(Memoirs of the Faculty of Education Akita University (Natural Science) 28. 40-44 (1978)

Remarks on the Arithmetic of Elliptic Curves(I)

Hideji ITO

(Received September 10, 1977)

In [1], we investigated the law of decomposition of primes in certain galois extensions K_{ℓ}/Q relating with elliptic curves. In this note, explicit laws are obtained in special cases: $\ell = 2$, 3.

§ 1. Introduction

Let E be an elliptic curve defined over \mathbf{Q} such that $E(\mathbf{Q}) \neq \phi$. For a rational prime ℓ , put $E_{\ell} = \{a \in E \mid \ell a = 0\}$ and $K_{\ell} = \mathbf{Q}(E_{\ell})$, i.e. K_{ℓ} is the number field generated over \mathbf{Q} by all the coordinates of the points of order ℓ on E. Then K_{ℓ} / \mathbf{Q} is a galois extension and $Gal(K_{\ell} / \mathbf{Q}) \cong GL_2(\mathbf{Z} / \ell \mathbf{Z})$, except for finitely many ℓ 's [3]

For $\ell \ge 5$, $GL_2(\mathbf{Z}/\ell \mathbf{Z})$ is non-solvable and it is hard to analyse their arithmetic. But for $\ell = 2$, 3, K_ℓ / \mathbf{Q} is a solvable extension and we know their structure well (see lemma 1). So we can state the law of decomposition of primes explicitly (these were stated without proof in [1]). Also we can paraphrase the condition " $\ell | (\mathfrak{o} : \mathbf{Z}[\pi])$ or not" in [1] in easier form in case $\ell = 3$.

§ 2. Our approach

Let p be a rational prime where E has good reduction. Then it is well-known that p is unramified in every K_{ℓ}/\mathbf{Q} ($\ell \neq p$). We exclusively deal with that case in this note. (Bad primes are finite innumber).

Let P an algebraic point of E i.e. $P \in E(\overline{\mathbf{Q}})$. When we view E/Q as defined over \mathbf{Q}_P , we must take some care of the rationality of P. Put $\mathbf{k} = \mathbf{Q}(P)$ and \mathbf{p} an extension of p to k. Then P is rational over $\mathbf{k} \mathbf{p}$. Thus the rationality of P in $\overline{\mathbf{Q}}_P$ depends on the choice of \mathbf{p} , that is, the way of emdedding of k into $\overline{\mathbf{Q}}_P$. In particular, we can see the following fact:

Akita University

P is \mathbf{Q}_{P} -rational under an embedding of $\mathbf{Q}(P)$ into $\mathbf{\overline{Q}}_{P} \Leftrightarrow$ In $\mathbf{Q}(P)$,

p is divisible by a prime of degree 1.

Formulating with $K_{\ell} = \mathbf{Q}(E_{\ell})$, we see:

p splits completely in $K_{\ell}/\mathbf{Q} \Leftrightarrow E(\mathbf{Q}_{p}) \supset E_{\ell}$.

As reduction map induces an isomorphism between the subgroups consisting of points of finite order prime to p of $E(\mathbf{Q}_p)$ and of $E'(F_p)$, the latter is equivalent to $E'(F_p) \supset E'_{\ell}$, where we put $E' = E \mod p$, $E'_{\ell} = \{a \in E' | \ell a = 0\}$. Combining the knowledge $K_{\ell} \supset \mathbf{Q}(\zeta_{\ell})$, where ζ_{ℓ} is a primitive root of unity of order ℓ , we have necessary conditions for a prime p to split completely in K_{ℓ}/\mathbf{Q} as follows:

 $\ell^2 | N_p, \ell | (p-1),$

Whether above condition is at the same time sufficient or not is the motivation of our study and the answer turns out no (see \$4 in this note or [1] theorem 1).

§ 3. Some lemmas

For E: $Y^2 = X^3 + AX + B$, A, $B \in \mathbb{Z}$, put $\delta = -2^4 (4A^3 + 27B^2)$, $j = 2^8 3^3A^3 / (4A^3 + 27B^2)$ as usual.

