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Abstract

This paper is a continuation of our previous paper [6], in which we treated modular
equation <I>n (X, j) in case n is a prime. Now we consider the case n is composite. By using
resultant we can calculate them up to n = 56 and a few more. Also we include a detailed
account of our computer program.

1 Modular equation <I>n(X,j)

Let z be a point in the upper half complex plane, and set q = eZ1riz • Then the basic elliptic

modular function j(z) is of the form

j (z) = 1/q + Co +Cl q +Cz qZ +... ,
where Co = 744, Cl = 196884, Cz = 21493760, .... Classically, j(z) plays a very important role

in complex multplication theory. Even in recent years, j(z) has been the object of intensive

study. (See a survey article by M.Kaneko [9]). For example, the finite simple group called

Monster has some mysterious connection with j(z).
In my previous paper [6], we consider the problem of explicit computation of the modular

equation <I>p(X,j(z)), which represents algebraic relation between j(z) and j(pz) (p is a prime)

and discovered some curious congruences among coefficients of modular equation provided that

the p are the Monster primes. Soon afterwards M.Kaneko [8] gives a theoretical explanation of

that facts.

By now we have computed the prime case of <I>p(X,j) up to p = 73 (for 59::; p::; 73 on machine

NEC 4800/660, 596MIPS, with 512MB memory of Akita University Information Processing

center).

2 The case n is composite

Now we consider <I>n(X,j), n composite. Classically there is a formula given in Weber's book

[12], p.242.

(1) If (nl,nz) = 1 then
,p(nl )

<I> nl n2(X,j) = IT <I>n2(X,~i),
i=l

where the ~i are the roots of <I>nl (X,j) = O.
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(2) If n = pe (p is a prime, and e > 2) then

where the ~i are the roots of <l>pe-l (X,j) = O.

(3) If n = p2 (p is a prime) then

<I> (X ") = TIf~i <l>p(X, ~i)
p2 ,] (X _ j)P+l '

where the ~i are the roots of <l>p(X,j) = O.

Here we set 1jJ(n) = n TI(l + l/p), p running over the prime divisors of n. Theoretically, this

reduces the computation of modular equation to the case where n is a prime. But it seems that

the above formula has been considered not appropriate for practical calculation. For example,

Xiao-Tie She [13] calculated the case n = 4 by entirely different way, that is, by considering the

behavior of q-expansion of j(z) at the various cusps of Xo(n) in the same way as in N.Yui [14].

But for larger n, his method becomes extremely complicated and was unable to get numerical

results. On the other hand, our method in [6] applies to some degree but is difficult to do in

general.

Recently by scrutinizing classical formulas (1) rv (3) above, we realize that the numerator of

the formulas are nothing but a resultant of special kind. Let the resultant of two polynomials

f(X, Z), g(Y, Z) in C[X, Y, Z] with respect to Z be denoted by Resultantz(J(X, Z),g(Y, Z)).
(Note that f(X, Z) has no Y term, whereas g(Y, Z) has no X term.)

Theorem 1 Corresponding to the above formulas (1) rv (3), we have the following.

(1) Ifn=nln2, (nI, n2) = 1, then

(2) If n = pe, (p is a prime, e > 2), then

Resultantz( <l>pe-l (X, Z), <l>p(Y, Z))
<l>pe(X, Y) = (<I>pe-2 (X, Y))p

(3) If n = p2 (p is a prime) then

<I> (X Y) = Resultantz( <l>p(X, Z), <l>p(Y, Z))
p2 , (X _ Y)P+l

Proof. First recall some properties of resultant. Let A be a ring and two polynomials F( Z),

G(Z) be in A[Z]. The resultant of F(Z) and G(Z) satisfies

m

Resultantz(F, G) = II F(~i)··· (*),
i=l

where m is the degree of G and the ~i are the roots of G(Z) = O.

