirac opera-
tor D(4,5). There are four zero-eigenvalues corresponding to two fermion species in two
dimensions.

In the case of the (6, 9) 2-sphere, the anti-symmetrized adjacency matrix is

Aas(G
(6,9)

S2 ) =

(
I7 ⊗ A′

as(D
(cycle))6

O2

)
⊗ σ1 +

(
A′

as(D
(path))7 ⊗ I6 V42,2
−V †

42,2 O2

)
⊗ σ2 ,

(C.5)
with

V42,2 =



1 0
0 0
0 0
0 0
0 0
0 0
0 −1


7,2

⊗


1
1
1
1
1
1

 . (C.6)
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Figure C.8: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the matrix-representation of lattice Dirac operator D(4,5) and the hor-
izontal axis represents the serial number of eigenvalues. There are four zero-eigenvalues
corresponding to two fermion species in two dimensions.

The matrix-representation of lattice Dirax operator on the (6, 9) sphere is given by
D(6,9) = Aas(G

(6,9)

S2 )/2. The eigenvalues of this matrix D(6,9) are depicted in Fig. C.9.
There are again two fermion species as there are four zero-eigenvalues in D(6,9) as
seen from from Fig. C.10.

Figure C.9: Eigenvalue distribution of the matrix-representation of lattice Dirac operator
D(6,9). There are two fermion species (four zero-eigenvalues).

We summarize our results in Table. C.1.
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Figure C.10: Eigenvalue distribution is depicted, where the vertical axis represents the
imaginary part of the matrix-representation of lattice Dirac operator D(6,9) and horizontal
axis represents the serial number of eigenvalues. There are four zero-eigenvalues corre-
sponding to two fermion species in two dimensions.

Table C.1: Maximal number of the fermion species on 2-sphere (M,N)

the number of M the number of N maximal # of fermion species
even even 0
odd even 0
odd odd 1
even odd 2

C.2 Four-dimensional sphere
We discuss the discretized four-dimensional sphere. We first consider the discretized four-
dimensional spherical-coordinate system for 4-sphere labeled by four integers (N1, N2, N3, N4)
as

x5 = r cos θ4, x4 = r sin θ4 cos θ3, x3 = r sin θ4 sin θ3 cos θ2, (C.7)
x2 = r sin θ4 sin θ3 sin θ2 cos θ1, x1 = r sin θ4 sin θ3 sin θ2 sin θ1 (C.8)

where r is a radial distance and the four angles are discretized as θ1 ≡ 2π
N1

(n1 − 1) , θi ≡
π

Ni−1
(ni − 1) for i = 2, 3, 4. n1, ni ∈ N run as n1 ∈ [1, N1], ni ∈ [1, Ni]. For simplicity, we

fix a radial distance as r = 1. In a parallel manner to the discussion for 2-sphere, we label
the lattice sites as (n1, n2, n3, n4). And we set the weights of all edges in the nµ-direction
to γµ.

For instance, we take N1 = 4 and Ni = 3 for i = 2, 3, 4. A graph corresponding to the
(4, 3, 3, 3) 4-sphere is depicted in Fig. C.11. The anti-symmetrized adjacency matrix of
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Figure C.11: A graph corresponding to the (4, 3, 3, 3) 4-sphere is the 5-orthoplex inside
Petrie polygon (G

(4,3,3,3)

S4 ).

the graph is given as

Aas(G
(4,3,3,3)

S4 ) =

(
A′

as(D
(cycle))4

O6

)
⊗ γ1 +

 O4 V4,2
−V †

4,2 O2

O4

⊗ γ2

+

 O6 V6,2
−V †

6,2 O2

O2

⊗ γ3 +

(
O8 V8,2

−V †
8,2 O2

)
⊗ γ4

. (C.9)

The matrix-representation of lattice Dirac operator is given by D(4,3,3,3) = Aas(G
(4,3,3,3)

S4 )/2
This matrix D(4,3,3,3) is 10 × 10 square matrix, apart from the γ matrix structure.
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Figure C.12: Eigenvalue distribution of the matrix-representation of lattice Dirac operator
D(4,3,3,3). There are two fermion species in four dimensions, which emerge as eight zero-
eigenvalues in the figure.

Fig. C.12 and Fig. C.13 shows the eigenvalue distributions of the matrix-representtion of
lattice Dirac operator D(4,3,3,3). For the dicretized 4-sphere (4, 3, 3, 3), we find that there
are two fermion species as there are eight zero-eigenvalues of the matrix-representation of
lattice Dirac operator D(4,3,3,3).
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Figure C.13: Eigenvalues of the matrix-representation of lattice Dirac operator D(4,3,3,3).
There are eight zero-eigenvalues corresponding to two fermion species in four dimensions.

By studying other cases, we find that the number of femrion species on the discretized
4-sphere (N1, N2, N3, N4) is two when the number of sites N1 is even and the number of
sites Ni for i from 2 to 4 are odd, as with the case on the discretized 2-sphere (M,N).
We could not find any example where the number of femrion species goes beyond two in
four dimensions too.
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