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ABSTRACT

Fundamental formulations are given for the potential distribution of a
cylindrical and a hollow cylindrical objects with a rotational symmetry. This
procedure is performed by solving Laplace's equation in polar coordinates us
ing the method of separation of variables. By limiting the inner radius of a
hollow cylinder to zero, it can be proved that all the formulations for the hol
low cylinder become Lo those for the cylinder. A few examples of numerical
analysis are quantitatively done for the boundary conditions with constant
potential value on the cylindrical and hollow cylindrical surface. The ob
tained data with respect to convergence of a series sum and resultant potential
distribution are presented for the different boundary conditions.
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1. Introduction

The potential problem in cylindrical and hollow cylindrical objects with a rotational symmetry

is applied to the charge calculations of several interesting guard-ring capacitors!). The guard-ring

capacitor consists of an extensive flat electrode 1 at some distance opposite to a much smaller sec

ond electrode 2, which is closely surrounded by an extensive flat electrode 3, called the guard-ring

electrode. Two typical configurations of a guard-ring capacitor are shown in Figure 1 (a) and (b).

In the volume of the guard-ring capacitor, Laplace's equation is valid. In order to obtain solutions

of the potential we devide the axial cross section into areas I and II as shown in Figure 2(a) and (b)

corresponding to that in Figure 1 (a) and (b). The subject in Figure 2 are essentially the superposi

tion of the potential problem in cylindrical and hollow cylindrical objects with a rotational symme
try.
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Figure 1: Axial cross section of two typical configurations of a guard-ring capacitor; (a)

electrode 1 encloses guard-ring 3, and (b) guard-ring 3 encloses electrode 1.
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Figure 2: Axial cross section divided into two areas I and II. Two configurations (a)

and (b) correspond to that in Figure 1 (a) and (b).

Laplace's equation in rectangular coordinates has the following form:

8'V
+

8x'
8'V 8'V+ =0
8y' 8z'

where V is the potential and x, y, z are the three rectangular coordinates. By transforming from

(x, y) rectangular coordinates to (p, ¢) polar those, eq. (1) become to

8'V 1 8V 1 8'V 8'V-- + + - -- + = 0 (2)
8p' p 8p p' 8¢' 8z'
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The boundary conditions have a rotational symmetry so that the potential V cannot be a function of

the coordinate ¢. Laplace's equation then reduces to

a'v 1 av a'v--+ + =0
a p 2 p ap az'

(3)

Using the method of separation of variables, we can express the potential V as a sum of several

products of functions about p and z :

V(p, z) = L R(p) Z(z)

where R ( p) and Z (z) can be found by proposing

d'R 1 dR + a 2R = 0
d'Z

a 2 Z-- + --- ,
dp' p dp dz'

and

d 2R 1 dR
-/3 2 R=0

d'Z
=-/3'Z-- + --- , -

dp' p dp dz'

(4)

(5)

(6)

respectively. The solutions of eqs. (5) are given by a combination of normal Bessel functions and

hyperbolic functions

V(p, z) L (Aasinha z + Bacosha z) {CaJo (a p) + D a Yo (a p)}
a

and the solutions of eqs. (6) by a combination of modified Bessel functions ')-4) and trigonometric

functions

V(p, z) = L (A ilsin/3z+ Bilcos/3z) {Cillo (/3p) + D il K o(/3p)}
!3

(8)

The values of the coefficients A, B, C, D and the eigenvalues a, /3 can be found by adapting the

final solution V (p, z) to the boundary conditions. Both of eqs. (5) and eqs. (6) with a = /3 = 0

bring the particular solutions of

d
2

R + ~ dR = 0
dp' p dp

The solutions of eqs. (9) can be given as

d 2Z
= 0 .

dz'
(9)

Vo(p, z) = Ro(p) Zo(z) (ADz + Bo) (CoIn p + Do) (10)
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2. Laplace's Equation in a Cylindrical Object

An axial cross section of a cylindrical object with a rotational symmetry is shown in Figure 3.

Figure 3: Axial cross section of a cylindrical object with a potential distribution on the
cylinder surface.

We assume the following boundary conditions:

z = L; V = £, ( p ) , z = 0; V = £, ( p ) , p = a; V = £3 (z) (11)

The required solution V (p, z) in eq. (3) can be given as the superposition of the following three

those such as V, (p, z), V, (p, z) and V3 (p, z).

