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In {1), we investigated the law of decomposition of primes in certain galois
extensions K¢/Q relating with elliptic curves. In this note, explicit laws are
obtained in special cases: §=2, 3.

§ 1. Introduction

Let E be an elliptic curve defined over Q such that E (Q)#¢. For a rational
prime £, put E¢ ={a€E |fa=0}and K:=Q(Es), i-e- K¢ is the number field
generated over Q by all the coordinates of the points of order ¢ on E. Then
Ke/Q is a galois extension and Gal(Ke/ Q) = GL2(Z/ £7Z), except for finitely
many £’s (3]

For £=z5, GL2(Z/4¢Z) is non-solvable and it is hard to analyse their
arithmetic. But for £=2, 3, K¢/Qis a solvable extension and we know their
structure well (see lemma 1). So we can state the law of decomposition of primes
explicitly (these were stated without proof in [ 1]). Also we can paraphrase
the condition “£1(p :Z[#]) or not” in[ 1] in easier form in case £=23.

§ 2. Our approach

Let p be a rational prime where E has good reduction. Then it is well-known
that p is unramified in every K¢/Q (£ #p). We exclusively deal with that case
in this note. (Bad primes are finite innumber).

Let P an algebraic point of E i.e. PeE (Q). When we view E/q as defined
over Qp, we must take some care of the rationality of P. Put k=Q(P) and p
an extension of p to k- Then P is rational over kp. Thus the rationality of P
in ép depends on the choice of p, that is, the way of emdedding of k into E!p«
In particular, we can see the following fact:
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P is Qp-rational under an embedding of Q (P) into Qp <= In Q (P,
p is divisible by a prime of degree 1.

Formulating with K:=Q (E¢), we see :
p splits completely in K¢/Q €= E(Qp) D E:.

As reduction map induces an isomorphism between the subgroups consisting of
points of finite order prime to p of E(Qp) and of E'(Fp), the latter is equivalent
to E'(Fp) D E'¢, where we put E'=E mod p, E'v={a¢E'|fa= 0}. Combining
the knowledge K¢ D Q (), where {s is a primitive root of unity of order ¢,
we have necessary conditions for a prime p to split completely in K:/Q as
follows :

421 Np, 4! (p-1),

Whether above condition is at the same time sufficient or not is the motivation
of our study and the answer turns out no (see §4 in this note or {1 Jtheorem1).

§ 3. Some lemmas

For E! Y?2=X3+AX +B, A, BeZ, put 0=—24(4A3+27B?), j=2833A3
/(4 A3 + 27 B2) as usual.

Lemma ! . K:=Q(W 4, P2), Ks=Q(¥0d, &, P3), where Py (#0) ¢Ey,
t=2, 3.

Proof. When j# 0, 1728, our assertions are readily verified by virtue of
Hilfsatz 1.1, 1.2, 1.4 in (2]. When j=0 or 1728, E can be written in
Weierstrass form as Y2=X%-D, Y2=X3—-DX (resp-)- So we can verify in each
case by writing down the equations which x-coordinates of points of order 1
must satisfy. For example, when j=1728, ¥ 3 =4D and x-coordinates of 3-section

points are given by 3X4—6DX2—D2= 0. Hence x =i\/3i23ﬁ D. As

\/3+§‘/3 D x \/3—2"/3 D = —BD -+ — 3, we have Q(x-coordinates of E3)=

Q(L3, one x). So by Hilfsatz 1.1 in [2]), we have our assertion.

Lemma 2. Let k/Q be a finite galois extension, k'/Q a finile extension, both
having an embedding into Qp. If p is unramified in both k and k', then there is an
embedding of kk' into Q.

Proof.- Let K be the smallest galois extension of Q containing kk'. By the
assumption, there is an extension B of p to K for which the restriction of B
to k' is of degree 1. Since k/Q is galois, k G Qp means that any extension of
p to k, especially the restriction of B to k, is of degree 1. Therefore, the
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decomposition field of B (with respect to Q) contains k and k’. So, the restriction
of B to kk' gives the desired embedding kk’ & Qp» g-.e-d.

Remark 1. 1In general even if ¥k & Qp and k' G Qp, kk' cannot necessarily
be embeddable into Qp. For example, let F=Q ({3, ¥7), Ki=QU¥7),i=0,
1, 2. Then Ki G Qs for all i, but F=KiKz <}~ Qs. Indeed, since X3—-7=
(X—3)(X24+3X +4) (mod5), 5 has the decomposition of type 5=p1p2, Np1
=52, Npz=5 in Ki (X2+ 3X+ 4 is irreducible over Z/5Z). On the other hand,
5 remains prime in Q(£3) =Q(/ —3). Therefore 5=P1 B2 B3> NBi=>52 in F.
Hence F CF Qs. (In our situation, if Gal(Ks+/Q) = GL2(Z/4Z), then for any
non-zero P, P'¢Es., Q(P) = Q(P") or they are conjugate to each other. So £|Np
means that p is divided by a prime of degree 1 in every Q(P). But this does

not mean p splits completely in Ke= U Q(P)).
PeE;

§ 4. Decompeosition of primes in K2, K3

Recall that Gal(X¢/Q) G GL2(Z/£Z) in any case.

Theorem 1. In K2/Q, P decomposes completely if and only if 1) 2| Ny and
2) p splits in Q(V8).