Lemma 1. $K_2 = \mathbf{Q}(\sqrt{\delta}, P_2), K_3 = \mathbf{Q}(\sqrt[3]{\delta}, \zeta_3, P_3), \text{ where } P_\ell (\neq 0) \in E_\ell, \ell = 2, 3.$

Proof. When $j \neq 0$, 1728, our assertions are readily verified by virtue of Hilfsatz 1.1, 1.2, 1.4 in [2]. When j=0 or 1728, E can be written in Weierstrass form as $Y^2=X^3-D$, $Y^2=X^3-DX$ (resp.). So we can verify in each case by writing down the equations which x-coordinates of points of order 1 must satisfy. For example, when j=1728, $\sqrt[3]{\delta}=4D$ and x-coordinates of 3-section

points are given by $3X^4 - 6DX^2 - D^2 = 0$. Hence $x = \pm \sqrt{\frac{3 \pm 2\sqrt{3}}{3}D}$. As

$$\sqrt{\frac{3+2\sqrt{3}}{3}}$$
 D × $\sqrt{\frac{3-2\sqrt{3}}{3}}$ D = $\frac{D}{3}$ $\sqrt{-3}$, we have Q(x-coordinates of E₃)=

 $Q(\zeta_3, \text{ one } x)$. So by Hilfsatz 1.1 in [2], we have our assertion.

Lemma 2. Let k/Q be a finite galois extension, k'/Q a finite extension, both having an embedding into Q_p . If p is unramified in both k and k', then there is an embedding of kk' into Q_p .

Proof. Let K be the smallest galois extension of Q containing kk'. By the assumption, there is an extension \mathfrak{P} of p to K for which the restriction of \mathfrak{P} to k' is of degree 1. Since k/\mathbf{Q} is galois, $k \subseteq \mathbf{Q}_P$ means that any extension of p to k, especially the restriction of \mathfrak{P} to k, is of degree 1. Therefore, the

Akita University

decomposition field of \mathfrak{P} (with respect to \mathbf{Q}) contains k and k'. So, the restriction of \mathfrak{P} to kk' gives the desired embedding kk' $\subseteq \mathbf{Q}_{P}$, q.e.d.

Remark 1. In general even if $k \subseteq \mathbf{Q}_{P}$ and $k' \subseteq \mathbf{Q}_{P}$, kk' cannot necessarily be embeddable into \mathbf{Q}_{P} . For example, let $F = \mathbf{Q}(\zeta_{3}, \sqrt[3]{7})$, $K_{i} = Q(\zeta_{i}\sqrt[3]{7})$, i = 0, 1, 2. Then $K_{i} \subseteq \mathbf{Q}_{5}$ for all i, but $F = K_{1}K_{2} \hookrightarrow \mathbf{Q}_{5}$. Indeed, since $X^{3} - 7 \equiv (X-3)(X^{2}+3X+4) \pmod{5}$, 5 has the decomposition of type $5 = \mathfrak{p}_{1}\mathfrak{p}_{2}$, $N\mathfrak{p}_{1} = 5^{2}$, $N\mathfrak{p}_{2} = 5$ in $K_{i}(X^{2}+3X+4)$ is irreducible over $\mathbf{Z}/5\mathbf{Z}$). On the other hand, 5 remains prime in $\mathbf{Q}(\zeta_{3}) = \mathbf{Q}(\sqrt{-3})$. Therefore $5 = \mathfrak{P}_{1}\mathfrak{P}_{2}\mathfrak{P}_{3}$, $N\mathfrak{P}_{i} = 5^{2}$ in F. Hence $F \Leftrightarrow \mathbf{Q}_{5}$. (In our situation, if $Gal(K_{\ell}/\mathbf{Q}) \cong GL_{2}(\mathbf{Z}/\ell \mathbf{Z})$, then for any non-zero P, $P' \in E_{\ell}$, $\mathbf{Q}(P) = \mathbf{Q}(P')$ or they are conjugate to each other. So $\ell \mid N_{P}$ means that p is divided by a prime of degree 1 in every $\mathbf{Q}(P)$. But this does not mean p splits completely in $K_{\ell} = \bigcup_{\mathbf{Q}} \mathbf{Q}(P)$.

§ 4. Decomposition of primes in K2, K3

Recall that $Gal(K_{\ell}/\mathbf{Q}) \subseteq GL_2(\mathbf{Z}/\ell\mathbf{Z})$ in any case.

