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In C1], we investigated the law of decomposition of primes in certain galois

extensions K t/Q relating with elliptic curves. In this note, explicit laws are

obtained in special cases: Q = 2. 3.

§ 1· Introduction

Let E be an elliptic curve defined over Q such that E (Q)*~. For a rational

prime £, put Et ={aEE l£a=O}and Kt=Q(Et), i·e. Kt is the number field

generated over Q by all the coordinates of the points of order £ on E. Then

Kt/Q is a galois extension and Gal(Kt/Q)~GL2(Z/£Z), except for finitely

many .e's (3 J
For £ ~ 5, GL2 (Z / £ Z) is non-solvable and it is hard to analyse their

arithmetic. But for .e =2, 3, Kt / Q is a solvable extension and we know their

structure well (see lemma 1). So we can state the law of decomposition of primes

explicitly (these were stated without proof in ( 1 J). Also we can paraphrase

the condition" £ I (0 : Z(n J) or not" in ( 1 J in easier form in case £ = 3 .

§ 2. Our approach

Let p be a rational prime where E has good reduction. Then it is well-known

that pis unramified in every Kt/Q(£ *p). We exclusively deal with that case

in this note. (Bad primes are finite innumber).

Let P an algebraic point of E i· e· peE (Q). When we view E/Q as defined

over Qp, we must take some care of the rationality of p. Put k = Q (P) and t'
an extension of p to k. Then P is rational over k t'. Thus the rationality of P

in Qp depends on the choice of t', that is, the way of emdedding of k into Qp.
In particular, we can see the following fact:
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P is Qp-rational under an embedding of Q (P) into Qp ¢:=? In Q (P),

p is divisible by a prime of degree 1.

Formulating with K£ =Q (E£), we see:

P splits completely in K£/Q ¢:=? E(Qp) ~ E£.

As reduction map induces an isomorphism between the subgroups consisting of

points of finite order prime to p of E(Qp) and of E'(F p ), the latter is equivalent

to E' (Fp) ~ E' £, where we put E' = E mod p, E' £= {a e E' I /; a = O}. Combining

the knowledge K£ ::::J Q (1;;£), where C£ is a primitive root of unity of order e,
we have necessary conditions for a prime p to split completely in K£ I Q as
follows:

£2INp , el(p-l),

Whether above condition is at the same time sufficient or not is the motivation

of our study and the answer turns out no (see § 4 in this note or [ 1 J theorem 1 ).

§ 3· Some lemmas

For E: y2=X3+AX+B, A, B eZ, put o=-2 4 (4A3+27B2), j=2 8 3 3A3

4 A3 + 27 B2) as usual.

Lemma 1. K2=Q(ya, P2), K3=Q(,vIf, C3, P3), where P£CtoO) eE£,

l = 2, 3.

Proof. When j* 0, 1728, our assertions are readily verified by virtue of

Hilfsatz 1. 1, 1.2, 1.4 in [2J. When j = 0 or 1728, E can be written in

Weierstrass form as y2=X3_D, y2=X3-DX (resp.). So we can verify in each

case by writing down the equations which x-coordinates of points of order I

must satisfy. For example, when j =1728, ,vlf=4D and x-coordinates of 3-section

points are given by 3X4-6DX2-D2=O. Hence x=±~3±~Y3D. As

r3--~ 2y3 J3 -2y3 - D y=-- '-V---3--· D x ······-3- - D - -3- 3, we have Q(x-coordlllates of E3)-

Q(C3, one x). So by Hilfsatz 1.1 in [2J, we have our assertion.

Lemma 2. Let klQ be a finite galois extension, k'IQ a finite extension, both

having an embedding into Qp. If P is unramified in both k and k', then there is an

embedding of kk' into Qp.

Proof. Let K be the smallest galois extension of Q containing kk'. By the

assumption, there is an extension $ of p to K for which the restriction of $

to k' is of degree 1. Since k/Q is galois, k c: Qp means that any extension of

p to k, especially the restriction of $ to k, is of degree 1. Therefore, the
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decomposition field of '.l3 (with respect to Q) contains k and k'. So, the restriction

of '.l3 to kk' gives the desired embedding kk' c: Qp, q.e.d.

Remark 1. In general even if k c: Qp and k' c: Qp, kk' cannot necessarily

be embeddable into Qp. For example, let F=Q(C3, {I7), Ki=Q(Ci{l7),i=0,

1, 2. Then Ki c: Q5 for all i. but F = K1 K2 + Q5. Indeed, since X3- 7 ==

(X - 3) (X2+3X + 4) (mod 5), 5 has the decomposition of type 5 = lJ 1 lJ 2, N lJ 1

=52, NlJ2= 5 in Ki (X2+ 3X+ 4 is irreducible over Z/5Z). On the other hand,

5 remains prime in Q(C3) = Q(V- 3). Therefore 5 ='.l31 '.l32 '.l33' N'.l3i = 52 in F.

Hence F <t Q5. On our situation, if Gal (K e!Q) ~ GL2 (Z / £ Z), then for any

non....zero P, P' e E e, Q(P) = Q(P') or they are conjugate to each other. So £ I Np

means that p is divided by a prime of degree 1 in every Q (P). But this does

not mean p splits completely in Ke = U Q (P)).
PeEs

§ 4. Decomposition of primes in K2, K3

Recall that Gal (K e!Q) c: GL2 (Z / £ Z) in any case.

Theorem 1. In K2IQ, P decomposes comPletely if and only if (1) 2 j N p and

(2) p sPlits in Q (va).