Proof. As is explained in §2, 2! Np <> p has an extension of degree 1
in Q(P) for some P(#0) ¢E2. By lemma 1, K2=Q (/0 , P). So applying lemma

2 we see if part. Only if part is obvious, q. e. d.
Corollary. If 2\|Np, i.e. Np=2d, 2kd, then p remains prime in Q(1/ 8 ).

As an example, let us take E= Xo ). For £ +# 5, it is known that Gal
(Ke/Q) =GL2(Z/£42Z) and Q(V0)=Q(V/ —11) (3] p. 309).

From the table of the values of ap (=1 —Np+p) given in (4], we know the
first 10 primes satisfying 2|l Np are p = 7, 13, 29, 41, 43, 61, 73, 79, 83, 107.

In every case we can see (;plli)=_ 1.

Theorem 2. In K3/Q, p splits completely if and only if
(1) 31 (p—1), (2) 31 Np, (3) 6 mod p ¢ (Fp)®.

Proof. By lemma 1, if part is obvious. Assume the conditions (1), (2), (3)
hold. Put k = Q(&, ¥d). Then (1), (3) mean that p splits completely in k by
lemma 2. As 3| Np.means that p is divided by a prime of degree 1 of Q(P)

for some P¢E3 and K3=k(P), where k/Q is a galois extension., again by lemma
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we see the validity of if part, q. e. d.

Let us again consider E = Xod). By (4], ars,= —10, so N7g =90 = 2+32 5,
Thus the prime p = 79 satisfies 31 (p—1), and 32| Np. But the condition (3) is not
satisfied as can be seen by direct calculation. Hence the degree of 79 in K3/Q is
3. (In general £2| Np, £ | (p—1) lead that the degree of p in Ki/Q is either
1 or ¢, which can be seen by matrix representation [4] or by theorem 1 in
(11). When p = 337, then asr = —22.So N337 =360 = 23325 As 3| (337—1)and
—11=003% mod 337, p = 337 splits completely in K3/Q.

§ 5. The 3-part of (0p:Z (7p))

Let op be the algebra of Fp endomorphisms of E mod p, i. e. 2p=EndF,

(E mod p), and 7p be the p-th power endomorphism of E mod p. Then the
corollary 1 of theorem in [ 1] asserts that for 4 >2, p splits completely in
K¢/Q if and only if £2{Np, £1(p—1) and ¢ |(op:Z[7mp])). In view of our
theorem 2, we are naturally led to investigate the relation between (p»p:
Z(7p])) and 0.

First we need the following

Lemma 3. There is a submodule A(£{Q0}, E's) of E'ys which is Fy-rational if
and only if £I1Npe—1

Proof. (Only if part). We can write E'¢=A®B, for some B2E's, |Bl=4.

Representing #p with respect to above decomposition, we have mp = (* *\ over
0 =

F:. Then (7p) ¢-1= ((1) ﬁ1<>, which means that all the points of A are Fpe-1 —

rational. So ¢! Npg-1.

(If part). By the hypothesis, with respect to a suitable basis, 7#¢~1 can

be written as #f-1 = (é%) a, beFy. Let the characteristic roots of # be ¢

and d ¢ Fy2. Then cf-!=1(say), i. e. ceFy. Asc+d=tr(@)eF,, we also

have d ¢ Fy¢. Therefore over Fy, @ = ((C) 3) This means that some subgroup
A

of E'¢ of order ¢ is Fp-rational, q. e. d

Remark 2. It holds that Np2 =1 —ap2 + p>=(1l —ap + p) (1 +ap+ p).
So if p = 1 (mod 3), then 3! Np2 iff ap = =2 (mod 3 ), while if p =2 (mod 3),
then 3| Np: iff ap = 0 (mod 3).
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Theorem 3. Following two assertions are equivalent for p>3 &

6y 3{(op:Zmp]), (2) 0 mod P E(Fp)s, 32| Npz 3|(p—1)

Proof. (1)!1=>(2) By theorem 2 in (1]}, we know 31(pp : Z[7p])) &> all
3 -isogenies from E’ are defined over Fp. But the kernels of 3 -isogenies are the
subgroups of order 3. So they are Fp-rational. Hence 7#p can be written in the

following form : #p = (8 0 ) Therefore #p =identity (since 4 = 3), 3l(p—1). That is
a

to say, f=(Fp (E') ! Fp) =1lor 2.S0 32| Np2. As we know that 3|{ iff 6 mod p

e (Fp)3. oo (#) (cf. [3] p. 305), we see 0 mod p =(Fp)d (21> (1) By lemma
3, 7mp can be written as 7p = (8 b). As 0 mod ¢ (Fp)3 the equivalence (*)
a
leads b =0. So #p = (a O>, since det #p=1, which means that two subgroups ot
a

order 3 of E's are Fp-rational. From this we easily see that all subgroups of
order 3 are Fp rational, q. e. d.

Corollary. If 3|l Np2 and 31(p—1) then 6 mod p ¢ (Fo)3.

Remark 3. In (1], theorems 1 and 2 are independent to each other.
Using theorem 2, the part (2) of theorem ! can be strengthend as follows : if
42] (ap)2—4p then f14(8 —1), moreover if 41(op:Z(7p]) thenf] (4 —1), if
84 (op:Z(7p)) then £]f. These are verified in the similair way as the first
part of the proof the above theorem 3.
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