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Abstract:

We study in this paper how the spectrum of the Laplace-Beltrami operator acting on
2-forms determines curvature of a Riemannian manifold. We see that if the spectrum of
2-forms of an arbitrary Riemannian manifold is equal to the standard sphere then the
preceeding manifold is the standard sphere when its dimension runs 2, 3, 6, 7, 8, 14, 17~178.

1. Introduction and statement of result; Let (M,9) be a compact connec—
ted orientable Riemannian manifold with a Riemannian metric g. The dimension of M is
denoted by m. Let A be the Laplace-Beltrami operator acting on exterior p—-forms on
M (0=<p=m). The Laplacian A acting on p—forms has an infinite sequence

a.n 0= Aip = Aoyp = Asp = Agyp =000 = Ay oo | —oo
of eigen—values each eigen—value being repeated as many times as its multiplicity indicates.
By Specr (M, g), we denote the sequence (1.1). There are several results about the pro-
blem; how the Specr (M, ¢) determines the structure of (M, g).

TueEorREM A. (M.BERGER (1)) Let (M, ¢) and (M, ¢') be compact connected
orientable Riemannian manifolds. Assume that Spec® (M, ‘g) = Spec® (M’, ¢") holds good.
R Then, for m = 2, 3, 4, (M, g) is of constant curvature ¢ if and only if (M, ¢") is of
constant curvature ¢, where the condition that ¥ (M) = % (M") holds is added for m=4.
% (M) denotes the Euler-Poincaré characteristic of M.

TueoreM B. (T.Saxkar (5)) Let (M, g) and (M’, ¢") be compact connected orien—
table Einstein manifolds with dimension 6. Assume that X (M) = % (M") and Spec® (M, g)
= Spec® (M', g") hold. Then (M, ¢) is locally symmetric if and only if (M, ¢") is locally
symmetric. ’

TueoreMm C. (V.X.PaTobt (4)) Let (M, g) and (M, g") be compact connected
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orientable Riemannian manifolds. Assume that Spec? (M, ¢) = Spec? (M', ¢") hold for
p = 0 and p = 1. Then (M, ¢g) is of constant curvature ¢ if and only if (M, ¢") is of
constant curvature ¢ and (M, g) is an Einstein space if and only if (M’, ¢") is an Einstein

space for every m.

TrEOREM D. (S.TaANNO (7)) Let (M, ¢) and (M', ¢') be compact connected
orientable Riemannian manifolds. Assume that Spec® (M, ¢) = Spec® (M, ¢"). Then, for
2= m <5, (M, g is of constant curvature ¢, if and only if (M’ ¢") is of constant

curvature ¢’ = c.

REMARK: THEOREM D is a generalization of THEOREM A,

Taeorem E. (K.I1 (2)) Let (M, g0 and (M’, ¢") be compact connected orientable
Riemannian manifolds. Assume that Spec? (M, g) = Specr (M’, ¢") hold for p = 0, 1.
If (M, g) is a locally symmetric Einstein space, then (M, ¢") is also locally symmetric.

TreorREM F. (S. Tanno [8)) Let (M, g) and (M’, ¢’) be compact connected
orientable Riemannian manifolds. Assume that Spec! (M, g) = Spect (M’, ¢") holds.

(i) Form = 2,3 or 16=m <93, (M, g) is of constant curvature ¢ if and only if
(M, g") is of constant curvature c.

(ii) For m=4, if M and M’ have the same Euler-Poincaré characteristic ¥ (M) =
X(M"), then (M, g) is of constant curvature ¢ if and only if (M’, ¢") is of constant curva—
ture c.

(iii) For m = 3 or m = 15, (M, g) is Einstein space if and only if (M’, g)is an

Einstein space.

In this paper we study the effect of Spect (M, g) = Spect (M, ¢"). For this we apply
Patodi’s result (4] on coefficients of Minakshisundaram-Pleijel-Gaffney’s asymptotic expan—

sion. The result obtained is following:

THEOREM: Let (M, g) and (M', g") be compact conmected orientable Riemannian
manifolds. We assume that Spect. (M, g) = Spect (M, g") holds good. T‘hen

(i) form = 2,3,6,7,8,14, or 17 ~ 178, (M, g) is of constant curvature K if and
only if (M', g") is of constant curvature K,
and

(ii) for m = 15, or m =16, (M, g) is an Einstein space if and only if (M’ g") is
an Etnstein space.

THEOREM says, in particular, that for m =2, 3, 6, 7, 8, 14, 17 ~ 178, Spec? (M, g) =
Spec? (S™, g.,) implies that (M, ¢) is isometric to an Euclidean sphere (S™, g¢,).
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2. Proof of the theorem; By R = (Ri;y,), p = (pjx) = (R;w) and 7, we denote
the Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature,
respectively. We use the Minakshisundaram-Pleijel-Gaffney’s asymptotic expansion which

gives us the relation between the spectra of A and the curvature tensors of (M, @),

@1  Zerp (e Iv U TT (Gop + Gipt + Goplt + ol + oo ).