Theorem 1. In K_2/Q , P decomposes completely if and only if (1) 2 | N_p and (2) p splits in $Q(\sqrt{\delta})$.

Proof. As is explained in §2, $2 \mid N_P \Leftrightarrow p$ has an extension of degree 1 in $\mathbf{Q}(P)$ for some $P(\neq 0) \in E_2$. By lemma 1, $K_2 = \mathbf{Q}(\sqrt{\delta}, P)$. So applying lemma 2 we see if part. Only if part is obvious, q. e. d.

Corollary. If $2 \parallel N_p$, i. e. $N_p = 2d$, $2 \times d$, then p remains prime in $Q(\sqrt{\delta})$.

As an example, let us take $E = X_0$ (1). For $\ell \neq 5$, it is known that Gal $(K_{\ell}/\mathbf{Q}) \cong \operatorname{GL}_2(\mathbf{Z}/\ell\mathbf{Z})$ and $\mathbf{Q}(\sqrt{\delta}) = \mathbf{Q}(\sqrt{-11})$ ([3] p. 309).

From the table of the values of $a_p (= 1 - N_p + p)$ given in [4], we know the first 10 primes satisfying 2 || N_p are p = 7, 13, 29, 41, 43, 61, 73, 79, 83, 107. In every case we can see $\left(\frac{-11}{p}\right) = -1$.

Theorem 2. In K_3/Q , p splits completely if and only if

(1) $3 | (p-1), (2) 3 | N_p, (3) \delta \mod p \epsilon (\mathbf{F}_p)^3$.

Proof. By lemma 1, if part is obvious. Assume the conditions (1), (2), (3) hold. Put $k = \mathbf{Q}(\boldsymbol{\zeta}_3, \sqrt[3]{\delta})$. Then (1), (3) mean that p splits completely in k by lemma 2. As $3 \mid N_P$ means that p is divided by a prime of degree 1 of $\mathbf{Q}(P)$ for some $P \in E_3$ and $K_3 = k(P)$, where k/\mathbf{Q} is a galois extension, again by lemma

we see the validity of if part, q. e. d.

Let us again consider $E = X_0$ (1). By [4], $a_{79} = -10$, so $N_{79} = 90 = 2 \cdot 3^2 5$. Thus the prime p = 79 satisfies 3 | (p-1), and $3^2 | N_P$. But the condition (3) is not satisfied as can be seen by direct calculation. Hence the degree of 79 in K₃/Q is 3. (In general $\ell^2 | N_P$, $\ell | (p-1)$ lead that the degree of p in K₁/Q is either 1 or ℓ , which can be seen by matrix representation [4] or by theorem 1 in [1]). When p = 337, then $a_{387} = -22$. So $N_{337} = 360 = 2^3 3^2 5$. As 3 | (337-1) and $-11 \equiv (0^3 \mod 337)$, p = 337 splits completely in K₃/Q.

§ 5. The 3-part of $(p_p : Z[\pi_p])$

Let \mathfrak{o}_P be the algebra of \mathbf{F}_P endomorphisms of E mod p, i. e. $\mathfrak{o}_P = \text{End}_{F_D}$

(E mod p), and π_p be the p-th power endomorphism of E mod p. Then the corollary 1 of theorem in [1] asserts that for $\ell > 2$, p splits completely in K_{ℓ}/\mathbf{Q} if and only if $\ell^2 | N_p$, $\ell | (p-1)$ and $\ell | (\mathfrak{o}_P : \mathbf{Z}[\pi_P])$. In view of our theorem 2, we are naturally led to investigate the relation between $(\mathfrak{o}_P : \mathbf{Z}[\pi_P])$ and δ .

First we need the following

Lemma 3. There is a submodule $A(\neq \{0\}, E'_{\ell})$ of E'_{ℓ} which is F_{p} -rational if and only if $\ell \mid N_{p\ell-1}$

Proof. (Only if part). We can write $E'_{\ell} = A \oplus B$, for some $B \supset E'_{\ell}$, $|B| = \ell$. Representing π_P with respect to above decomposition, we have $\pi_P = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ over \mathbf{F}_{ℓ} . Then $(\pi_P)^{\ell-1} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$, which means that all the points of A are $\mathbf{F}_{P\ell-1} = rational$. So $\ell \mid N_P \ell - 1$.

