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[n our previous papers [6], [7], we have studied the modular equation <I>((X, Y) of j(z) where

j (z) is the most basic modular function with respect to SL2 (Z). Now we study about the modular

equation <I>~3) (X, Y) of j (z) 1/3 which is a modular function for r(3). Especially, we have otained

the explicit form of <I>~3\X, Y) for all primes f :::; 131 and found that certain congruences of

their coefficients (like those noted in [6]) hold for f E P = {2, 5, 7,13,19, 31}. This is

remarkable since if we include 3 in P then these primes in P coincide with those primes

that arise in connection to the Monster simple group.

1 Introduction

Obeying the traditional notation, we put /2(Z) = j(z)1/3. As is classically known,

12(Z) is a modular function of level 3. That is, 12(Z) is a modular function with respect

to r(:3) = {(: ~) E SL 2 (Z)1 (: ~) == (~ ~) (mod 3)} (Lang [9] p.2054). If eis

a rational prime ( #- 3) then we have an algebraic relation between 12(Z) and 1'2(eZ):
<I>~3)(r2(Z),1'2(fz)) = O.

We call this formula the modular equation Of-y2(Z)(= j(z)lj3) and by abuse of language

we call the polynomial <I>~3) (X, Y) itself the modular equation of 12(Z).

Already Weber [ll] p.248 gave the explicit form for f = 2 :

<I>~:3) (X, Y) = X 3+ y 3 - X 2y 2+ 05 ·9·11 . XY - 24 . 33 .053.

In a recent article [3], Elkies calls attention to <I>?)(X, Y) (after a suggestion of

Atkin). He writes the above explicit formula and notes the smallness of the coeffi­

cients of <I>~3) (X, Y) compared with those of <I>e(X, Y) and states (without proof) the

following two propositions:

(A) If we put <I>~3) (X, Y) = Xf+l +yf+1 + E~,b=oJabxayb, then we have Jab = a
unless a + fb == f + 1 mod 3;

(B) We have <I>e(X3
, y 3) = <I>~3) (X, Y)<I>~3) (X, (Y)<I>~3) (X, (2y) where ( is a primitive

:3-rd root of unity.

(We give proofs of (A) and (B) in the next section.)

Our purpose of this paper is to study about <I>~3) (X, Y). As it seems there is few

literature about it we give a rather detailed account of it.
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Remark 1. The exact subgroup of SL2(Z) that leaves 'l'2(Z) invariant is as follows:

{(: ~) ESL2(Z)! a:=d:=omod30rb:=e:=Omod3}.

(See Cox [2) p.276.)

Remark 2. As for the computation of <pn(X, Y) ( the modular equation of j(z)), we

have obtained the explicit form of them for all n S; 100 ( including composite n) except

for n = 90, 96 by March,1999.

2 The construction of <I>~3) (X, Y)

Let t be a rational prime(# 3). The construction(existence) of the modular equation

<p~:3) (X, Y) can be given along the same way as that of <pe(.K, Y) but there are some

delicate points to be considered (especially in step 6° below).

1° 'l'2(Z) is a modular function with respect to

(See Lang [9) p.2.54.)

2° For a rational prime e(=I= 3), 'l'2(fz) is invariant under f o(£) n f(3), where fo(l!) =

{(: ~) ESL2(Z)lc~omode}.

Proof Let cr = (a db) E f o(f)nf(.3). Then we have 'l'2(fcrz) = '1'2 (t az +
d

b
) =

e u+

/2 c:~~~~::~J. As c:= 0 mod £, we have elf E Z. Also, the condition c := 0 mod :3

means that cit is divisible by 3 (here we use £ =1= 3). Hence a' = (C;f ~) is contained

in r(:3). So we have 'l'2(£az) = '1'2 (a'lz) = 'l'2(lz). (Q.E.D.)

3° The group index [r(3) : f o(£) n r(3)) = f + 1 (for £ =1= 3).

Proof. Since £ =1= 3, we easily have SL2(Z) = f(3) . fo(£). Also, as SL2(Z)/f(:3) ~
SL2(Z/3Z), we know [SL2(Z) : f(3)) = 12. Therefore we have fo(£)/fo(£) n f(3) ~

f o(£) . f(3)/f(3) = SL2(Z)/f(3). On the other hand, we know [SL2(Z) : f o(£)) = £+ 1

([10) p.24). Hence we have [f(3) : fo(3) n f(3)) = [SL2(Z) : fo(f) n f(3))/[SL 2(Z) :
r(:3)) = [SL2(Z) : f o(£) n [(3))/[fo(£) : f o(£) n [(3)) = [SL2(Z) : f o(£)) = £ + 1.

