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Abstract:

In this paper, we study the rigidity of surfaces in the unit 3-sphere with constant
mean curvature. Under the condition that the surface is complete and has non-positive
Gaussian curvature, we see that the surface must be flat and locally the standard product

of circles.

§1. Introduction. H.B.Lawson, Jr. pointed out in his paper (7] that there is an
explicit duality between minimal surfaces in the unit 3-sphere S® and surfaces of constant
mean curvature 1 in the 3-dimensional Euclidean space ES3.

We can generalize this as follows : there is an explicit duality in the sense of H.B.
Lawson, Jr. between surfaces of constant mean curvature H in 83 and surfaces of constant
mean curvature € ( H2+ 1)% in E3, In this paper we consider a certain property of surfaces
of constant mean curvature in S3 which is explicitly dual to that of surfaces of constant
mean curvature in E3,

We get the following theorem and corollary.

Treorem:  Let (M2, g) be an oriented, complete 2-dimensional Riemannian mansfold
with a Riemannian metric g and mnon—positive Gaussian curvature and x: M*—> S3 be an
isometric immersion of M2 into S® with constant mean curvalure H.

Then M2 is flat and x: M2 —> 83 is locally the standard immersion of product of circles
z St (@) xX8! (@) —> S8,

where
ay = 1
ot 4 1Y tat aer+nhHE
o — (E+ e+ 1)h

ot (2 4+ 1)t
and S (1), St (&) mean circles with radit a; and a, respactively.
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By the standard immersion we mean the immersion explained in S.S.Chern (2] p. 31-32.

COROLLARY: In the above theorem,assume that M? is compact. Then up to rotations of
83, x ¥ M2 —> 8% is the standard immersion of product of circles. ’

REMARK 1. This corollary is not explicitly dual to the surfaces in E3, because any

compact surfaces with non-positive Gaussian curvature can not be immersed in E3,

e §2. Preliminaries. Let M2 be an oriented 2-dimensional Riemannian manifold

and
¢ @.1)  x}Mr—> S8,
@.1) % M:—>E?
be an isometric immersion of M? into 83 (resp. E3) .

Since M2, S® and E?® are oriented, we can choose globally the field & (resp. E) of the
unit normal vectors of the image of the immersion (2.1) (resp. (2.1)") such that {e, e, §}
(resp. {e1, e E}) belongs to the positive orientation of S3 (resp. E®) where {e;, €3}
is a positively oriented frame in 2,

Let h (resp. h) be the second fundamental form of the immersion 2.1) (resp. 2.1)D
with respect to § (resp. E). Around any fixed point of M2 we can choose local fields of
positively oriented orthonormal vectors of M2, say e;, €. Let the components of h (resp. 7&)
with respect to the frame {e;, €;} be (hi;) (resp. (7;“)), where ¢, j run through the range
1,2. Then the Gauss, Codazzi equations of the immersion (2.1) (resp. (2.1)") are

.2 K =1 + (hihey — his?),
@.2) K =0 + (77:117;22 - TL’IZZ).

(2.3) hijk = hikj,
) ijk = 1,2
(2.3)/ Ejk = ’Tikj,
’ where K is the Gaussian curvature of M2 and hj. (resp. %m) is covariant derivative of h

(resp. ﬁ) in the direction of e.
The mean curvature H (resp. ﬁ) of (2.1) (resp. (2.1)"is given by definition

@.49) H = % (hir + hee)
@.4)! FI: —;— (Z11 + Ezz) .
§3. Proof of the Theorem, First we prove the following two lemmas which

— 9 —
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are direct extensions of those of H.B.Lawson, Jr. [ 7].

LEMMA 1. Let x: M2 —>8S3 be an isomebric tmmersion of constant mean curvalure

H and h be the second fundamental form of this immersion. Then

+13fH=0

— 1t fH<O
is a symmetric (0, 2)-tensor field on M? which sutisfies the Gauss, Codazzi relations for an

@G.1D h=h + (e(H:+ 1)%— H) g, where ¢ = sgn (H) :{

isometric immersion of M? inlo E®,
The trace ofﬁ is 2¢ (H? + 1)%.

PROOF. Since H is constant, the Codazzi relation (2.3)’ is obvious. It is enough to
show the Gauss relation. To show it, let {e;, e} be a local field of orthonormal frames as

in §2. With respect to these frames, (3.1) reduces to

Eu = hy + e (H? +1)%— H,
',{22 = hZZ +. € (HZ +1 )%‘_ H,
7{12 = h12,
and so
;;:117;22 - 5122
= huhss — b + CeCH2 + 10 = H) (uy+ ) + Ce (a2 1P — e

K —1+2HCem +1) —a) + te@ + 1) — 5

Il

=K

holds good, where we have used (2.2) and (2.4).

Q.E.D.
LEMMA 2, Let x: M?—> E*® be an isomelric immersion of constant mean curvalure
H where | H| = 1 and h be the second fundamental form of this immersion. Then
(3.2) ho=nh+ (e —1)— M) g, where € = syn(H)= {+ 1if H=0
— 1t/ H<O

is a symmetric (0, 2)~tensor field on M? which salisfies the Gauss, Codazzi relations for an
isometric immersion of M? info S3.
The trace of h is % (;[2 — 1)%.