(If part). By the hypothesis, with respect to a suitable basis, $\pi^{\ell-1}$ can be written as $\pi^{\ell-1} = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}$, a, $b \in \mathbf{F}_{\ell}$. Let the characteristic roots of π be c and $d \in \mathbf{F}_{\ell^2}$. Then $c^{\ell-1} = 1(\operatorname{say})$, i. e. $c \in \mathbf{F}_{\ell}$. As $c + d = \operatorname{tr}(\pi) \in \mathbf{F}_{\ell}$, we also have $d \in \mathbf{F}_{\ell}$. Therefore over \mathbf{F}_{ℓ} , $\pi = \begin{pmatrix} c & * \\ 0 & d \end{pmatrix}$. This means that some subgroup of E'_{\ell} of order ℓ is \mathbf{F}_{p} -rational, q. e. d.

Remark 2. It holds that $N_{p^2} = 1 - a_{p^2} + p^2 = (1 - a_p + p) (1 + a_p + p)$. So if $p \equiv 1 \pmod{3}$, then $3 \mid N_{p^2}$ iff $a_p \equiv \pm 2 \pmod{3}$, while if $p \equiv 2 \pmod{3}$, then $3 \mid N_{p^2}$ iff $a_p \equiv 0 \pmod{3}$. Akita University

Theorem 3. Following two assertions are equivalent for p>3:

(1) $3 | (\mathfrak{o}_p : \mathbb{Z}[\pi_p]),$ (2) $\delta \mod p \varepsilon(\mathbb{F}_p)^3, 3^2 | N_{p^2}, 3 | (p-1).$

Proof. (1) \Rightarrow (2) By theorem 2 in [1], we know $3 | (\mathfrak{o}_P : \mathbb{Z}[\pi_P]) \Leftrightarrow all 3$ -isogenies from E' are defined over \mathbf{F}_P . But the kernels of 3-isogenies are the subgroups of order 3. So they are \mathbf{F}_P -rational. Hence π_P can be written in the following form: $\pi_P = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. Therefore $\pi_P^2 = identity$ (since $\ell = 3$), 3 | (p-1). That is to say, $f = (\mathbf{F}_P (E'_1) : \mathbf{F}_P) = 1$ or $2 \cdot So 3^2 | N_{P^2}$. As we know that 3 | f iff δ mod p $\varepsilon (\mathbf{F}_P)^3$ (*) (cf. [3] p. 305), we see δ mod p $\varepsilon (\mathbf{F}_P)^3$. (2) \Rightarrow (1) By lemma 3, π_P can be written as $\pi_P = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. As $\delta \mod \varepsilon (\mathbf{F}_P)^3$, the equivalence (*) leads b = 0. So $\pi_P = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, since det $\pi_P = 1$, which means that two subgroups of order 3 of E'_3 are \mathbf{F}_P -rational. From this we easily see that all subgroups of order 3 are \mathbf{F}_P rational, q. e. d.

Corollary. If $3 \parallel N_{p^2}$ and $3 \mid (p-1)$ then $\delta \mod p \in (\mathbf{F}_p)^3$.

Remark 3. In [1], theorems 1 and 2 are independent to each other. Using theorem 2, the part (2) of theorem 1 can be strengthend as follows : if $\ell^2 | (a_p)^2 - 4p$ then $f | \ell (\ell - 1)$, moreover if $\ell | (\mathfrak{o}_p : \mathbb{Z}[\pi_p])$ then $f | (\ell - 1)$, if $\ell \not (\mathfrak{o}_p : \mathbb{Z}[\pi_p])$ then $\ell | f$. These are verified in the similair way as the first part of the proof the above theorem 3.

References

- H. Ito, A note on the law of decomposition of primes in certain galois extension, Proc. Japan Acad. 53, No.4 115-118 (1977)
- [2] O. Neumann, Zur Reduktion der elliptischen Kurven, Math. Nachr, 46, 285-310 (1970).
- [3] J. P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes élliptiques, Invent. math. 15, 259-331 (1972).
- G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221, 209-220 (1966).

Department of Mathematics Akita University Akita, Japan