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Abstract

We gave an algorithm to compute the modular equation <pn(X,j) of j(z) in [4]. Using the
data accumulated we have found some congruences of values <Pn (i, k) modulo a few primes.
For example, <pn(-1, -1) == 0 mod 7 for all nand <pn(i, -1) == 1 mod 7 (0 :s i :s 5) for all
n satisfying deg <P n == 0 mod 6. Knowledge about supersingular elliptic curves enables us
to give a proof of those facts. Some related problems are also discussed. In the Appendix,
tables of values of <Pn (i, k) mod 7 are given for several n.

1 Introduction.

Let j(z) be the basic elliptic modular function, n a positive integer. Then j(z) and j(nz)

satisfiy a certain equation (usually called a modular equation):

<I>n(X, Y) = 0 (X = j(z), Y = j(nz))

Explicitly the modular polynomial <I>n(X, Y) is given by

<I>n(X,j(z)) = II (X - j(oz))
Cl'EM(n)

where M(n) = {( ~ ~) Iad - be = n, d> 0,0 :s b < d, the common factor of rational integers

a, band dis I}. So we can write

m-l

<I>n(X, Y) = X m +y m + L aikXiyk ,
i,k=O

m = deg<I>n = n II(1 + p-l).
pin

We know aik = aki (see [5J, p.55). This gives us a method of checking the result of our

computation of <I>n(X, Y). Although that can be done easily on machine, we want to see the

symmetry in our own eyes directly. So we make a table of <I>n(i,k) modp (0::; i,k ::; p - 1).

That is of course symmetrical in i and k and one can see it at a glance at least for small p even

if n is large.

Looking into the tables obtained (see Appendix), you can see that there are some characteristic

patterns of the values such as noted in the abstract. It is the purpose of this paper to investigate

to what extent those patterns would hold in general.
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2 The values of iPn(i,k) modp.

Let p be a rational prime. We first note that the Kronecker congruence relation <pp(X, Y) ==
(XP - Y)(X - YP) mod p yields <pp ( i, k) == (i - k)2 mod p. This gives us a very typical table of

values (see <P7(i, k) mod 7 in the Appendix).

Next we treat more general case. We need two facts.

(i) Let E and E' be elliptic curves over a field K with characteristic p (here p = 0 is permitted)

and j(E), j(E') their j-invariants. Suppose p tfn. If there is a cyclic n-isogeny between E and

E', then we have <pn(j(E),j(E')) = 0 and vice versa. (See [5] p.59.)

Remark. Suppose n = p, and j, j' E F p' By the Kronecker congruence relation we have

<Pp(j,j') == 0 mod p ¢::::> j = j'. On the other hand the supersingular elliptic curve defined over

F p has no subgroup of order p. So (i) cannot hold when pin.

Hereafter we always assume p In unless otherwise explicitly stated.

(ii) Over F p, the supersingular j-invariants are contained in F p2 and can be explicitly calcu

lated. We list them for several small primes. (See [1] p.257.)

p supersingular j-invariants 11 0, 1

2 0 13 5

3 0 17 0, 8

5 0 19 7,18

7 6 23 0,3,19

Theorem 1 If there is only one supersingular elliptic curve E over F Pi then we have

<pn(X,j(E)) == (X - j(E))deg~n mod p, for all n not divisible by p.

Proof. We know <pn(X,j) = Ilj/(X - j') where j' = j(E') for some elliptic curve E' over F p

and there is an n-cyclic isogeny between E and E'. If E is supersingular, so is E'. Hence our

assumption means j = j'.

