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[n our previous papers [6], [7], we have studied the modular equation ®,(X,Y) of j(z) where
j(z) 1s the most basic modular function with respect to SL3(Z). Now we study about the modular
equation @23)(X, Y) of j(2)*/3 which is a modular function for I'(3). Especially, we have otained
the explicit form of @EB)(X,Y) for all primes £ < 131 and found that certain congruences of
their coefficients (like those noted in [6]) hold for £ € P = {2,5,7,13,19,31}. This is
remarkable since if we include 3 in P then these primes in P coincide with those primes
that arise in connection to the Monster simple group.

1 Introduction

Obeying the traditional notation, we put y;(z) = j(2)/3. As is classically known,
v2(z) is a modular function of level 3. That is, y,(2) is a modular function with respect

to ['(3) = {(i Z) € SL,(Z)| (Z Z) = <(1) (13) (mod 3)} (Lang [9] p.254). If £ is
a rational prime ( # 3) then we have an algebraic relation between v2(z) and v2(¢z):
%) (12(2), 1 (¢2)) = 0.
We call this formula the modular equation of v5(2) (= 7(2)'/3) and by abuse of language
we call the polynomial (DES) (X,Y) itself the modular equation of y2(z).
Already Weber [11] p.248 gave the explicit form for £ = 2 :

B (X,Y)= X2+ Y% - X7Y?4+5-9-11- XY —24.3°.5°.

In a recent article [3], Elkies calls attention to <I>§3)(X, Y) (after a suggestion of

Atkin). He writes the above explicit formula and notes the smallness of the coeffi-
cients of <I>§3) (X,Y) compared with those of ®,(X,Y) and states (without proof) the
following two propositions:

(A) If we put &) (X,Y) = X 4 Y 4 5L £, X°Y?, then we have fy = 0
unless a + £b = £ + 1 mod 3;

(B) We have ®,(X?,Y3) = o (X, Y2 (X, (V)2 (X, ¢?Y) where ( is a primitive
3-rd root of unity.

(We give proofs of (A) and (B) in the next section.)

Our purpose of this paper is to study about (I>£3)(X,Y). As it seems there is few
literature about it we give a rather detailed account of it.
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Remark 1. The exact subgroup of SLy(Z) that leaves v;(2) invariant is as follows:

b
{(Z d) € SLy(Z)] aEd_:.Omod3orbECEOmOdB}.

(See Cox [2] p.276.)
Remark 2. As for the computation of ®,(X,Y) ( the modular equation of j(z)), we

have obtained the explicit form of them for all » < 100 ( including composite n) except
for n = 90, 96 by March,1999.

2 The construction of <I>£ )(X Y)

Let ¢ be a rational prime(# 3). The construction(existence) of the modular equation
(Df/'j)(X,Y) can be given along the same way as that of ®,(X,Y) but there are some
delicate points to be considered (especially in step 6° below).

1
< 0) mod 3}
0 1

2° For a rational prime £(# 3), y2(£z) is invariant under T'g(£) N T'(3), where I'g(£) =

{(2‘ Z) € 5L2(Z)|c = 0 mod f}'

b
d

a(lz) + €b "
Y2 (ZZ(/_ES)/T;?) As ¢ = 0 mod ¢, we have ¢/{ € Z. Also, the condition ¢ = 0 mod 3
a £b

means that ¢/{ is divisible by 3 (here we use £ # 3). Hence ¢’ = (c/f p
in T'(3). So we have y;(foz) = y2(0'lz) = v2(L2). (Q.ED.)

3° The group index [['(3) : To({) NT(3)] = £+ 1 (for £ # 3).

Proof . Since £ # 3, we easily have SLy(Z) = T'(3) - To(£). Also, as SLy(Z
SLy(Z/3Z), we know [SLo(Z) : T'(3)] = 12. Therefore we have I'g(£)/To(£)
To(f) -T(3)/T(3) = SL2(Z)/T(3). On the other hand, we know [SLy(Z) : To(¢
({10] p.24). Hence we have [T'(3) : To(3) NT'(3)] = [SL2(Z) : I‘o'(é) I'(3)]
L) = [SLa(Z) : To(®) N T(3))/[To(@) : To(®) N T(3)] = [SLa(2) : To(t)
(Q.E.D.)

1° v,(z) is a modular function with respect to

o={(2 2)esmn(: )

(See Lang [9] p.254.)

