Remarks on the Arithmetic of Elliptic Curves(I)

Hideji $I_{T o}$

(Received September 10, 1977)

In [1], we investigated the law of decomposition of primes in certain galois extensions K_{ℓ} / Q relating with elliptic curves. In this note, explicit laws are obtained in special cases: $\ell=2,3$.

§ 1. Introduction

Let E be an elliptic curve defined over \mathbf{Q} such that $\mathrm{E}(\mathbf{Q}) \neq \phi$. For a rational prime ℓ, put $\mathrm{E}_{\ell}=\{\mathrm{a} \in \mathrm{E} \mid \ell \mathrm{a}=0\}$ and $\mathrm{K}_{\ell}=\mathbf{Q}\left(\mathrm{E}_{\ell}\right)$, i.e. K_{ℓ} is the number field generated over \mathbf{Q} by all the coordinates of the points of order ℓ on E. Then $\mathrm{K} \ell / \mathbf{Q}$ is a galois extension and $\mathrm{Gal}(\mathrm{K} \ell / \mathbf{Q}) \cong \mathrm{GL}_{2}(\mathbf{Z} / \ell \mathbf{Z})$, except for finitely many ℓ 's [3]

For $\ell \geqq 5, \mathrm{GL}_{2}(\mathbf{Z} / \ell \mathbf{Z})$ is non-solvable and it is hard to analyse their arithmetic. But for $\ell=2,3, \mathrm{~K}_{\ell} / \mathbf{Q}$ is a solvable extension and we know the ir structure well (see lemma 1). So we can state the law of decomposition of primes explicitly (these were stated without proof in [1]). Also we can paraphrase the condition " $\ell \mid(0: \mathbf{Z}[\pi])$ or not" in [1] in easier form in case $\ell=3$.

§ 2. Our approach

Let p be a rational prime where E has good reduction. Then it is well-known that p is unramified in every $K_{\ell} / \mathbf{Q}(\ell \neq p)$. We exclusively deal with that case in this note. (Bad primes are finite innumber).

Let P an algebraic point of E i.e. $\operatorname{P\varepsilon E}(\bar{Q})$. When we view E / Q as defined over \mathbf{Q}_{p}, we must take some care of the rationality of P. Put $k=\mathbf{Q}(P)$ and \mathfrak{p} an extension of p to k. Then P is rational over $k p$. Thus the rationality of P in $\overline{\mathbf{Q}}_{\mathrm{p}}$ depends on the choice of \mathfrak{p}, that is, the way of emdedding of k into $\overline{\mathbf{Q}}_{\mathrm{p}}$. In particular, we can see the following fact:
P is $\mathbf{Q}_{\mathrm{p}-\text { rational } u n d e r ~ a n ~ e m b e d d i n g ~ o f ~}^{\mathbf{Q}}(\mathrm{P})$ into $\overline{\mathbf{Q}}_{\mathrm{p}} \Leftrightarrow \operatorname{In} \mathbf{Q}(P)$, p is divisible by a prime of degree 1 .

Formulating with $K_{\ell}=\mathbf{Q}\left(E_{\ell}\right)$, we see:
p splits completely in $K_{\ell} / \mathbf{Q} \Leftrightarrow E\left(\mathbf{Q p}_{\mathrm{p}}\right) \supset \mathrm{E}_{\ell}$.
As reduction map induces an isomorphism between the subgroups consisting of points of finite order prime to p of $E\left(\mathbf{Q}_{p}\right)$ and of $E^{\prime}\left(F_{p}\right)$, the latter is equivalent to $\mathrm{E}^{\prime}(\mathrm{Fp}) \supset \mathrm{E}^{\prime} \ell$, where we put $\mathrm{E}^{\prime}=\mathrm{E} \bmod \mathrm{p}, \mathrm{E}_{\ell}^{\prime}=\left\{\mathrm{a} \varepsilon \mathrm{E}^{\prime} \mid \ell \mathrm{a}=0\right\}$. Combining the knowledge $\mathrm{K}_{\ell} \supset \mathbf{Q}\left(\boldsymbol{\zeta}_{\ell}\right)$, where $\boldsymbol{\zeta}_{\ell}$ is a primitive root of unity of order ℓ, we have necessary conditions for a prime p to split completely in $K \ell / \mathbf{Q}$ as follows:

$$
\ell^{2}\left|\mathrm{~N}_{\mathrm{p}}, \quad \ell\right|(\mathrm{p}-1)
$$

Whether above condition is at the same time sufficient or not is the motivation of our study and the answer turns out no (see § 4 in this note or [1] theorem 1).