Now set A = Q[X,Y] , F(Z) = <l>nl(X,Z), G(Z) = <l>n2(Y'Z) and consider F, G as elements

of A[Z]. Then the roots ~i of G(Z) = 0 are the roots of <l>n2(Y' Z) = o. Hence by (*) we obtain
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~(n2) ~(n2)

II <I>nl (X, ~i) = II F(~d = Resultantz(F(X, Z), G(Y, Z)). Q.E.D.
i=1 i=1

Since we already have explicit forms of <I>p(X,Y) (up to p :S 73 at present) and resultant

is a built-in function (in Mathematica) , this theorem enables us to compute <I>n(X, Y) for n

composite. At present (March '97) we have computed up to n :S 56 and a few more (n = 65,77).

(Complexity is better measured by 'Ij;(n), not by n itself.) For larger n, it requires huge memory

and cannot be done easily (at least on our machine).

Though it little eases our computation, the formula (2) and (3) in theorem 1 above can be

generalized as follows.

Theorem 2 Suppose n = s + t. We have the following formula:

The denominator is a polynomial in X and Y and can be given explicitly as follows.

t-l

(1) If s > t, thenDp(s, t) = (II <I> pn-2i(X, Y))'P(pi)). (<I> pn-2t(X, y)i·
i=1

t-l

(2) If S = t, then Dp(s, s) = (II <I> pn-2i (X, Y) )'P(p')) . (X _ Y)'P(pS)
i=1

Proof. Suppose two elliptic curves E and E' have j-invariants j, j' respectively. As is well

known, if j, j' E C satisfy <I>m(j,j') = 0, then there is a cyclic m-isogeny E ---+ E' (or by its

dual E' ---+ E) and vice-versa. So for a given j, if j' runs over such values (m = pn) then

we have <I>pn(j,j') = Il(j - j'). Also we know that a pn-cyclic isogeny E ---+ E' factors as

go f : E ---+ E" ---+ E' where f : E ---+ E" is a cyclic pS-isogeny and g : E" ---+ E' is a cyclic

pt-isogeny.

On the other hand, Resultantz(<I>ps(X, Z), <I>pt(Y, Z)) = Ilt~f) <I>ps(X,~d (the ~i are the roots

of G(Z) = 0 where G( Z) = <I>pt (Y, Z)) embodies all compositions of cyclic pS -isogenies and cyclic

pt-isogenies of above type. But they are not necessarilly cyclic. One must exclude the case where

g is involved with t f (the dual of 1). Classifying to what extent ker(g) and Ker(i1) intersect,we

get our results. Q.E.D.

Examples. The case p=2. For brevity we abbreviate Resultantz(F(X, Z), G(Y, Z)) as

Res(F, G) and <I>m(X, Y) etc. as <I>m.

<I>16 = Res(<I>4' <I>4)/(X - y)6

<I>32 = Res( <I> 8, <I>4)/<I> 8 <I>i
<I>64 = Res(<I>32,<I>2)/<I>i6 = Res(<I>16,<I>4)/<I>~<I>16 = Res(<I>8,<I>8)/(X - y)12<I>~<I>16
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3 Some verification

After you perform some calculation, you had better to make a check on your results. Below

we list up several methods of verification in our case.

(i) Coincidence with past results.

For p=2, 3, 5, 7, see Herrmann [4]. For p=11, see Kaltofen-Yui [7]. For n = 4, see Xiao-Tie

She [13].

(ii) Symmetric property of coefficients.

If we set <pn(X, Y) = X1/>(n) + y1/>(n) +L aikXiyk, then we must have aik = aki' (See, for

example, Lang [10] p.55.)

(iii) The Kronecker congruence relation.

If p is a prime then we have <pp(X, Y) = (XP - Y)(X - YP) (mod p). This means aik = 0

(mod p) except for all =app =-1 (mod p). (See Lang [10] p.57.)

(iv) Isogenous pair of elliptic curves over Q.
If there is a cyclic n-isogeny E ---+ E', then their j-invariants j, j' satisfies <PnU,j') = O. (See

Lang [10] p.59, Theorem 5.) By Birch-Kuyk [1] or Cremona [2], we can find such pairs in a few

cases. We denote the j-invariant of N A (in the notation of above books) by j(N A).

For n = 2, 3, 4, 5, 6, 8 and 9, there are plenty of them. For n=7, j(26D) and j(26E).