(Q.E.D.)

4° Let {ad be the representatives of the coset decomposition of [(3) by f o(£)nr(:3):

1'+1

[(.3) = U(fo(£) n f(3))ai'
i=1
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We put
HI

<p~3)(X'/2(Z))= II (X -/2(faiz)),
i==1

Then, as a polynomial of X, the coefficients of <p}3)(X'/2(Z)) are polynomials in /2(Z).

Proof. By construction, the coefficients of <p}3) (X, /2 (z)) are invariant under the action

of f(3). Let 1l be the complex upper half plane. We know (f(3)\1l)* is of genus 0 (*
means the compactification). (See Shimura [10] p.23.) And the field of f(3)-modular

functions is generated by /2(Z). Especially, a holomorphic f(3)-modular function is a

polynomial in /2(Z). (Q.E.D.)

5°. Let (: :) E SL 2(Z), (

transformation formula of /2(Z):

exp((2/3)rrH). Then we have the following

(
az +b) _(ac-ab+a2cd-cd ()

/2 cz + d - /2 Z

(See Cox [2] p.251.)

6° Let 1112 (Z) = {(: ~) la,b,c,d E Z }. Then we can write /2(faiz) = /2(az) for

some a in the set M = {(~ 3:) E M2(Z) Ia> 0, ad = f, a~ b ~ d - I}. The map

ai f---7 a gives a bijection from the right cosets of fo(f) n f(3) in f(3) to the set M .

PT'Oof. We rely on [10] chapter 3. First we need some notations. Fix N, a natu ral

number (in our case N = 3), t a divisor of N (in our case t = :3), ~ a subgroup of

(Z/NZ)x. As in [10] p.67, I) sometimes means the set of all integers whose residue class

mod ulo N belong to I). Let f' ,6.' and aa E S L2 (Z) be defined by the following way:

f' { (: ~) E SL2 (Z) Ia E I), b =:: a (mod t), c =:: a (mod N) } ;

6.' {(:~) EM2 (Z)laEl),b=::0 (modt),c=::O (modN),ad-bc>o};

(

-1 0)
aa aa a (mod N).

Then [10] Proposition 3.36 (p.72) asserts (for a natural number n) the following:

d-l (a bt)
{IY E 6.'1 det(lY) = n} = UUf'aa a d

a b==O

(a> 0, ad = n, (a, N) = 1).

Here the right hand side is of course disjoint union. Now we set N = t = 3 and n = e
(a rational prime i= 3). Also we set l) = (Z/3Z)X. The double coset f(3) (~ ~) f(3)

is certainly contained in the left hand side of the above formula (unlike f' = SL2(Z)
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(" 0) ,they are not equal). Hence we have 0 1 (Jj = aWa(J for some aj E f , a E ~ and (J of

the form (~ b:). By the transformation formula of /'2(Z) in 5° the action of f' or (Ja

leaves /'2(Z) invariant. So we have /'2("(JiZ) = /'2 (aWa(JZ) = /'2((JZ).

Next we will show the injectivity of the correspondence between the set of cosets

f o(£) n f(3)\f(3) and the set M which is induced by the map (Jj t-+ (J. We put (JO =
(~ ~). If £(Ji and £(Jj ((Jj and (Jj are some coset representatives as in 3°) are contained

, (a bt)) ,in the same set f (Ja(J ((J = 0 d ,then we have (Jo(Jj = P(Ja(J, (Jo(Jj = P (Ja(J for

some P, P' E f'. From these relations we have (JO(Jwjl(JC;l = P(Ja(J' (J-l(J;;lp'-l = pp'-l.

If we put 1r = pp,-l, then we have 1r E (Jof(3}O"C;1 n f'. Hence (JWjl = (JC; 11r(J0 E

f(3) n (Jolf'(Jo C f(3) n f o(£). (For the last inclusion, note that if (: ~) E f' then

-1 (a b)
(Jo c d (Jo =

(Q.E.D.)

(
a bl£).)

£c d
Hence (Ji and (Jj lie in the same coset, a contradiction.

We finally arrive at the following formula:

<I?~3)(X'/'2(Z)) = IT (X - /'2 ((az + 3b)ld))
ad=l,a>O
O$b$d-l

Put q = exp(21rHz). In the next section we see that the q-expansion of /'2(Z) is of

the form

Now we give proofs of (A) and (B) mentioned in section l.