§ 3. Some lemmas

For $E: \quad Y^{2}=X^{3}+A X+B, A, B \varepsilon \mathbf{Z}$, put $\delta=-2^{4}\left(4 A^{3}+27 B^{2}\right), j=2^{8} 3^{3} A^{3}$ $/\left(4 A^{3}+27 B^{2}\right)$ as usual.

Lemma 1. $\mathrm{K}_{2}=\mathbf{Q}\left(\sqrt{\delta}, \mathrm{P}_{2}\right), \mathrm{K}_{3}=\mathbf{Q}\left(\sqrt[3]{\delta}, \zeta_{3}, \mathrm{P}_{3}\right)$, where $\mathrm{P}_{\ell}(\neq 0) \varepsilon \mathrm{E}_{\ell}$, $\ell=2,3$.

Proof. When $j \neq 0,1728$, our assertions are readily verified by virtue of Hilfsatz 1.1, 1.2, 1.4 in [2]. When $j=0$ or 1728, E can be written in Weierstrass form as $\mathrm{Y}^{2}=\mathrm{X}^{3}-\mathrm{D}, \mathrm{Y}^{2}=\mathrm{X}^{3}-\mathrm{DX}$ (resp.). So we can verify in each case by writing down the equations which x-coordinates of points of order 1 must satisfy. For example, when $\mathfrak{j}=1728, \sqrt[3]{\delta}=4 \mathrm{D}$ and x-coordinates of 3 -section points are given by $3 X^{4}-6 D X^{2}-D^{2}=0$. Hence $x= \pm \sqrt{\frac{3 \pm 2 \sqrt{3}}{3} D}$. As
$\sqrt{\frac{3+2 \sqrt{3}}{3}} \mathrm{D} \times \sqrt{\frac{3-2 \sqrt{3}}{3}} \mathrm{D}=\frac{\mathrm{D}}{3} \sqrt{-3}$, we have $\mathbf{Q}\left(x-\operatorname{coordinates}\right.$ of $\left.\mathrm{E}_{3}\right)=$ $\mathbf{Q}\left(\zeta_{3}\right.$, one x$)$. So by Hilfsatz 1.1 in [2], we have our assertion.

Lemma 2. Let k / \boldsymbol{Q} be a finite galois extension, $k^{\prime} / \boldsymbol{Q}$ a finite extension, both having an embedding into \boldsymbol{Q}_{p}. If p is unramified in both k and k^{\prime}, then there is an embedding of $k k^{\prime}$ into \boldsymbol{Q}_{p}.

Proof. Let K be the smallest galois extension of Q containing $k k^{\prime}$. By the assumption, there is an extension \mathfrak{F} of p to K for which the restriction of \mathfrak{B} to k^{\prime} is of degree 1 . Since k / \mathbf{Q} is galois, $k ~ G \mathbf{Q p}_{\mathrm{p}}$ means that any extension of p to k, especially the restriction of \mathfrak{F} to k, is of degree 1 . Therefore, the
decomposition field of \mathfrak{B} (with respect to \mathbf{Q}) contains k and k^{\prime}. So, the restriction of \mathfrak{F} to kk^{\prime} gives the desired embedding $\mathrm{kk}^{\prime} G \mathbf{Q}_{\mathrm{p}}, \mathrm{q} \cdot \mathrm{e} \cdot \mathrm{d}$.