Example 1. p=2. Since over F 2 there is only one supersingular j-invariant (namely j=O),

we have <pn(X, O) == xdeg~n mod 2. Also we can explicitly give the values of <pn(X, 1) mod pin

case n = £ ( a rational prime) as follows. Let ap be the trace of Frobenius endomorphism of an

elliptic curve over F p' As is well known lapl ~ 2yIP. So if p =2, we have a2=0, ±1, ±2. Only

a2 = ±1 can give non-supersingular elliptic curves (j = 1). Let E be such an elliptic curve (i.e.

j(E) = 1). Since in this case a~ - 4p = 1 - 4 x 2 = -7, the endomrphism ring End(E) is the

maximal order of Q(H). By Ito [3], if £ splits or ramifies in Q(H) then there is at least

one £-isogeny E --+ E, that is, <P£(I,I) = 0 mod 2. While if £ remains prime in Q(H) then

there is no £-isogeny E --+ E, so <P£(I, 1) ~ 0 mod 2, that is, <P£(I,I) == 1 mod 2. All in all we

see that the table of the values of <p£( i, k) mod 2 (0 ~ i, k ~ 1) is of type ~ ~ in the first

case and 0 1 in the second case. Here the first row means <P£(k, 0) mod 2 (k = 0,1), the
1 1

second row <pAk, 1) mod 2 (k = 0,1).
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Example 2. p=3. <I>n(X,O) == Xdeg<p n mod 3. Similar reasoning as in Example 1 gives the

values of <I>e( i, i) mod 3 (1 ~ i ~ 2) in some cases. Notations being the same as before, if ap = 1

then a; - 4p = -11 and the corresponding j-invariant is j = 1. If ap = 2, then a; - 4p = -8

and the corresponding j-invariant is j=2. So if l splits or ramifies in Q(J-11) (Q(H),
respectively), then <I>e(1, 1) == 0 mod 3 (<I>e(2,2) == 0 mod 3, respectively).

Example 3. p=5. <I>s(X,O) == Xdeg<P n mod 5. So we have <I>n(O,O) == 0 mod 5 for all nand

<I>n(k, 0) == 1 mod 5 for 1 ~ k ~ 4 provided 41 deg<I>n.

Example 4. p=7. <I>n(X, -1) == (X + 1)deg <p n mod 7. Especially, we have <I>n(-1, -1) ==
Omod 7 for all nand <I>n(i,-1) == 1 mod 7(0 ~ i ~ 5) for all n satisfying 6Ideg<I>n. We note

that if an odd prime l == 2 mod 3 divides n then the last condition is satisfied.

Example 5. p=13. <I>n(X,5) == (X +8)deg <p n mod 13.

Theorem 2 Let E is an elliptic curve (:fsupersingular) over F p with j-invariant 0 and 7rp its

Frobenius endomorphism. Suppose End(E) is the maximal order of Q(R) and the conductor
of Z[7rp ] is prime to l(a rational prime :f p). Then we have the following (J(X) is some
polynomial in X).

(i) If l splits in Q(R) (i.e. l == 1 mod 3), then <I>e(X,j) == (X - j)2 f(X)3 mod p.

(ii) If l remains prime in Q(R) (i.e. l == 2 mod 3), then <I>e(X,j) == f(x)3 mod p.

Proof. By Ito [3] Propsosition 2, the assumptions mean the number of F p-rationall-isogenies

from E is 2 or 0 corresponding to the cases (i) and (ii). Since the class number of Q(R)
is one, if there is an F p-rational l-isogeny E ---+ E', E' must be E itself. Also, as Aut(E) is

isomorphic to the group of sixth roots of unity, multiplicity three occurs. Indeed, Aut(E) acts

on the set S = {C c E IICI = l}. Clearly {±1} fixes any C. Put ( = (-1 + R)/2. If

(C = C, then we easily see that 7rpC = C, that is, C is Fp-rational. If (C :f C, then we

also have eC :f C. But by [7] Proposition 3.7 we have E/C ~ E/((C) ~ E/(eC). So their

j-invariants must coincide.