For n = 16, j(15A)=-1/15, j(15H)=1114544804970241/405. For n=25, j(l1A)=-4096/11,

j(l1C)=-52893159101157376/11. For n = 27, j(27C)=j(27D)=-12288000, etc.

For n = 11, 17, 19, 37,43,67 and 163, see for example Cremona [2] p.78.

Of course, by Mazur's theorem there are only finitely many of them. More precisely they are

n = 1 rv 19,21, 25, 27, 37,43, 67 and 163.

(v) Isogenous pair of elliptic curves over finite fields.

Let £ be a rational prime. If £ is not a divisor of n, then <Pn(j,j') = 0 in Fe(=Z/£Z) is

equivalent with the existence of a cyclic n-isogeny E j ---+ E j" where Ej, E j , are the elliptic

curves over Fe with j-invariants j, j' respectively. On the other hand, we can find Fe-rational

cyclic n-isogenies as follows (cf. Ito [5], §5.) Let ae E Z be lael ::; 2V£. Then to each value of

ae, there corresponds an isogeney class of elliptic curves whose Frobenius endomorphism can be

identified with 7re = (-ae + .ja; - 4£)/2. We know the following.

Suppose (a) Z[7re] is the maximal order of Q(7re),(b) P splits in Z[7re], (c) the class number of

Z[7re] is 1, then there is a unique elliptic curve E defined over Fe corresponding to ae and E has

a cyclic p-isogeny E ---+ E. So in this case we have <pp(j(E),j(E)) = 0 in Fe. (Note that the

converse dose not necessarily holds. The reason is, Yo(n) in the standard notation is not the

plane curve Cn : <pn(X,Y) = 0 itself. Yo(n) is the desingularisation ofCn.)
Example. p=7. First we enumerate all isogeny classes of elliptic curves over Fe (cf. Wa

terhouse [11] p.542 except the values of j-invarians. We calculate them in reverse way, that is,

from the Weierstrass equation corresponding to the value j we calculate the value of ae. And

as for the exact correspondence of endomorphism rings and the j-invariants, we use Ito [5] and

the knowledge of Fe-rational points of each curves.)
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af. 1rf. Endomrphism ring j-invariants

0 p maximal order 6

index 2 6

±1 (1 ±3H)/2 maximal order 0

index 3 3

±2 1±yC6 maximal order 4, 5

±3 (3 ± V-19)/2 maximal order 1

±4 2±H maximal order 0

index 2 2

±5 (5± 0)/2 maximal order 0

Since (-~g) = 1, we have <1>5(1,1) == 0 (mod 7). Also (-l~g) = 1, (or (-~Ag) = 1 etc.)

implies <1>17(1,1) == 0 (mod 7) (or <1>23(1,1) == 0 (mod 7) etc.)

Incidentally we suspect that <1>n( -1, -1) == 0 (mod 7) for all n. At any rate, it seems there

are many things to be cleared.

(vi) Fricke's parametrisation.

In case Xo(n) is of genus 0, then j(z) and j(nz) can be parametrized by an uniformizing

function. Fricke [3] enumerates such parametrization. For example, when n = 9, we have j(z) =
123 J(7) and j(9z) = 123 J(3/7), where J(7) = (974 +3673 +5472 + 287 + 1)/647(72 +37 +3)

(Fricke [3] p.387). So substituting them into <1>g(X, Y) (X = j(z), Y = j(9z)), we must have

value O. And indeed such is the case.

Appendix.

In this appendix, we explain our actual way of calculation in detail. We use Maihemaiiea version 2 .
First we define several functions. ( In parenthesis, we indicate the name of the file that contains it.)

(1) en = ern]. (jcoef.Ill )

The ern] are the coefficients of q-expansion of j(z) = L~l e[n]qn . We rely on the Lehmer formula.