Remark 1. In general even if $k G \mathbf{Q}_{\mathrm{p}}$ and $\mathrm{k}^{\prime} G \mathbf{Q}_{\mathrm{p}}, \mathrm{kk}^{\prime}$ cannot necessarily be embeddable into \mathbf{Q}_{p}. For example, let $\mathrm{F}=\mathbf{Q}\left(\zeta_{3}, \sqrt[3]{7}\right), \mathrm{K}_{\mathrm{i}}=\mathrm{Q}\left(\zeta^{\mathrm{i}} \sqrt[3]{7}\right), \mathrm{i}=0$, 1, 2. Then $\mathrm{K}_{\mathbf{i}} G \mathbf{Q}_{5}$ for all \mathbf{i}, but $F=\mathrm{K}_{1} \mathrm{~K}_{2} \leftharpoonup \mathbf{Q}_{5}$. Indeed, since $X^{3}-7 \equiv$ $(X-3)\left(X^{2}+3 X+4\right)(\bmod 5), 5$ has the decomposition of type $5=p_{1} \mathfrak{p}_{2}, N p_{1}$ $=5^{2}, \mathrm{~Np}_{2}=5$ in $\mathrm{K}_{\mathrm{i}}\left(\mathrm{X}^{2}+3 \mathrm{X}+4\right.$ is irreducible over $\left.\mathbf{Z} / 5 \mathbf{Z}\right)$. On the other hand, 5 remains prime in $\mathbf{Q}\left(\boldsymbol{\zeta}_{3}\right)=\mathbf{Q}(\sqrt{-3})$. Therefore $5=\mathfrak{B}_{1} \mathfrak{F}_{2} \mathfrak{B}_{3}, N \mathfrak{F}_{\mathrm{i}}=5^{2}$ in F . Hence $F \quad \phi \quad \mathbf{Q}_{5}$. (In our situation, if $\mathrm{Gal}(\mathrm{K} \ell / \mathbf{Q}) \cong \mathrm{GL}_{2}(\mathbf{Z} / \ell \mathbf{Z})$, then for any non-zero $P, P^{\prime} \varepsilon E_{\ell}, \mathbf{Q}(P)=\mathbf{Q}\left(P^{\prime}\right)$ or they are conjugate to each other. So $\ell \mid N_{p}$ means that p is divided by a prime of degree 1 in every $\mathbf{Q}(P)$. But this does not mean p splits completely in $K_{\ell}=\underset{P \varepsilon E_{\ell}}{\cup} \mathbf{Q}(P)$).

§ 4. Decomposition of primes in K_{2}, K_{3}

Recall that $\operatorname{Gal}\left(\mathrm{K}_{\ell} / \mathbf{Q}\right) \subsetneq \mathrm{GL}_{2}(\mathbf{Z} / \ell \mathbf{Z})$ in any case.

Theorem 1. In $K_{2} / \boldsymbol{Q}, P$ decomposes completely if and only if (1) $2 \mid N_{p}$ and (2) p splits in $\boldsymbol{Q}(\sqrt{\delta})$.

Proof. As is explained in $\S 2,2 \mid N_{p} \Leftrightarrow p$ has an extension of degree 1 in $\mathbf{Q}(P)$ for some $P(\neq 0) \varepsilon E_{2}$. By lemma $1, K_{2}=\mathbf{Q}(\sqrt{\delta}, P)$. So applying lemma 2 we see if part. Only if part is obvious, q. e. d.

Corollary. If $2 \| N_{p}$, i.e. $N_{p}=2 d, 2 \ngtr d$, then premains prime in $\boldsymbol{Q}(\sqrt{\delta})$.

As an example, let us take $E=X_{0}(11)$. For $\ell \neq 5$, it is known that Gal $\left(\mathrm{K}_{\ell} / \mathbf{Q}\right) \cong \operatorname{GL}_{2}(\mathbf{Z} / \ell \mathbf{Z})$ and $\mathbf{Q}(\sqrt{\delta})=\mathbf{Q}(\sqrt{-11})([3] \mathrm{p} .309)$.

From the table of the values of $a_{p}\left(=1-N_{p}+p\right)$ given in [4], we know the first 10 primes satisfying $2 \| N_{p}$ are $p=7,13,29,41,43,61,73,79,83,107$. In every case we can see $\left(\frac{-11}{p}\right)=-1$.

Theorem 2. In $K_{3} / \boldsymbol{Q}, p$ splits completely if and only if
(1) $3 \mid(p-1)$,
(2) $3 \mid N_{p}$,
(3) $\delta \bmod \mathrm{p} \in\left(\mathbf{F}_{\mathrm{p}}\right)^{3}$.

Proof. By lemma 1, if part is obvious. Assume the conditions (1), (2), (3) hold. Put $\mathrm{k}=\mathbf{Q}\left(\zeta_{3}, \sqrt[3]{\delta}\right)$. Then (1), (3) mean that p splits completely in k by lemma 2. As $3 \mid N_{p}$ means that p is divided by a prime of degree 1 of $\mathbf{Q}(P)$ for some $P \varepsilon E_{3}$ and $K_{3}=k(P)$, where k / Q is a galois extension, again by lemma
we see the validity of if part, q. e. d.