Proof of (A). By the modular equation, we have the relation

Substituting the q-expansions of /'2(Z) and /'2(b) into it, we get

I!

+ L fahg- a
/
3(1 +alg + a2g2+.. ·tq-be/3(1 + algI! + a2q2f. + .. .)b = o.

a,b=O

Equating the coefficients of the gn-term, we get relations among the ai. In particular,

if certain terms of the same power of q appear only once then its coefficient Jab must

be O. From the q-expansions of /'2 (z)f.+l and /'2(lz)f.+ l we know that their exponents

of q are always of the form AI3 where A == -(£ + 1) (mod 3). We next look at the

sum over a, b (0 :::; a, b :::; l). We consider Jab downward, that is, we first consider !e.e,
next fe-ll. etc. We easily see that !e.e = -1 for any £. The term fe_l,eq-(f.-l)/3 q-e

2
/3 =

fe_l,eq-(I!-l+P);:3 is the only term of that power of q. Since £ - 1+£2 -=t £+1 mod 3, we
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have fe-l,f. = O. This also leads that we have fe-1-3m,e = 0 m = 1,2, ... , inductively.

By similar reasoning, we know fab = 0 unless a +bl == l + 1 (mod 3). (Q.E.D.)

Proof of (B). We know

<pe(X,j(z)) = (X - j(h)) IT (X _ j (Z; i)) .
t=O

So we have

(K3 _ j(h))g(X3 _ j (Z; i))
(X - j1/3(lz))(X - (j1/3(lz))(X - (2j1/3(lz)) x

g(X -J'/3 (z n) (X _(i'/3 ( Z ; i)) (X _('J'/3 (Z ; i)) (*)

On the other hand, by the transformation formula in .5°, we have

Here we put 38 =i + la. As l is not divisible by 3, the map 8 M i gives a bijection

Z/fZ -~ Z/lZ. Hence the above (*) is equal to the following form:

(X - ~,(lz)) TI (X -~, (' j38)) X(X - (~2(lz)) TI (X _(~, (' j35))

x{X - (2/2(£z)) IT (X _ (2~(2 (Z ~ 38))
s=O

Thus we get

(Q.E.D.)

Corollary. The constant term of <pe(X, Y) is always cube.

Examples

<P2(0,0)
<P5(O,O)

<Pll (0,0)

_2123959 ,

29°31853119,

2189336,536113179299,

<P3(O,O)
<P7(0,0)

<P13(0,0)

o
o
o

Note that in case l == 1 mod 3 we always have <pe(O, 0) = O. By Gross-Zagier [4] p.195,

we know that the primes p dividing <pe(O, 0) are very small: p S (9£2)/4.

Following assertions can be proven by similar reasoning as in [9].

(1) <p~3)(X, Y) is irreducible in C[X, Y).
(2) <p(3) (X, Y) = <p~3) (Y, X).

(3) <p!3) (X, Y) == (X e - Y) (X - y e) (mod £).
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3 The computation of q>~3) (X, Y)

We make several modifications to the procedure of the computation of <I>~(X, Y) given

in [6].

10 Coefficients of the q-expansion of /2(Z).
. .6 392(Z)3

We know J (z) = 2 3 ~(z)' Here

92(Z)
1 00

223 (1 + 240 L 0"3 (n)qn)
n=l

(0"3(n) = L d3),
din

00

~(z) = (2tr)12 q IT (1- qn)24.
n=l

We have (recall we put /2(Z) = j(z)1/3)

00 00

°Y2(Z)ql/3 IT (1 - qn)8 = 1 +240 L 0"3(n)qn.
n=l n=l

So the q-expansion of /2(Z) is of the form /2(Z) = q-l/3(1 +alq +a2q2 + ...) (ai E Z).

On the other hand, we have Jacobi formulas:

00

n=1 n=-oo
00

L(-lt(2n + 1)q(1/2)n(n+l)
n=O

(See [5] p.284-285.) So by repeated applications of times! of [6] II p.6 and simple

inversion, we get coefficients ai.

But we prefer another method. We already have coefficients of the q-expansion of j(z)

(we accumulated them up to n = 20000). The following theorem enables us to compute

the coefficients of the q-expansion of j(z)M (M is a natural number or a fraction 11m

(m EN)) from those of j(z).