Example 6. p=7. By the table in Ito [4] II p.5, our theorem applies for l > 3. By

computation we have <I>2(X,0) == (X + 5? mod 7, <I>3(X,0) == X(X + 4)3 mod 7, <I>s(X,O) ==
(X2+2X +5)3 mod 7, <I>n(X, 0) == (X4 +3X3 +2X2 +X +3)3 mod 7, <I>13 == X 2(X4 +X 3+
3X2+3X +1? mod 7, <I>17(X,O) == (X6 +4X4 +5X3 +2X2 +4X +4? mod 7, <I>19(X,0) ==
X 2(X3 +4X2 +3)3(X3 +5X2+2X +4)3 mod 7 etc.

In particular, we see that in case l == 2 mod 3 the values of <I>e(O, i) mod 7 (0 ~ i ~ 6) must

be 0 or ±1.

3 Factorization of <pn(X, i) mod p.

Theorems 1 and 2 suggest that we should investigate the factorization of <I>n(X, i) mod p for

each 0 ~ i ~ p-1. The following theorem enables us to assert the coincidence of <I>n(X, i) mod p

for different i's (0 ~ i ~ p - 1) for infinite number of n's.
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Theorem 3 Let £ be a mtional prime and i, k two different integers (0 ~ i, k ~ p-1). Suppose

<I>t(X, i) == <I>t(X, k) mod p. Then we have <I>tm(X, i) == <I>tm(X, k) mod p for all m not divisible
by £.

Proof. We have <I>tm(X,~) = Il, <I>m(X, a) where a runs through the solutions of <I>t(X,O = 0

(see [8] p.242). This readily yields our assertion.

In the following examples, the numbers i and k are the supersingular j-invariants over the

corresponding fields.

Examples. (1) Since we know <I>3(X,0) == <I> 3 (X, 8) == X(X - 8)3 mod 17 by computation,

we have <I>3m(X,0) == <I>3m (X, 8) mod 17 for all m (3 A'm). (By the way, the facts <I>9(X,0) ==
(X +9)12 mod 17 and <I>9(X, 8) == X 4 (X +9)8 mean we cannot drop the condition £1m.) Also

we know <I>n(X,O) == <I>n(X,8) == X 3(X + 9)9 mod 17 by computation, we have <I>nm(X, 0) ==
<I> 11m(X, 8) mod 17 for all m (111m).

(2) Since we know <I>2(X,7) == <I>2(X,18) == (X + 1)(X + 12)2 mod 19 by computation, we

have <I> 2m (X, 7) == <I> 2m (X, 18) mod 19 for all m (21m).

The problem is, of course, to find out which i and k satisfy the assumption in the first

place. Also we note, in example (1), writing <I>n(X,O) == XS(X - 8)t mod 17 and <I>n(X,8) ==
XU(X - 8)V mod 17, we observe that t = 3u always holds as far as our computation goes.

4 The number of zeros in the table {<I>n(i,k) modp}.

We denote by N(n,p) the number of O's in the table {<I>n(i,k) modp}(O ~ i,k ~ p - 1). In

this section, we investigate the case n = £ (a rational prime). In general it seems difficult to

express N(£,p) in some explicit closed form. Here we give a certain estimate of it.

As is well known, the isogeny classes of elliptic curves defined over F p correspond to the

set {ap E Zllapl ~ 2JP}. Put 7rp = (ap + Ja~ - 4p)/2. If the elliptic curve E over Fp

corresponding to ap is not supersingular , then End(E) is an order R (containning 7rp ) of the

imaginary quadratic field Q(7rp ). (Hereafter we call such an order R admissible.) And the

number of the isomorphism classes of elliptic curves with the same endomorphism ring R is the

class number h(R) of R. (See Waterhouse [7] p.538-542.)

We denote by no, nI, n2 various sums of class numbers of admissible orders. Explicitly, no =
ER<> h(Ro) where Ro runs through admissible orders in which £ ramifies. Also, n1 = ERI h(R1)

where R1 runs through admissible orders in which £ splits and h(R1) = 1, n2 = ER
2

h(R2)
where R 2 runs through admissible orders in which £ splits and h(R2 ) 2:: 2. Let m be the number

of the supersingular j-invariants contained in F p.