It may be noticed that instead of Spec® (M, g) =3Spec® (M'. g"), we only use G =
a'y,, for £ = 0,1, 2.
Go,ps G1,p and Gs,p in (2.1) were calculated by V.K.Patodi (4]. (cf. Go,0, @10 and ag,0 were
calculated by M. Berger [ 1) and H.P.Mckean-I1.M.Singer [3 ). as0 was calculated by
T.Sakai [ 5] and as,; was by KIi [2].) We have

2.2) @, .= (Q)fMdM ,

2 _
@2.3) @15 2 —fM L 1132m + 24 wdM

and
@0 =[G (D + C Do+ Co (m2) RI?) U
where
2
m 21SZZ+IQO m=> 4,
@5 € m2) = —— m=3,
—m2 + 181m — 1080
360 mz4,
@.6) C: (m,2) = 29 m= 3,
60
1 _
T80 =2,
and
2
m 3§£+24O e
@D G m =] -7 m=3,
1 _
180 m=2

The Weyl’s conformal curvature tensor C = (Cij), Cijrr = Gir Cjrss is
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@.8) Cijri = Riju — s 9 — 05 Gux + i P — Gir Oux)

m — 2

1
+ (m—1) (m—2) @i g — i gu) 7 .
Now we put
1
2.9 G=Gw = (o — T

@10) G (g) =[GE=[oF— 5,
and

@I C (9= [CP=IRE~ wg [0} + Gy © "= 3.

Then G (90 = 0 holds; the equality holds on M if and only if (M, ¢g) is an Einstein
space. C (¢) = 0 holds also. By (2.10) and (2.11) | R]? and | p |* are written by G (g),
C (g) and 2. Hence when m = 3, from (2.4), (2.10) and (2.11), we get

C. (m, Cs (m,
Ej;“ 2 fn(yg”‘_?) ] 2 +Cs (m,2) C(9)

(2.12) @ = fM{[Cl m,2) +

t Gy + S (o) an

We denote the coefficients of 72 and G (g) by ¥ (m) and @ (m) respectively, i. e.

(2.13) 0@m) = Cl(m2) + _4%<_m_22> ,
@10 @) =Cmp+ Dy 20D,

Then the following (2.15) and (2.16) are directly derived from (2.5), (2.6), (2.7),
(2.13) and (2.14) .
O (m) = — m (m? — 187Tm? + 1566m — 3120)
2.15) m= 4.

1
¥ (m) = 750m (m—1) (5Gmt — 132m® + 1093m2 — 3246m + 3120)

Q1) 0@ =15 . TO=

From (2.1) ~ (2.4), the condition Spect (M, g) = Spect (M’, g") implies
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@.17) fMdM - fM,dM/ ,

@1 [yram = [y, <an

and

J 3 €€ (9) +0 (m) @ (9 + ¥ (m) ) dM
@.19
: =[G D C @ +0 GG + ¥ ) du

Now we assumeZfurthermore that (M, ¢) is of constant curvature K. Then C (g)=
G (g9) = 0 hold on M and 7 is constant on M. Therefore by (2.19), we get

fleca (m, 2) C (g + 0(m) G (gH) dM’
2.20)
= ¥ (e at — [ et an)
By using the Schwarz’s inequality for 7/, we get

Cf gy ame
[ ypeanr

v where the equality holds if and only if 7’ is constant on M’. On the other hand, by
(2.17), (2.18) and the fact that 7 is constant on M, the right-hand side of (2.21) is

@.21) fM,r'z M’ >

f uc dM. So we get the inequality

@2 [yedn— [y an <o

where the equality holds if and only if 7/ is constant and equal to 7.
Therefore C (¢) = 0, G (¢ = 0 and v/ = constant (= 7) hold for m such that

@.23) m=3 C (m2) >0, O0(m) > 0and ¥ (m) = 0.

We see easily that m which satisfies (2.23) runs 3,6, 7, 8, 14, or 17~178.

It is known that C (¢") = 0 and G (¢") = 0 hold simultaneously if and only if (M’'g"
is of constant curvature. Hence (i) of the theorem is proved for the case m = 3,6,7,8,
14, or 17~178.

When m = 2, (M, ¢g) is automatically conformally flat, so we return to the original
integral formula (2.4). Let K and K’ be the Gaussian curvatures of (M, g) and (M, g")

respectively. Then it is well-known that
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(2.24) |R]P = 4K?, |p]P = 2K?, 1> = 4K*

hold good. And we get

2
@25 1= [ e dM

Therefore the condition Spect (M, g) = Spect (M', g") implies
Jagtt = f i’
@.26) [ peat = [47 an’

fM‘erM ::fM,r'Z am’ .

If (M, ¢) is of constant curvature, then 7 is constant. Similarly as in (2.21), by using

the Schwarz’s inequality, it is derived that 7’ is also constant. This proves (i).

Finally we show (ii). When m = 15 or m = 16, Cs (m,2) = 0 holds good. Now we
assume that (M, ¢) is an Einstein space, ie. G (¢) = 0. Then (2.19) implies

@2D [y 0mGC@AN =¥ @) ([ yedd— [ ycrany

We see that erz dM —fM,r’Z dM' < 0. The proof is similar to the above discuss-
ion. Therefore ®(m) >0 and F(m) =0 imply G (") =0, i.e. (M'g" is an Einstein space.
This completes the proof of the theorem.
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