Let us again consider $\mathrm{E}=\mathrm{X}_{0}(11)$. $\mathrm{By}[4]$, $\mathrm{a}_{79}=-10$, so $\mathrm{N}_{79}=90=2 \cdot 325$. Thus the prime $p=79$ satisfies $3 \mid(p-1)$, and $32 \mid N_{p}$. But the condition (3) is not satisfied as can be seen by direct calculation. Hence the degree of 79 in $\mathrm{K}_{3} / \mathbf{Q}$ is 3. (In general $\ell^{2}\left|N_{p}, \ell\right|(p-1)$ lead that the degree of p in K_{1} / \mathbf{Q} is either 1 or ℓ, which can be seen by matrix representation [4] or by theorem 1 in [1]). When $p=337$, then $\mathrm{a}_{387}=-22$. So $\mathrm{N}_{337}=360=2^{3} 32$ 5. As $3 \mid(337-1)$ and $-11 \equiv\left(10^{3} \bmod 337, \mathrm{p}=337\right.$ splits completely in $\mathrm{K}_{3} / \mathbf{Q}$.

§ 5. The 3-part of ($\left.D_{p}: Z\left[\pi_{p}\right]\right)$

Let $\boldsymbol{o}_{\mathrm{p}}$ be the algebra of \mathbf{F}_{p} endomorphisms of $E \bmod p$, i. e. $\mathrm{o}_{\mathrm{p}}=\mathrm{EndF}_{\mathrm{p}}$ (E mod p), and π_{p} be the p-th power endomorphism of $E \bmod p$. Then the corollary 1 of theorem in [1] asserts that for $\ell>2, \mathrm{p}$ splits completely in $\mathrm{K}_{\ell} / \mathbf{Q}$ if and only if $\ell^{2}\left|N_{p}, \ell\right|(\mathrm{p}-1)$ and $\ell \mid\left(\mathbf{o}_{\mathrm{p}}: \mathbf{Z}\left[\pi_{\mathrm{p}}\right]\right)$. In view of our theorem 2, we are naturally led to investigate the relation between (D_{p} : $\mathbf{Z}\left[\pi_{\mathrm{p}}\right]$) and δ.

First we need the following

Lemma 3. There is a submodule $A\left(\neq\{0\}, E_{\ell}^{\prime}\right)$ of E_{ℓ}^{\prime} which is \boldsymbol{F}_{p}-rational if and only if $\ell \mid N_{p \ell-1}$

Proof. (Only if part). We can write $\mathrm{E}_{\ell}^{\prime}=\mathrm{A} \oplus \mathrm{B}$, for some $\mathrm{B} \supset \mathrm{E}_{\ell}^{\prime},|\mathrm{B}|=\ell$. Representing π_{p} with respect to above decomposition, we have $\pi_{\mathrm{p}}=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ over \mathbf{F}_{ℓ}. Then $\left(\pi_{\mathrm{p}}\right)^{\ell-1}=\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$, which means that all the points of A are $\mathbf{F}_{\mathrm{p} \ell-1}-$ rational. So $\ell \mid N_{\ell \ell-1}$.
(If part). By the hypothesis, with respect to a suitable basis, $\pi^{\ell-1}$ can be written as $\pi^{\ell-1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathrm{a}, \mathrm{b} \varepsilon \mathbf{F}_{\ell}$. Let the characteristic roots of π be c and $d \varepsilon \mathbf{F}_{\ell}$. Then $c^{\ell-1}=1$ (say), i. e. $c \varepsilon \mathbf{F}_{\ell}$. As $c+d=\operatorname{tr}(\pi) \varepsilon \mathbf{F} \ell$, we also have $d \varepsilon \mathbf{F}_{\ell}$. Therefore over $\mathbf{F}_{\ell}, \pi=\left(\begin{array}{cc}c & * \\ 0 & d\end{array}\right)$. This means that some subgroup of $E^{\prime} \ell$ of order ℓ is \mathbf{F}_{p}-rational, q. e. d.