(1)

with

8'V, 1 8 V,+--- +
8p' p 8p

8'V,
=0

8z'
(12)

p = a; V, = 0, z = 0; VI = 0, and z = L; VI = £, (p) (13)

(II)
8'V, 1 8 V,+ --- +
8p' p 8p

8'V,
=0

8z'
(14)

with

p = a; V, = 0, z = 0; V, = £, (p), and z = L; V, = 0 . (15)
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(DI)

with

a'V3 1 a V 3+ --- +
ap' p ap

a'V3
=0

az'
(16)

p=a; V 3 =[3(Z), z=O; V3=0, andz=L; V 3 =0 (17)

In both cases of the boundary condition (I) and (II), the coefficient Da in eq, (7) becomes to

zero because Neumann function Yo (a p) diverges at p = 0, Then, the condition V' o,' = 0 at p = a

is satisfied using the zero point as (s = 1, 2, .,,) of Bessel function J 0 (a a), In the case of the

boundary condition (ill), the coefficient D~ in eq, (8) becomes to zero because the second kind of

modified Bessel function Ko (/3 p) diverges at p = 0, The final results in the potential equations

with eqs. (12) - (17) can be given as follows:

where

V,(P, z) = I AsJo(asp)sinh(asz)
s ~ 1

(18)

2
As = ----------

a'sinh(asL) {J,(aSa)}'

af X[,(X) Jo(asx) dx ,
o

(19)

where

V,(p, z) I AsJo(asp)sinh{as(L-z)}
s ~ 1

(20)

and

2
As = ----------

a'sinh (asL) {J, (asa)}'

af X[,(X) Jo(asx) dx ,
o

(21)

where

V3 (p, Z)
= nn , nnI AnIo(- p) sm (- z)

n~1 L L
(22)

2A n =-----
nn

L 10(- a)
L

L

f . nn
[3 ( n sm (L n d f

o
(23)

3. Laplace's Equation in a Hollow Cylindrical Object

An axial cross section of a hollow cylindrical object with a rotational symmetry IS shown m
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Figure 4: Axial cross section of a hollow cylindrical object with a potential distribution
on the hollow cylinder surface.

Figure 4. We assume the following boundary conditions:

z = L; V = £, ( p ) ,

and

p = a; V = £3 (z) .

z = 0; V = £, ( p ) , p = aD; V= 0

The required solution V (p, z) in eq. (3) can be given as the superposition of the following three

those with the corresponding boundary conditions such as V, (p, z), V, (p, z) and V3 (p, z).

(I)
8'V, 1 8Vl+ --- +
8p' p 8p

8'Vl
=0

8 Z2
~5)

with

p = aD; VI = 0, P = a; V, = 0, z = 0; V, = 0 and z = L; VI = £, (p) (26)

(II)
8'V, 1 8V, 8'V,

=0 ~7)-- + --- + --

8p' p 8p 8z'

with

p= aD; V, = 0, p = a; V, = 0, z= 0; V, = £, (p)

and z = L; V, = 0 ~8)

(III )
8'V3 1 8V3 8'V3

=0 ~9)-- + --- + --

8p' p 8p 8 z'
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p=ao; V3=0, p=a; V3=[3(Z), z=O; V3=0,

and z = L; V3 = 0 . (30)

In both cases of the boundary condition (I) and (IT), the condition VIa" = 0, at p = 0 and p =
a is satisfied using the zero point as (s = 1, 2, ... ) of the definite function W (aa, aao) where

W (x, y) = Jo (x) Yo (y) - Jo (y) Yo (x). Then, in the case of the boundary condition (ill), the

condition V 3 = 0 at p = ao is satisfying using the specific function W' (x, y) = 10 (x) K o (y) - 10 (y)

Ko (x). The final solutions in the potential equations with eqs. (25) - (30) can be given as follows.