%Computation of the q-coefficients of j(z) %

tau[n_J :=tau[nJ=RamanujanTau[nJ
c[-1J=1
c [oJ =744
c [1] =196884
c[n_J:=c[nJ=65520*(DivisorSigma[11,n+1]-tau[n+1])/691-tau[n+2J-

24*tau[n+1J-Sum[c[kJ*tau[n+1-kJ,{k,n-1}]

ReIllark: The calculation of Ramanujan's tau.
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In our paper [6], we wrote that r(n) is a built-in function in Mathematica. Strictly speaking, it is in
the standard package: NumberTheory' Ramanujan'. Later, we realized that it is more efficient to use
Ramanujan's recursive formula as is explained in the following paper.

D.H.Lehmer, "Ramanujan's Function r(n)" , Duke Math. J.(1943) 483-492.
The formula (14) in this paper is as follows:

bn

(n - 1)r(n) = 2.::>-1r+l(2m + 1) x {n - 1 - 9m(m + 1)/2}r{n - m(m + 1)/2}
m=l

where, bn = t((1 + 8m)t - 1) (its integer part).)
(This is not incorporated in this version, but if you want r( n) for bigger n (~ 5000), you should use

it. )

(2) times1[A,B,m] (jpower.m)

The list of the coefficients of the expansion of the product of two polynomials I:;:~l aiXi and

I:;:~l biXi (from the O-th term to the (m-1)-th power term). We make two lists A={ ao, aI, ... , am-d,
B={bo,h, ... ,bm - 1}. We ignore n-th power terms (n ~ m). That's because in our application A and B
are the lists of coefficients of some finite terms in infinite series. So after taking the product, n-th power
terms (n ~ m) are not correct values.

times1[A_List,B_List,m_] :=
Module [{A1=A, B1=Table[O,{m}], C1={}},
Do[{A1, B1}= {Drop[A1,-1], B1+B[[i]]*A1};

C1=AppendTo[C1,B1[[1]]];
B1=Drop[B1,1] ,
{i,1,m}]

;C1]

(3) LQJ[n] (LQJ.m)

(* LQJ[n] is the list of the lists of the coefficients of
the q-expansion of j(q)-m,
(1<=m<=n), up to the constant term. *)

L1[n_] :=Table[c[i] ,{i,-1,n-1}]
LQJ[n_] :=Module[{A={},B=L1[n]},

Do[{A,B}={Append[A,Take[B,i+1]],times1[B,L1[n],n+1]},{i,1,n}] ;A]

(4) Jcqn[p_,k_] (jpower.m)

The list of the coefficients of qO, qP, q2p,... , qP
2

in the q-expansion of j(z)k. To get them, we must
first calculate q-expansions of j(z)k. jqp[1] is the list of the coefficients of the q-expansion of j(z) (up
to the n-th term; if you want <pp(X,j), then n = qp2+p. ) Suppose we want <Pp as far as p=31. Then
n=1000 will suffice. So, in the following example, we take up to qlOOO . (Why 1002, in the second line?
That's because when we take up to qn we must take into account the constant term and the (-1)-th
power term.) jqp[i] is the list of the coefficients of the q-expansion of j(z)i up to qlOOO.

jqp[1]=Table[c[i],{i,-1,1000}]
jqpCi_] :=jqp [i] =timesHjqp [1] , jqp [i-1] ,1002]
jqpn[k_,n_] :=jqp[k] [[n+1+k]]
Jcqn[p_,k_] :=Table[jqpn[k,i],{i,0,p-2,p}]
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Warning: For bigger p > 31 (or smaller p < 31), you must change the values 1000 and 1002 for
appropriate values,

(jpol.m)

Loosely speaking, this is the list of the coefficients of j-polynomial expression of ~~ + q~~ 1 + ' ,,+

dk
-

1 + dk + ' ,, (the ordering is from the highest to the constant term),
q

(* jpol[ListJ gives the j-polynomial expression of the given list
of numbers *)

LQJ [oJ ={1}
jpol[F_J:=Module[{C={},A=F,n=Length[FJ-1},

Do [{C,A}={Append[C,First[AJJ ,
Rest[A-A[[1JJ*LQJ[50J [[n+1-iJJJ},{i,1,n+1}J;CJ

(* For p>50, you must modify the above value 50 in LQJ[ J *)

(6) u[k,p],t[k,p],s[k,p] (jmod.m)