Theorem Let f(x) = bo+blX+b2X2+b3X3+... (bo = 1) and f(x)M = Bo+B1:r+
B 2 x 2 + B 3 x3 +.. 0 (Bo = 1) (M E N or M = 11m (m EN)). Define Pk r'ecursively by

PI b1 ,

k-l
Pk L(-l)i- l biPk_i +(-ll- 1kbk (k ~ 2).

i=l

Then we have
~A" (k-l ). k-li~ i

Bk = (-1) k ~(-1) BiPk-i .
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Proof. Fix n and put

fn(x) 1 +b1x +b2x2+... +bnxn

Fn(x) fn(X)M.

Then we have Fn(x) == f(x)M mod xn+l, that is, they are equal up to the term xn. Let

9n(X) = xn +b1xn- 1+... +bn-1x +bn and {ad be the roots of gn(x) = O. We have

n

gn(x) = II(x - ai)
i=l

a.nd bi is the i-th elementary symmetric function of {ai}' By the Newton formula we

get the k-th power sum of the roots Pk = I: a7 recursively as in the statement of our

theorem. Put
n nJVf

M II M ,,- ign(x) = (x - ad = LJ BnM-iX .
i=l i=l

Here RnM-i is the i-th elementary symmetric function in aI, ... , aI, a2, ... , a2, ... , an, ... ,an

(each repeated 111 times). Then the kth power sums of the roots of gn(x)M = 0 (which

we put Pk ) are simply given by

So the Newton formula aga.in (this time using backwards) gives us the Ri . And we have

Bi = Bi (1 ~ i ~ n). As n is arbitrary, we have Bi for all i in this way.

When iii! = 11m, the above relation (*) becomes mPk = Pk and the rest is the same

as before. (Q.E.D.)

2 0
/ 2 (z)m

To compute <I>~3)(X,Y), we need /2(Z)m up to m = l. Put 9 = ql/3 = exp(27TpzI3).

We use g-expansion of /2(Z):

Let /2(Z)m = I:~=-m am(n)gn. Like [6] Proposition 1, we have the following lemma.

Lemma

From this and our procedure (see next 30), we need g-expansion of /2(Z) up to the

term gf-2H-l. (Note that /2(Z)t = /2(zh2(Z)t-l = (g-l +.. .)(g-(t-1) +...).)

30 The computation of the k-th elementary symmetric function Sk of /2(b), '2(zll),

/2 ((z + 3 . 1)1l),· . " ,2 ((z +3(f - 1))If).
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Like the case of <I>e(X, Y) [4], we first compute the k-th elementary symmetric functions

tk of /2(Z/£), /2((Z + 3 ·1)/£), "', /2((Z + 3(£ - 1))/£), then we use the formula

The procedure goes like [6] II p.7. Since /2(Z) has many acoefficients in its g-expansion,

it becomes simpler than [6]. In the notation of [6] II p.7, we have

s2[k,p]/;1<=k<=p:=t2[k-l,p]+
Flatten[{Table[O,{p-l}],(-l)-(p-l)*Floor[k/p],O}]

s2[k,p]/;k==p+l :=t2[k-l,pJ

(Here we use p in place of e.)

4° <I>~3)(X, Y)
Once you have non-positive terms of g-expansions of Sk (1 :S k :s e+1), then by using

recursive method like before ( [6] or [9] p.54), you can express Sk as a polynomial in /2(Z)

(a.ctually as a list of their coefficients). Collecting them we finally obtain <I>~3) (X, Y).

4 A lnysterious coincidence

Put <I?e(X, Y) = XH1 +yH1 +I:;,m=o anmXnym. In [6] we make some observations

about values of anm/l mod.e. Especially we note the following:

Suppose a< ni, mi < l, (ni, mi) i= (1, l)(i = 1,2). If 11.1 + m1 == 11.2 + m2 mod (e - 1),

then we have

for e:s :31 or e= 41,47, .59,71.

Na.turally we are led to consider the matter in our j(z)1/3 case. And we find the

following:

We have the same congruences precisely when l = 2,.5,7,13,19,31 in the range e :s
131.

In appendix 2, we give the table of fab/l mod l for e= 13.

Now we consider about the meaning of the values of l satisfying such the congruences.

In case of j(z), the primes l :S 31,l = 41,47,59,71 are precisely those primes that

divide the order of the Monster group ;VI. In our present case of j(Z)1/3, the primes l =

2,.5,7,11,19,31 and 3 are precisely those primes that divide the order of the centralizer

of the conjugacy class 3C of M which corresponds to j(3z)1/3 (see Conway-Norton

[1] p.327). (The order of ;VI is the order of the centralizer of the identity and j(z)
corresponds to the identity.)