Proof. Let o = (a
c

) € ['o(¢) NI'(3). Then we have v(loz) = 7, <€az+ b) =

cz+d

) is contained
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4° Let {o;} be the representatives of the coset decomposition of I'(3) by I'o(£) NI'(3):
e+1

r@) = U@ nrE))o;

=1
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We put
4+1

27 (X, () = [ (X - maltoiz).
1=1
Then, as a polynomial of X, the coefficients of @g‘g) (X,7y2(2)) are polynomials in y3(z).
Proof. By construction, the coefficients of <I>g3) (X, 72(2)) are invariant under the action
of I'(3). Let X be the complex upper half plane. We know (I'(3)\)* is of genus 0 (x
means the compactification). (See Shimura [10] p.23.) And the field of I'(3)-modular
functions is generated by v;(z). Especially, a holomorphic I'(3)-modular function is a

polynomial in vy;(z). (Q.ED,)

b
5° Let (CZ d) € SLy(Z), ¢ = exp((2/3)m/—1). Then we have the following

transformation formula of v, (z

az+b ac—abtaled—
72 (Cz+d) = (remebtaiedely, (2)

(See Cox [2] p.251.)

b
¢ ) la,b,c,d € Z } Then we can write y2(lo;z) = v2(0z) for

6° Let M(Z) = {( y
C
3b

some o in the set M = {(g d) €EMy(Z)|a>0,ad=£,0<b<d~- 1}. The map
o; — o gives a bijection from the right cosets of I'g(¢) NT'(3) in I'(3) to the set M .

Proof. We rely on [10] chapter 3. First we need some notations. Fix N, a natural
number (in our case N = 3), t a divisor of N (in our case t = 3), b a subgroup of
(Z/NZ)*. As in [10] p.67, b sometimes means the set of all integers whose residue class
modulo N belong to §. Let IV A’ and o, € SL2(Z) be defined by the following way:

F,

I

{(i 3) € SLy(Z)|aehb=0 (modt),c=0 (mod N)};

A = {(Z b)eMg(Z)laeb,bEO (mod t),c=0 (modN),ad—bc>0};

d
o, = <a0 a) (mod N).
Then [10] Proposition 3.36 (p.72) asserts (for a natural number n) the following:
fa € A'] det(a) = ) Utﬁ’(““) (a>0,ad=n, (o,N) = 1)
' =n}= o, a>0,ad=n, (a,N)=1).
o et(o JU 0 d

Here the right hand side is of course disjoint union. Now weset N =t =3 and n = ¢

l
(a rational prime # 3). Also we set § = (Z/3Z)*. The double coset I'(3) <0 (1)) I(3)

is certainly contained in the left hand side of the above formula (unlike IV = SLy(Z)
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12
they are not equal). Hence we have (O 1) 0 = G;040 for some &; € I, a € h and o of

he for a bt
the form (0 d

leaves y2(z) invariant. So we have v5(fo;2) = 72(6i0,02) = y2(02).
Next we will show the injectivity of the correspondence between the set of cosets
To(€) NT(3)\I'(3) and the set M which is induced by the map ¢; — 0. We put gy =

>. By the transformation formula of y;(z) in 5° the action of I or g,

/0 . . .
<O 1). If £o; and {o; (o; and o} are some coset representatives as in 3°) are contained

a bt
in the same set [Vo,0 (0 = (0 d>)’ then we have ogo; = po,0, 0oo; = po,o for
some p, p' € I'". From these relations we have 0'00'1'0']-_10'61 = po,o-0 o 1p' ™l = pp't

1

If we put m = pp'~!, then we have 7 € oo['(3)o;' NI, Hence ;07" = o5'nay €

J
b
I'(3)Noy'TMoy € T(3) NTo(f). (For the last inclusion, note that if <(cl d) € I then

b b/L
051 ¢ og = @ b/ .) Hence o; and o; lie in the same coset, a contradiction.
c d le d

(Q.E.D)
We finally arrive at the following formula:

o (X,v2(2)) = I (X -((az+3b)/d))

ad=£,a>0
0<b<d—1

Put ¢ = exp(2mv/—1z). In the next section we see that the g-expansion of y;(z) is of
the form
72(2) = ¢ Pl + arg+ e + a3’ +--) (e € Z).

Now we give proofs of (A) and (B) mentioned in section 1.