In our paper [6], these are denoted as Uk, tk, Sk, That is
'Zk ,z+l k ,z+p-1 ku[k,p]=J(-) +J(-) +"'+J( ),

p p P
t[k,p] = the k-th elementary symmetric polynomial in j(l-),j(tll)"" ,j(z+p-l),

P P P

s[k,p] = the k-th elementary symmetric polynomial in j(pz),j(~),j(~),
,(z+p-l)

"', J p ,

(* u[k,pJ = k-th power sum of j(z!p),j((z+1)!p), ... ,j((z+p-1)!p)
(except u[p,pJ, see below)

t[k,pJ = k-th elementary symmetric function
in j(z!p), ... ,j((z+p-1)!p)

s[k,pJ =k-th elementary symmetric function
in j(pz),j(z!p), ... ,j((z+p-1)!p)

We have s[k,pJ=j(pz)*t[k-1,pJ+t[k,pJ *)

u[k_,p_J :=u[k,pJ=p*Jcqn[p,kJ

(* At first we define u[k_,p_J :=p*Join[{1},Jcqn[p,kJJ!;k==p. But
it causes inconvienience in t[p,pJ. So the above u[p,pJ is actually
u[p,pJ-p*(1!q).The definition of t[p,pJ takes care of this point
correctly. *)

t[O,p_J :=Flatten[{{1},Table[0,{p}J}J
t[1,p_J :=u[1,pJ
tt[k_,p_J :=tt[k,pJ=
((-1)-(k-1»*(1/k)*Sum[(-1)-i*times1[u[k-i,pJ ,t[i,pJ ,p+1J ,{i,0,k-1}J

t[k_,p_J:=tt[k,pJ!;1<=k<=p-1
t[k_,p_J :=Flatten[{{(-1)-(k-1)},tt[p,pJ}J!;k==p
t[k_,p_J :=Table[0,{p+1}J!;k==p+1

s[k_,p_J:=t[k-1,pJ+Flatten[{Table[0,{p-1}J,(-1)-Cp-1)*Floor[k!pJ,
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744*t[k-1,p] [[1]]+tt[k,p] [[1]]}]/;1<=k<=p
s[k_,p_]:=t[k-1,p]+Flatten[{Table[O,{p}],(-1)-(p-1)*744,

744*tt[k-1,p] [[1]]}] l;k==p+1

(7) cmodj[n,p] (jmod.m)

This is (-l)P- n +lSp_n +l(j) in our paper [6], that is, the coefficient of X n in <1>p(X, j). Not as a
polynomial in j, but as a list of the coefficients. (The ordering is from the highest power of j .) The
index of S is not naturally correlated to the argument of cmodj. That's because, in the computation of
the modular equation <1>p(X,j), we get first the coefficient of XP, next the coefficient of Xp-l and so on.

Steps of calculation
Once you get <1>p(X,j) and <1>q(X,j) (p and q are different primes) as polynomials, it is easy to get

<1>pq(X, j), at least for p and/or q of small size. That is, simply type
Resultant[<1>p(X, Z), <1>q(j, Z), Z].

To get <1>p2(X,j), you type
Simplify[Factor[Resultant [<1>p (X, Z), <1>p(j, Z), Z]]/((X _ j)p+l)],

and so forth. So in the sequel, we concentrate on the case n is a prime p.

Suppose we want <1>2, <1>3, ... , <1>31 at a time. Among the coefficients of the q-expansion of j(z)k, we
need up to the (312 + 31)-th power term in q. But as it makes little difference, we calculate them up to
the term ql000.

(1) RamanujanTau[n]
First you load the necessary package:

« NumberTheory' Ramanujan'
Then

Table [RamanujanTau[i],{i,1,2000}]> > rama2000.d
Now you write
"RamanujanTau[i_]:=rama2000[[i]]/;1 <= i <= 2000
rama2000="
at the top of the file rama2000.d.

The values of T(n) are important for themselves. So, in the sequel, we actually use values of them
stored beforehand.