Since the proof of Lemma 2 is completely similar to that of Lemma 1, we may omit
it.
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When M2 is simply—connected, Lemma 1, Lemma 2 and the fundamental theorem on
surfaces in space forms (cf. for example S.Sasaki [ 9])) tell us that the following lemmas

are true.

LEmma 1. Let x: M2 —> S3 be an isometric immersion with constant mean curvature
H and h be the second fundamenial form of this immersion. If M2 is simply—connected, then
there exisls an isometric immersion x: M2 —> E® whose second fundametal form h satisfies

@3.1).
LEmma 2. Let %: M>—>E?® be an isomelric immersion with constant mean curvature
* H such that |H| = 1 and h be the seeond Sundamental form of this tmmersion. ILf M2 is

simply-connected, then there exists an isometric immersion x: M2 —> S whose second fum—
damental form h satisfies (3.2).

REMARK 2. Let £5® be a family of isometric immersions of the simply-connected
surface M? into S® with constant mean curvature and £,° be a family of isometric imm-
ersions of M? into E® with constant mean curvature whose absolute value is no less than
1. Then LEmMMA 1’ (resp. LEMmA 2/) induces a mapping @ (resp. ¥) of £s® (resp. £:%) into
825 (resp. 25%).

0¥ = identity,
and
¥o0 = identity

hold good.

Proof of the THEOREM: Let M2 be the universal covering manifold of M2 with the
natural Riemannian metric and 7 be the cbvering projection. It is known that if M2 is
complete, then jf\z is also complete. Let /x\ be the composition of 7 and %, i.e., ;c\——— Xort.
Then %: M2 —> 8% is an isometric immersion and locally coinsides with a: M2—> S5,
So the mean curvature of % Dt —> 8 is constant H and the Gaussian curvature i’4 of
J/’I?Z satisfies/K\ = Komr < (0. By virtue of LEMMA 1/, there exists an isometric immersion

x: /1122—>E3 whose second fundamental form satisfies
~ AN % N
h=h+ (e(A> +1)* — H] g,

[ . N\ N /\ . . . .
where h is the second fundamental form of x: M2—> S3 and ¢ is the Riemannian metric
P
of Mz2.
s ~ R .
Since K < 0, M? is complete and the mean curvature of x: M2 —> E3 is non-zero
) s
constant ¢ (H? + 1)%, we see that K = 0 holds identically by a theorem of T. Klotz—
R. Osserman [ 6] to the effect “If %: M?—> E? is an isometric immersion of mon—zero
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constant mean curvature, M? is complele and the Gaussian curvature of M? is non-positive,

then M? is flat”. Hence the Gaussian curvature of M2 is identically zero.
Let %y, k; be the principal curvatures of x: M2 —> 83, Then the Gauss equation and

the mean curvature H can be written as follows;
3.3 K =1+ kik, =0,

@3.4) ki + k: = 2H.

Therefore %, and k. are constant. On the other hand, the second fundamental form of

the standard immersion z: St (%) X 8! (@) —> S? has the form

[ 0
@
(3.5) ' where a2 + a2 = 1.
[
0 .
[¢]

We solve a;, g, under the conditions

(3.6) a? 4+ a2 = 1,

. _ & _ og
G.D a . 2F
and we get
G = 1
ot (e DY E+ e+ OB
(3.8)
o CH+(H+ 1

o a4+ 1Ot

When a;, a; are as in (3.8), the second fundamental form of
x: M2 —> S?

and

z: St (&) x St (@) —>8S?
coinside locally. Hence they are locally isometric to each other by the fundamental theo-
rem on surfaces in 83 This completes the proof of the theorem. Q.E.D.
§4. Remarks, Lemma 1’ seems to derive directly the following famous result
(i1) and recent work (iii) from (i).
(i) and (ii), (iii) are explicitly dual to each other in the sense of H.B.Lawson, Jr. (7]

by virtue of Lemma 1’ and Lemma 2’.

(i) Let x: M2 —> E3 be an isometric immersion with non-zero constant mean
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curvature. If M? is homeomorphic to 82, then %: M? —> E* is umbilical and ;(Mz) is a
2-sphere in E3. (H.Hopf (3))

(i) Let x: M2 —> S3 be a minimal immersion. If M? is homeomorphic to S2,
then x : M2—> 8% is totally geodesic and x(M?) is a great 2-sphere in S3 (F.J.
Almgren (1))

(iii) Let x: M2 —> S® be an isometric immersion with constant mean curvature.
If M2 is homeomorphic to S?, then x: M2 —> 83 is umbilical and x (M?) is a great or
a small 2-aphere in S3. (K.Kenmotsu [ 4])

T.Klotz-R. Osserman( 6 J studied also the case where K is non-negative;

(iv) Let x: M2——>E® be an isometric immersion with constant mean curvature.
If M2 is complete and has non-negative Gaussian curvature, then x: M2—> E® is a

2-sphere, a plane or a right circular cylinder in E®. (T.Klotz-R.Osserman [ 6 ])

The partial extensions and an explicitly dual expression of (iv) were given by
K. Nomizu-B.Smyth (8 ). We can give another proof for the dual of (iv).
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