Proof of (A). By the modular equation, we have the relation

o0 (1a(2), m(tz)) = 0.
Substituting the ¢g-expansions of y,(z) and v;({z) into it, we get
‘(e+1)/3(1+a1q+a2q2+~--)e+1+q_e(ﬂ+1)/3(1+a1qé+a2q2g+---)L]H

+ Z fard P+ a1+ azg® + -+ )20 P (14 arg + azg® + )P = 0.
a,b=0
Equating the coefficients of the ¢"-term, we get relations among the a;. In particular,
if certain terms of the same power of ¢ appear only once then its coefficient f,; must
be 0. From the g-expansions of v5(z)¢*! and 7, (£2)**! we know that their exponents
of q are always of the form A/3 where A = —({+ 1) (mod 3). We next look at the
sum over a, b (0 < a,b < £). We consider f,; downward, that is, we first consider f;,
next fp_y ¢ etc. We easily see that f,y = —1 for any £. The term fp—; gq"“‘l)/s —2/3 =
feoreq™ (¢=1+8%)/3 is the only term of that power of ¢. Since £ — 1+ {2 # £+ 1 mod 3, we
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have fe—1¢ = 0. This also leads that we have fy_;j_3ms =0 m = 1,2,..., inductively.
By similar reasoning, we know f;s =0 unlessa+bf=£+1 (mod 3). (Q.ED)

Proof of (B). We know

B, = (X - e 11 (X ~i (”) |

1=0
So we have

B(X°,j(2)) = <X3—j(ez>>ﬁ(X3—f<zji>)

1==0
= (X - j13L2))(X - ¢7M3(2)) (X ~ ¢%5M3(e2)) x

I (- (2) (x- () (x-cae (57)) e

1=0

On the other hand, by the transformation formula in 5°, we have

11/3 Z+33): a;1/3 <z+i>
J ( 7 ¢J 7

Here we put 3s = i 4+ fa. As £ is not divisible by 3, the map s > i gives a bijection
Z/1Z7 — Z/UZ. Hence the above () is equal to the following form:

(X -7’2(.€z))§) <X — v <Z‘;3S>> « (X _472(62)):1-]; (X m (zz&s))

Thus we get
2,(x%,¥?) = 0 (X,v)2l) (X,¢Y) e (X, (%Y).

(Q.E.D)
Corollary. The constant term of ®,(X,Y) is always cube.
Examples
$,(0,0) = -—2123959 ©3(0,0) =
®5(0,0) = 2903185%11°, ®7(0,0) =

®,1(0,0) = 21893%65%611317929°, ,3(0,0) = 0

Note that in case £ = 1 mod 3 we always have ®,(0,0) = 0. By Gross-Zagier [4] p.195,
we know that the primes p dividing ®,(0,0) are very small: p < (942)/4.

Following assertions can be proven by similar reasoning as in [9].

(1) & (X,Y) is irreducible in C[X,Y].
2) 3P (x,v) = P (v, x).
(3) <1>§3) (X,Y)= (X'~ Y)(X =YY (mod 4).
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3 The computation of @Eg)(X, Y)

We make several modifications to the procedure of the computation of ®,(X,Y) given

in [6].
1° Coeficients of the g-expansion of y;(z).
N of 392(2)°
We know j(z) =2°3 Al) Here
1 o
0(z) = z(1+2003 os(m)g) (o3(n) = Y ),
n=1 din
x
Alz) = (2m)2qJI(1-¢M*
n=1

We have (recall we put y5(z) = j(2)'/3)
o0 [e.¢]
12(2)g P TL (1 - g™ = 14240 ) a3(n)q™
n=1 n=1

So the g-expansion of y3(z) is of the form vo(2) = ¢~ Y/3(1 + a1g + agg®+---) (a; € Z).
On the other hand, we have Jacobi formulas:

00 00
H(l _ qn) — Z (_1)nq(1/2)n(3n+1)

n=1 n=-—00

o0 ©0

[Ta-a) = 3 (-1 (@n+ 140/
n=1l n=0

(See [5] p.284-285.) So by repeated applications of timesi of [6] II p.6 and simple
inversion, we get coefficients a;.

But we prefer another method. We already have coefficients of the g-expansion of j(z)
(we accumulated them up to n = 20000). The following theorem enables us to compute
the coefficients of the g-expansion of j(2)™ (M is a natural number or a fraction 1/m
(m € N)) from those of j(z).