VI(P, z) = I AsW(asp, asao) sinh (asz)
s ~ 1

where

v,(p, z) I AsW(asp, asao) sinh {as(L- z)}
s ~ 1

where

1 8 a

As = f xW(asx, asao) [,(x) dxlfx{W(asx, asao)}' dx ,
sinh (a sL)

8
0

8
0

and

(3D

(32)

(33)

(34)

V3 (p, z) (35)

where

2 fL nn
An = - sin (- n [3 (n d f

L 0 L

Finally, we consider a few relations for Bessel and modified Bessel functions'l-4) .

ment x becomes zero the following expressions are valid:

x--o: Jo(x) --1, Yo(x) -- -00, !o(x) --1, Ko(x) -- 00

and

(36)

If the argu-
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W(Xl, x)

W(x" x)

Jo (Xl)
-;> ---

Jo (x,)

WI (Xl, X)

WI (X" X)

10 (Xl)
-;> ---

10 (x,)
(37)

If we let the inner radius ao decreases to zero, it can be proved easily with the aid of eqs. (37) that all

the solutions for a hollow cylindrical object such as eqs. (3D - (36) change into those for a cylindrical

one such as eqs. (18) - (23).

4. A Few Examples of Numerical Analysis

As the basic application of numerical solution, we adopt the boundary conditions with constant

potential value on the cylindrical and hollow cylindrical surface. First, we apply to Laplace's equa

tion in cylindrical object. Substituting L ( p) = C, into eq. (19) for the boundary condition CO, we

can practise the integration over Bessel function and obtain

2ClAs = -----------
aassinh(asL) J,(aSa)

(38)

In Figure 5, we show the convergence of a series sum with eq. (18) at p /a = 0.5 and z/L = 0.9, 0.8.

We select L /a = 1 and 0.1 as the representative size of the cylinder. From Figure 5, we see that the

convergence of a series sum becomes slow as the size of L becomes small. In Figure 6, we show the
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Figure 5; Convergence of a series sum with eq.
(18) at p / a = 0.5 and z /L = 0.9, 0.8.
Full curves correspond to those for L
/ a = 1 and dotted curves for L / a =

0.1 in what follows.

Figure 6: Obtained potential distribution V1 of a
cylindrical object with a rotational
symmetry for the boundary condition
( I) in eqs.(13) and (19) with L (p) = C,.
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obtained potential distribution V, I c, of a cylindrical object for the boundary condition (I),

Because of a rotational symmetry, the constant potential curves in Figure 6 are symmetric with

respect to the central axis with p = 0, and the resultant data are given in semi cross section involv

ing central axis in what follows, In Figure 6, we see that the potential distribution V,/c, is more

diffused as the size of L becomes small. Because the potential distribution V, / c, for the boundary

condition (IT) is symmetric to that V, I c, for the boundary condition (I) with respect to the line

with z = L 12, we omit the resultant data for the boundary condition (IT) in what follows.

Substituting f 3 (z) = C3 into eq. (23) for the boundary condition (ill), we can practise the integra

tion over trigonometric function and obtain

2C3A
n
=------ (39)

In Figure 7, we show the convergence of a series sum with eq. (22) at z IL = 0.5. In Figures 8 (a) and

(b), we show the obtained potential distribution V3/c3 of a cylindrical object for the boundary condi

tion (ill). In Figure 8 (a), we note that the potential value V3/c3 is non-zero along central axis with

p = O. From Figures 7 and 8, we see that the convergence of a series sum with eq. (22) becomes rapid

and that the potential distribution V 3 /c3 is more concentrated on the side wall with p = a as the

size of L becomes small.

Second, we apply to Laplace's equation in hollow cylindrical object. As typical examples of

several interesting guard-ring capacitorsl) with (a - ao) ;(: 5L, we select ao/a = 0.25 and L I(a - ao)

= 0.2,0.1 for the representative size of the hollow cylinder. In addition, we adopted ao/a = 0.5 and

L I(a - ao) = 0.2, 0.1 and the resultant potential distribution was almost as same as the former

with ao/a = 0.25. Substituting f, (p) = c, into eq. (32) for the boundary condition (I), we obtain

1.2.-------------.

1.0

c!] 0.8
~

Pia=0.9if',.."'-------------<

\."._._._ ._g:~eI~L_._-

0.6 \ ._._._._.9...~?~._._._._.

o.40k---~5---;'10:;;:----;-1-=-5--:2""'0~2~5.

----n-
Figure 7: Convergence of a series sum with eq. (22) at z IL = 0.5.
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~
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Figure 8: Obtained potential distribution Va of a cylindrical object for the boundary
condition (ill) in eqs. (17) and ~3) with f3 (z) = c" (a) L /a = 1 and (b) L /a =
0.1.