Proof. As is explained in § 2, 2 I Np ¢:::> p has an extension of degree 1

in Q (P) for some P CFO) e E2. By lemma 1 , K2=Q (va, P). So applying lemma

2 we see if part. Only if part is obvious, q. e. d.

Corollary. If 21\N p , i. e. N p = 2d, 2xd, then p remains prime in Q(vif).

As an example, let us take E = Xo (ll). For £ =f:. 5, it is known that Gal

(Ke/ Q) ~ GL2 (Z/ £Z) and Q (Va) = Q (V -11) ([ 3 ] p. 309).

From the table of the values of ap (= 1 - Np+ p) given in [4], we know the

first 10 primes satisfying 211 Np are p = 7, 13, 29, 41, 43, 61, 73, 79, 83, 107.

In every case we can see ( -;1_)=_ 1.

Theorem 2. In K3/Q, p sPlits completely if and only if

(1) 3 I (p- 1), (2) 31 Np, (3) amod p e (Fp)3.

Proof. By lemma 1, if part is obvious. Assume the conditions (1), (2), (3)

hold. Put k = Q(C3, {Ia). Then (1), (3) mean that p splits completely in k by

lemma 2. As 3 I Np means that p is divided by a prime of degree 1 of Q (P)

for some peE3 and K3=k(P), where k/Q is a galois extension, again by lemma
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we see the validity of if part, q. e. d.

Let us again consider E = Xo ~:J). By [4 J, a79 = -10, so N79 = 90 = 2.32 5.

Thus the prime p =79 satisfies 31(p-l), and 32 jNp. But the condition (3) is not

satisfied as can be seen by direct calculation· Hence the degree of 79 in K3/Q is

3. (In general .e 2 I Np, .e I (p - 1) lead that the degree of p in Kl/Q is either

1 or P, which can be seen by matrix representation C4 J or by theorem 1 in

[1 J). When p = 337, then am = -22. So N337 = 360 = 23 32 5. As 31 (337-1) and

-11 =(103 mod 337, p = 337 splits completely in K3/Q.

§ 5· The 3-part of (0 p : Z [1r p J )

Let 0 p be the algebra of F p endomorphisms of E mod p, i. e. 0 p=EndFp

(E mod p), and 1rp be the p-th power endomorp hism of E mod p. Then the

corollary 1 of theorem in [1 J asserts that for .e >2, P splits completely in

Ke/Q if and only if .e 2 INp, £l(p-l) and £ l(op:Z[1l"pJ). In view of our

theorem 2, we are naturally led to investigate the relation between (oP:

Z [1rpJ) and O.

First we need the following

Lemma 3. There is a submodule A (*- {O}, E' e) of E' e which 1S Fp-rational if

and only if £INp e-1

Proof. (Only if part). We can write E'e=AEBB, for some B::JE'e, IBI=.e.

Representing 1r p \vith respect to above decomposition, we have 1l"p = (; :) over

F . Then (1rp) e-1 = (6 ~), which means that all the points of A are F pe-1­

rational. So £ I Npe-1.

(If part). By the hypothesis, with respect to a suitable basis, 1l"e-1 can

be written as 1r
C- 1 = (6~)' a, beFe. Let the characteristic roots of 1l" be c

and deFp. Thenc e- 1 =1(say), i. e. ceFe. Asc+d=tr(1r)eFe, we also

have de Fe. Therefore over Fe, 1r = (c *). This means that some subgroup
\0 d

of E' e of order .e is Fp-rational. q. e. d.

Remark 2. It holds that Np2 = 1 -ap2 + p2 = ( 1 -ap + p) (1 +ap + p).

So if p:= 1 (mod 3), then 3[ Np2 iff ap =±2(mod3), while if p =2(mod 3),

then 31 Np2 iff ap = 0 (mod 3).
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Theorem 3. Following two assertions are equivalent for p> 3 :

(1) 31 CoP: Z [lTpJ), (2) 0 mod p e CFp)3, 32 \ Np2 , 31 Cp-l).

Proof. (1) I::> (2) By theorem 2 in [1 J, we know 3\ Cop : Z [lTpJ) <=::> all

3 -isogenies from E' are defined over Fp. But the kernels of 3 -isogenies are the

subgroups of order 3. So they are Fp-rational. Hence lTp can be written in the

following form: lTp = (0- ~ ). Therefore lT~ = iden ti ty Csince 1! = 3), 3\(p-l). That is

to say, f=CF p CE'I) : F p) = lor 2 ·So 32 1 Np2. As we know that 3 I f iff 0 mod p

eCFp)3 C*) Cd. [3J p. 305), we see 0 mod p eCFp)3. (2)1::>(1) By lemma

3, lTp can be written as lTp = (~~). As 0 mod e CFp)3, the equivalence C*)

leads b = O. So lTp = (~~), since det lTp= 1, which means that two subgroups of

order 3 of E'3 are Fp-rational. From this we easily see that all subgroups of

order 3 are Fp rational, q. e. d.

Corollary. If 311 Np2 and 3\Cp-l) then 0 mod p e CFp)3.

Remark 3. In [1 J, theorems 1 and 2 are independent to each other.

Using theorem 2, the part (2) of theorem 1 can be strengthend as follows: if

£2ICap)2-4p thenf\1!C1!-l), moreover if 1!!Cop:Z[1rpJ) thenflC1!-l), if

.1! l' Cop: Z [lTpJ) then 1! I f. These are verified in the similair way as the first

part of the proof the above theorem 3.
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