Theorem  Let f(z) = bo+byz+byz?+b3z>+- - (bp = 1) and f(z)M = By+Byz+
By2? 4+ B3+ (Bo=1) (M € N or M =1/m(m € N)). Define py recursively by

P = by,
k—1 ]

pr o= O (=1 g+ (1) kb (k> 2).
=1

Then we have

k-1
By, = (——1)}6_1% <Z(—l)iBipk_i> .

1=0
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Proof. Fix n and put

fa(@) = 14+bz+bog? + -+ bya"
F.(z) = fn(:z:)M.

Then we have F,,(z) = f(z)™ mod £™*!, that is, they are equal up to the term z™. Let
gn(2) = 2™+ by2™ ' + -+ by_12 + by, and {o;} be the roots of g,(z) = 0. We have

n

gn(z) =]](z - o)
i=1
and b; is the i-th elementary symmetric function of {o;}. By the Newton formula we
get the k-th power sum of the roots p; = Zaf‘ recursively as in the statement of our

theorem. Put

n nM
M M 3 :
gn(z)” = H(x - o) = ZBHM_i:E’.
i=1 =1
Here B, ps—i is the i-th elementary symmetric functionin oy, ..., 01, 02, ..., a2, . .. y Qn,y ..

(each repeated M times). Then the kth power sums of the roots of g,(z)™ = 0 (which
we put Py) are simply given by

P = ]M])/c (*)

So the Newton formula again (this time using backwards) gives us the B;. And we have
B; = B; (1 < i < n). As n is arbitrary, we have B; for all i in this way.

When M = 1/m, the above relation (x) becomes mP; = p; and the rest is the same
as before. (Q.E.D))

20 72(2)771
To compute <I>§3)(X, Y), we need v2(2)™ up tom = £. Put g = ¢'/3 = exp(2rv/—12/3).
We use g-expansion of y2(z):

12(2) =g + a6’ + azg® + aag® + - -
Let v2(2)™ = Y02 _,, am(n)g™. Like [6] Proposition 1, we have the following lemma.

Lemma

S - IS an(tn)g® H1<m< -1
272((24“3%)/@ _{ Z(l/g-’rz,?’:oae(fn)gn) ifm =4

From this and our procedure (see next 3°), we need g-expansion of v2(z) up to the
term g¥ +4=1, (Note that y5(2)¢ = o (2)12(2)t = (71 +-- ) (g~ D +-.))

3° The computation of the k-th elementary symmetric function si of y2(¢z), v2(2/4),
Y2((z +3-1)/8),: - 12((2 4 3(£ - 1)) /4).

s Qn
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Like the case of ®,(X,Y) [4], we first compute the k-th elementary symmetric functions
ty of y2(2/8), y2((z +3-1)/0), -+, 72((z + 3(€ = 1)) /£), then we use the formula

SE = 72(€Z)tk_1 + .

The procedure goes like [6] II p.7. Since y2(z) has many 0 coefficients in its g-expansion,
it becomes simpler than [6]. In the notation of [6] II p.7, we have

s2[k,pl/; 1<=k<=p:=t2[k~1,pl+
Flatten[{Table[0,{p-1}], (-1)~(p-1)*Floor[k/p],0}]
s2[k,p]/ ;k==p+1 :=t2[k-1,p] ‘

(Here we use p in place of £.)

4 o (x,Y)

Once you have non-positive terms of g-expansions of s (1 < k < £+ 1), then by using
recursive method like before ( [6] or [9] p.54), you can express s;, as a polynomial in v, (z)
(actually as a list of their coefficients). Collecting them we finally obtain <I>£,3)(X, Y).

4 A mysterious coincidence

Put @,(X,Y) = XH1 4 yH1 4 Zﬁ’mzo anm XY™, In [6] we make some observations
about values of a,, /¢ mod {. Especially we note the following:

Suppose 0 < ng,m; < £, (n;,m;) # (L, 1)1 =1,2). If ny + my = ng 4+ me mod (£ - 1),

an m a”ﬂ ma
thile = 272 m()d £

L !
for £ < 31 or{ = 41,47,59, 71.

1/3

Naturally we are led to consider the matter in our j(2)'/® case. And we find the

following:

We have the same congruences precisely when £ = 2,5,7,13,19,31 in the range £ <
131.

In appendix 2, we give the table of f,;/¢ mod £ for £ = 13.