A - Cl

S - sinh (asL)

a a

J xW(asx, asBa) dx/Jx{W(asx, asBa)}' dx ,
ao ao

(40)

where the numerical analysis over the integration is practised. In Figure 9, we show the conver

gence of a series sum with eq. (31) at p /a = (a + ao)/(2 a) and z /L = 0.8, 0.5. From Figure 9, we

see that the convergence of a series sum becomes somewhat slow as the size of L becomes small. In

Akita University
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Figure 10: Obtained potential distribution VI of
a hollow cylindrical object for the
boundary condition (I) in eqs. (26)
and (32) with L (p) = CI.

1.2.-------------,

z/L=0.8

0.5

10 20 30 40 50--s
Figure 9: Convergence of a series sum with eq.

(3D at p I a = (a + a 0) I (2 a) for a I a 0

= 0.25. Full curves correspond to
those for L I (a - a 0) = 0.2 and dotted
curves for L I (a - aD) = 0.1 in what
follows.

o
0.25

0.8

0.6

0.4

0.2

0.625-Pia

Figure 10, we show the obtained potential distribution V,lc, of a hollow cylindrical object for the

boundary condition (0. From Figure 10, we see that the potential distribution V,lc, is more dif

fused near the both side wall with p = aD and a as the size of L becomes small.

Substituting f 3 (z) = C3 into eq. (36) for the boundary condition (III), we can practise the integra

tion over trigonometric function and obtain

(41)

In Figure 11, we show the convergence of a series sum with eq, (35) at z IL = 0.5 and pia = 0,99, 0.98.

In Figures 12 (a) and (b), we show the obtained potential distribution V31 C3 of a hollow cylindrical

object for the boundary condition (ill). From Figures 11and 12, we see that the convergence of a

series sum with eq. (35) becomes somewhat rapid and that the potential distribution V31 C3 is more

concentrated on the side wall with p = a as the size of L becomes small.

Last, by limiting the inner radius ao to zero, we discuss numerically the Laplace's solution from

hollow cylinder to cylinder. In Figures 13 and 14, we show the resultant potential distribution V1lc,

and V3/c3 of a cylindrical object from the limiting case ao ~°of a hollow cylindrical one for the

boundary condition condition ( I) with f ( p) = c, and (ill) with L (z) = C3 for L I a = 1. From

Figures 13 and 14, we see that that the potential distribution near central axis with p = °is largely

changed in comparison with the corresponding those such as in Figures 6 and 8 (a). This
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Figure 11: Convergence of a series sum with eq. (35) at z IL = 0.5 and pia = 0.99, 0.98 for

a lao = 0.25.
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Figure 12: Obtained potential distribution V3 of a hollow cylindrical object for the bound
ary condition (ill) in eqs. (30) and (36) with f3 (z) = C3. (a) L I(a - ao) = 0.2 and
(b) L I(a - aD) = 0.1.
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o
0.2'-------'--------'o 0.5 1.0---Pia

Figure 13: Resultant potential distribution V, of a cylindrical object from the limiting
case ao ~ 0 of a hollow cylindrical one for the boundary condition (I) with
L (p) = c, for L / a = 1.

I.O,-------------::::::=~

o 01--0-=-.'"=2--:0=-'".4-;;-------;;0"'.6"----';;0:;.8~~1.0--Pia

Figure 14: Resultant potential distribution V3 of a cylindrical object from the limiting
case a 0 ~ 0 of a hollow cylindrical one for the boundary condition (ill) with
f 3 (z) = C3 for L /a = 1.

contradictory results are due to the introduction of an extra boundary condition such as V = 0 at p =

aD for a hollow cylidrical object in section 3, and may be overcome by imposing the non-zero poten

tial values in Figures 6 and 8 (a).
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In the present work, we presented fundamental formulations for the potential distribution of a

cylindrical and a hollow cylindrical objects with a rotational symmetry. Then, we applied to the

numerical solution for the boundary conditions with constant potential value on the cylindrical and

hollow cylindrical surface. We obtained the useful data with respect to the convergence of a series

sum, resultant distribution for the different boundary conditions and the transformation of the

Laplace's equation from hollow cylinder to cylinder. The obtained data are important to apply

directly to the charge distribution of several interesting guard-ring capacitors and to study the elec

tric properties of the material.
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