(2) ern]
First you load

< <rama2000.d;
< <jcoef.m

Then you type in as follows:
Table[c[i],{i,-1,1000}] »jcoeflOOO.d

After that, you must make appropriate editing in the file jcoeflOOO.d. For example, at the top of the
file you insert

c[i_]:=jcoeflOOO[[i+2JJ/; -1<=i<=1000
jcoeflOOO=

The numerical values of c[n] are very important. So, again, these are to be stored separatedly.

(3) LQJ[n]
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Although we want <1>n up to n = 31, we compute j(q)n as far as n = 50, since it takes no more time
and memory. (Note that here we need only up to the constant term.)

<< jcoeflOOO.d;
« LQJ.m
« jpower.m

Then
LQJ[50]» LQJ50.d

(At the top of the file LQJ50.d, you must write "LQJ[50]:=".)

(These list of values can be used for different p < 50. So you should store them).

(4) j(z)m (1::; m ::; 31) up to the term q1000
(If you want <1>p, then you need up to m = p.) This part ofthe computation takes the most of the time.

In case of <1>31, the result of computation takes about 6MB disk space. (So it causes no problem. But
for larger p, it requires huge memory and disk space. Since what we need in the final step is Jcqn[p, m],
not j(zr, so, it is better to compute step by step. Note that to compute j(z)m you only need j(z) and
j(z)m-1. So you can discard j(z)k(2 ::; k ::; m - 2), once you get Jcqn[p,m - 1].)

Load
« jcoeflOOO.d;
« jpower.m

Type in
Table[jqp[i] ,{i,1 ,31}];

(5) c)p(X,j)

After the computation in (4) is done, you load some more files:
«jmod.m
«jpol.m
«LQJ50.d

Then type in
Table [cmodj [i,2] ,{i,l ,3}]

This gives the list of the coefficients of <1>2 (X, j). In the same way you get the list of the coefficients
of <1>p up to P = 31.

References

[1] B.J.Birch and W.Kuyk (eds.), Modular Functions of One Variable IV, Lecture Notes in

Mathematics 476, Springer, 1975.

[2] J.E.Cremona, Algorithms for modular elliptic curves, Cambridge University Press, 1992.

[3] R.Fricke, Die Elliptischen Funktionen und ihre Anwendungen II, Teubner, 1922.

[4] O.Herrmann, Uber die Berechnung der Fourierkoeffizienten der Funktion j(T), J. Reine

Angew. Math., 274 (1975), 187-195.

[5] Hideji Ito, On the Number of Rational Cyclic Subgroups of Elliptic Curves over Finite Fields,

Memoirs of the College of Education, Akita Univ. (Natural Science) 41 (1990),33-42.

[6] Hideji Ito, Computation of Modular Equation, Proc. Japan Acad. 71, Series (A) No.3

(1995),48-50.

[7] E.KaItofen and N.Yui, On the modular equation of order 11, Proc. of the 1984 MACSYMA

USERS CONFERENCE, General Electric (1984), 472-485.

-9-

Akita University



[8] M.Kaneko, On Ito's observation on coefficients of the modular polynomial, Proc. Japan

Acad. 72, Series (A) (1996), 95-96.

[9] M.Kaneko, mP1aB~O) j /F~:iH=~9Q1ffi~, ~ 41 @)R~"F:.</#Vt)L-.¥IH!i·~ (1996),

96-112.

[10] S.Lang, Elliptic Functions, Addison-Wesley, 1973.

[11] W.C.Waterhouse, Abelian Varieties over finite fields, Ann. scient. Ec. Norm.Sup.,4e serie,

t.2 (1969), 521-560.

[12] H.Weber, Lehrbuch der Algebra III, Zweite Auflage, Friedr. Vieweg & Sohn, 1908.

[13] Xiao-Tie She, Explicit Formulas For The Modular Equations, pp.28, (Brown Univ. Unpub

lished?) (1991).

[14] N.Yui, Explicit Form of Modular Equation, J. Reine Angew. Math. 299-300 (1978),

185-200.

DEPARTMENT OF MATHEMATICS

COLLEGE OF EDUCATION, AKITA UNIVERSITY

AKITA 010, JAPAN

-10 -

Akita University


	it001a.pdf
	it002a
	it002b
	it003a
	it003b
	it004a
	it004b
	it005a
	it005b
	it006a