This is a remarkable coincidence. Kaneko [8] gave a proof of our previous observation,

but it seems that it is not easy to apply his method to our present case of j(z)1/3.
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Appendix 1 The explicit form of <p~3)(X,Y) (R = 2,5,7,11)

<I?~3) (X, Y) = -54000 + X 3 + 495XY _ X 2y 2+ y 3

<I?~3) (X, Y) = ,5209253090426880 + 654403829760X3 + X 6 - 82577379557376XY +

66211200X4y + 229282790400X2Y2 + 1240X5Y2 + 6054403829760y3 - 125915650X3y3 +
66211200Xy4 + 20620X4Y4 + 1240X2Y5 _ X 5y5 + y6

<I?~3) (X, Y) = 113.56800389480448000000X2+ 34848505552896000X5 + X 8+

21091200723320832000000XY +10500260597609472000X4Y - 401660X7y +

11356800389480448000000y2 + 545291.5936075776000X3Y2 + 24762303370X6Y2+

.5405291593607.5776000X2Y3 - 10422120833264X5y3 +1050026597609472000XY4+

49402229030035X4Y4 +1736X7Y4 +34848505552896000y5 - 10422120833264X3Y5+
7402528X6y5+24762303370X2y6+7402528X5y6_401660Xy7+1736X4y7_X7y7+ y8

<I?i:i) (X, Y) = 1577314437358442913340940353536000000000000­

4968642680553728774541064273920000000000X3+45688143672322270430861721600000000Jy6+

98823634118413525094400000X9+XI2_361186299008823000660905274393600000000000Xl'+

43480205786200807791044591616000000000X 4Y-38054031639984135283518996480000X 7Y+

413077590081446400Xl0y + 40079670134989594447l082486988800000000X2Y2­

7:38915976820522916.52798906368000000X5y2 + 60705866.513918405994656256000X8Y2+

302197280Xll y2 - 49686426850537287740541064273920000000000y3­

22464991805005824743128584683520000000X3y3-114469242542360099372537805600000Jy6y3­

497446339990.50626147204X9y3 + 4348025786200807791044.591616000000000XY4+

5316218838754085792923452702720000X4Y4+14180598822887453449928793600X 7 y4+

3140098322119440X10 y4 -

7:3891,597682522916.52798906368000000X 2Y5 -46935639980826194752905642624000X5Y 5+

64S06S2432280202310S0720X8y5 -1984268Xll y5+4.5688143672322270430861721600000000y6­

1144692420542360099372,53785600000X3y6 + 1318298884208744202274348806X6Y6+

20599709219284278200X9Y6 - 380540316399841305283o518996480000Xy7+

1418005988228874S3449928793600X4 y7 - 56282900078312706147360X7Y7 +
901748705440XlOy7+60705866513918459946562056000x2y8+64506.5243228020231o50720X5 Y 8-t

SSS94462430230577S2X8y8 + 2728Xll y8 + 98823634118413S25094400000Y9­

497446:339990S0626147204X3y9 + 2S99709219284278200X6y9 - 1840508903S8SX9y9+

413077S90081446400Xyl0+3140098322119440X4ylO+901748705440X7y 10+ 2344386Xl0y 10+

:302197280X2yll - 1984268X5yll + 2728X8yll _ Xllyll + y12
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Appendix 2 The table of fnm/R mod RforR = 13.

0 0 12 0 0 1 0 0 5 0 0 5 0 0

0 a 0 0 7 0 0 4 0 0 6 0 0 10

12 0 0 7 0 0 4 0 0 6 0 0 9 0

0 0 7 0 0 4 0 0 6 0 0 9 0 0

0 7 0 0 4 0 0 6 0 0 9 0 0 6

1 0 0 4 0 0 6 0 0 9 0 0 7 0

0 0 4 0 0 6 0 0 9 0 0 7 0 0

0 4 0 0 6 0 0 9 0 0 7 0 0 12

5 0 0 6 0 0 9 0 0 7 0 0 4 0

0 0 6 0 0 9 0 0 7 0 0 4 0 0

0 6 0 0 9 0 0 7 0 0 4 0 0 1

5 0 0 9 0 0 7 0 0 4 0 0 6 0

0 0 9 0 0 7 0 0 4 0 0 6 0 0

0 10 0 0 6 0 0 12 0 0 1 0 0 b

(a = 116/13, b = 168/13)

The value fnm/R mod Rlies at the intersection of the (n+ 1)-th row and the (m+ 1)-th

column.
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