Now we consider about the meaning of the values of £ satisfying such the congruences.
In case of j(z), the primes £ < 31,f = 41,47,59,71 are precisely those primes that
divide the order of the Monster group M. In our present case of j(z)!/3, the primes £ =
2,5,7,11,19, 31 and 3 are precisely those primes that divide the order of the centralizer
of the conjugacy class 3C of M which corresponds to j(3z)}/° (see Conway-Norton
[1] p.327). (The order of M is the order of the centralizer of the identity and j(2)
corresponds to the identity.)

This is a remarkable coincidence. Kaneko [8] gave a proof of our previous observation,
but it seems that it is not easy to apply his method to our present case of j(z)'/3,
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Appendix 1 The explicit form of &{7(X,Y) (£=2,5,7,11)
o (X,Y) = —54000 + X° + 495XY — X?Y? 4+ Y®

¥ (X,Y) = 5209253090426880 + 654403829760.X3 + X6 — 82577379557376 XY +
66211200X4Y +229282790400.X2Y 2 +1240X°Y 2+ 654403829760Y 3 — 125915650 X3Y 3 +
66211200XY* + 20620X4Y* + 1240X%Y5 — X5Y5 4+ Y®

0¥ (X,Y) = 11356800389480448000000X 2 + 34848505552896000 X5 + X5+
21091200723320832000000X Y + 1050026597609472000X4Y — 401660X7Y +
11356800389480448000000Y 2 + 5452915936075776000X°3Y 2 + 24762303370.X %Y 2+
5452915936075776000X Y3 — 10422120833264X5Y3 + 1050026597609472000 XY 4+
49402229030035X4Y % 4+ 1736 X 7Y 4 34848505552896000Y ° — 10422120833264 X 3Y 5+
7402528 X 8Y 524762303370 X %Y 647402528 X5 Y 6 —401660XY "+1736 XY - X7y 74+ V8

2% (X,Y) = 1577314437358442913340940353536000000000000
496864268553728774541064273920000000000.X 3+4568814367232227043086 1721600000000 X ®+
98823634118413525094400000.X %+ X 12-36118629900882300066095274393600000000000X Y +
4348025786200807791044591616000000000X 4Y —38054031639984135283518996480000X7Y +
413077590081446400X %Y 4 400796701349895944471082486988800000000X %Y 2—
7389159768252291652798906368000000.X°Y 2 4 6070586651391845994656256000.X 3Y 2-
302197280 X 11Y2 — 496864268553728774541064273920000000000Y 3 —
2246499180505824743128584683520000000.X 3Y 3 —11446924254236009937253785600000.X6Y 3~
49744633999050626147204X°Y 3 4 4348025786200807791044591616000000000X Y 4+
5316218838754085792923452702720000.X Y 44-14180598822887453449928793600X 7Y 4+
3140098322119440X 10y 4
7389159768252291652798906368000000.X 2Y 5 —~4693563998082619475295642624000X °Y 5+
645065243228020231050720X8Y 5~ 1984268 X 1Y 54-45688143672322270430861721600000000Y &
11446924254236009937253785600000.X3Y® + 1318298884208744202274348806.X 6y 64
2599709219284278200X°Y® — 38054031639984135283518996480000X Y "+
14180598822887453449928793600X4Y 7 — 56282900078312706147360X7Y 7+
901748705440X 107 7 +6070586651391845994656256000.X 2Y 34-645065243228020231050720.X3Y 8+
555944624302357752X3Y 8 + 2728 X 11Y8 4 98823634118413525094400000Y° —
49744633999050626147204X3Y ° + 2599709219284278200X Y ® — 1840508903585 XY 2+
413077590081446400.X Y 1°4+3140098322119440X 4Y 104901748705440.X Y 1042344386 X 10y 104+
302197280 X2Y 1! — 1984268 X°5Y 1! + 2728 X8yl . xllyll L y12
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Appendix 2  The table of f,,/{ mod { for £ =13.

0 0 1200100 50050 0
0 a 0 0700 4 00600 10
12 0 0 7004 0 060009 0
0 0 7 00400 60090 0
0O 7 0 0400 6 00900 6
1 0 0 4006 0 09007 0
0 0 4 0060 0 900720 O
0 4 0 0600 9 00700 12
5 0 0 6009 0 070040
0 0 6 0090 0 70040 0
0 6 0 0900 7 00400 1
5 0 0 9007 004006 0
0 0 9 00700 40060 0
0 10 0 06 00 12 00 100 b

(a = 116/13, b=168/13)
The value fp;,/¢ mod £ lies at the intersection of the (n+1)-th row and the (m+ 1)-th

column.
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