Remark 2. It holds that $N_{p^{2}}=1-a p^{2}+p^{2}=\left(1-a_{p}+p\right)(1+a p+p)$. So if $p \equiv 1(\bmod 3)$, then $3 \mid N_{p 2}$ iff $a_{p} \equiv \pm 2(\bmod 3)$, while if $p \equiv 2(\bmod 3)$, then $3 \mid N_{p 2}$ iff $a_{p} \equiv 0(\bmod 3)$.

Theorem 3. Following two assertions are equivalent for $p>3$:
(1) $3 /\left(0_{p}: \mathbf{Z}\left[\pi_{p}\right]\right)$,
(2) $\delta \bmod \mathrm{p} \varepsilon\left(\mathbf{F}_{\mathrm{p}}\right)^{3}, 32\left|\mathrm{~Np}^{2}, 3\right|(\mathrm{p}-1)$.

Proof. (1) \Rightarrow (2) By theorem 2 in [1], we know $3 \mid\left(o_{p}: \mathbf{Z}\left[\pi_{p}\right]\right) \Leftrightarrow$ all 3 -isogenies from E^{\prime} are defined over \mathbf{F}_{p}. But the kernels of 3 -isogenies are the subgroups of order 3 . So they are \mathbf{F}_{p} rational. Hence π_{p} can be written in the following form: $\pi_{p}=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$. Therefore $\pi_{p}^{2}=$ identity (since $\left.\ell=3\right), 3 \|(\mathrm{p}-1)$. That is to say, $\mathrm{f}=\left(\mathbf{F}_{\mathrm{p}}\left(\mathrm{E}_{\mathrm{l}}^{\prime}\right): \mathbf{F}_{\mathrm{p}}\right)=1$ or 2. So $32 \mid \mathrm{N}_{\mathrm{p} 2}$. As we know that $3 \mid \mathrm{f}$ iff $\delta \bmod \mathrm{p}$ $\varepsilon\left(\mathbf{F}_{\mathrm{p}}\right)^{3}$. $\cdots \cdots(*)(\mathrm{cf} .[3] \mathrm{p} .305)$, we see $\delta \bmod \mathrm{p} \varepsilon\left(\mathbf{F}_{\mathrm{p}}\right)^{3}$. (2) \Rightarrow (1) By lemma 3, π_{p} can be written as $\pi_{\mathrm{p}}=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & \mathrm{a}\end{array}\right)$. As $\delta \bmod \varepsilon\left(\mathbf{F}_{\mathrm{p}}\right)^{3}$, the equivalence (*) leads $\mathrm{b}=0$. So $\pi_{\mathrm{p}}=\left(\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{a}\end{array}\right)$, since $\operatorname{det} \pi_{\mathrm{p}}=1$, which means that two subgroups of order 3 of $E^{\prime} 3$ are \mathbf{F}_{p}-rational. From this we easily see that all subgroups of order 3 are \mathbf{F}_{p} rational, q. e. d.

Corollary. If $3 \| \mathrm{N}_{\mathrm{p} 2}$ and $3 \mathrm{k}(\mathrm{p}-1)$ then $\delta \bmod \mathrm{p} \varepsilon\left(\mathbf{F}_{\mathrm{p}}\right)^{3}$.

Remark 3. In [1], theorems 1 and 2 are independent to each other. Using theorem 2, the part (2) of theorem 1 can be strengthend as follows: if $\ell^{2} \mid\left(a_{p}\right)^{2}-4 \mathrm{p}$ then $\mathrm{f} \mid \ell(\ell-1)$, moreover if $\ell \mid\left(\mathrm{op}_{\mathrm{p}}: \mathbf{Z}\left[\pi_{\mathrm{p}}\right]\right)$ then $\mathrm{f} \mid(\ell-1)$, if $\ell \nless\left(o_{p}: \mathbf{Z}\left[\pi_{p}\right]\right)$ then $\ell \mid f$. These are verified in the similair way as the first part of the proof the above theorem 3 .

References

[1] H. Ito, A note on the law of decomposition of primes in certain galois extension, Proc. Japan Acad. 53, No.4 115-118 (1977)
[2] O. Neumann, Zur Reduktion der elliptischen Kurven, Math. Nachr, 46, 285-310 (1970).
[3] J. P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes élliptiques, Invent. math. 15, 259-331 (1972).
[4] G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221, 209-220 (1966).

Department of Mathematics
Akita University
Akita, Japan