Theorem 4 Assume £ > 2JP. Notations being the same as above, we have the following

estimate: no + n1 +n2 ~ N(£,p) ~ m 2 +no + n1 +2n2.

Proof. Since any elliptic curve isogenous to a supersingular elliptic curve is also supersingular,

there are at most m2 zeros of <I>t(X, Y) mod p coming from the Fp-rational supersingular j
invariants.
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Suppose End(E) is of type R o. Then by Ito [3], there is exactly one F p-rational £-isogeny

from E. (Here and in the following we need the assumption £ > 2..jP. This guarantees £ does

not devide the conductor of End(E).) If End(E) is of type RI, then there are two Fp-rational

£-isogenies from E to some elliptic curve Ei (i = 1,2). Since the conductor of End(Ei) must be

the same as that of End(E), we have Ei = E (i = 1,2). So in this case we get only one solution

of <PJI(X, Y) == 0 mod p, Le., <pJI(j(E),j(E)) == 0 mod p.

If End(E) is of type R2, then E gives at least one solution and at most two solutions of

<PJI(X, Y) == 0 mod p. This completes our proof.

Example. p=l1. The next table on the left enumerates the isomorphism classes of el

liptic curves over F n. Here R means endomorphism ring, h the class number of Rand

j the corresponding j-invariant. On the right we give the table of the values <P7( i, k) mod

11 (0 ::; i, k ::; 10). (If <P7(X, Y) is suitably defined, in the language of Mathematica, this is

Table[<p7(i,k) mod 11,{i,0,10},{k,0,10}]//TableForm. Namely, the i-th row is the list of the

values of <P7(i - l,k) mod 11 (0::; k::; 10).)

ap 1rp R h J

0 yCTI maximal 1 1

conductor 2 3 0,(1?)

±1 (1 ± y'-43)/2 maximal 1 6

±2 1±y'-10 maximal 2 7, 9

±3 (3 ± y'-35)/2 maximal 2 4, 10

±4 2±yC7 maximal 1 2

conductor 2 1 8

±5 (5 ± y'-19)/2 maximal 1 5

±6 3±y'=2 maximal 1 3

<P7( i, k) mod 11
0 0 4 4 4 1 4 3 3 1 9
0 0 5 9 1 5 4 5 1 9 5
4 5 0 8 10 1 9 1 8 3 6
4 9 8 1 9 5 4 6 8 9 3
4 1 10 9 8 5 3 7 2 6 0
1 5 1 5 5 0 2 2 5 2 5
4 4 9 4 3 2 8 5 9 6 1

3 5 1 6 7 2 5 5 4 0 6

3 1 8 8 2 5 9 4 0 9 6
1 9 3 9 6 2 6 0 9 9 1

9 5 6 3 0 5 1 6 6 1 2

Suppose £ = 7. The case an=3 gives a ramified case. So each j=4, 10 gives one Fp-solution

of <P7(X,j) == modl1. (At this stage we can't decide whether <P7(4,4) == <P7(10,10) == Omod 7

or <P7(4, 10) == <P7(10,4) == 0 mod 7. The table above on the right shows that the latter occurs.)

The case an =4 also gives a ramified case. Since h=1 and the conductor is prime to 7, we must

have <P7(2,2) == <P7(8,8) == 0 mod 11. The case an =2 gives the splitting case with class number

2. So in this case we have at least 2, at most 4 solutions of <P7( i, k) == 0 mod 11. (Actually, the

table above on the right shows there are two of them.) The case an = 5 gives the splitting case

with class number 1. So in this case we have exactly one solution, that is, <P7(5,5) == 0 mod 11.

Hence, finally, we get an estimate 2 + 2 + 2 + 1 ::; N(7,11) ::; 22 + 2 + 2 + 2 . 2 + 1, that is,

7 ::; N(7,11) ::; 13. The true value of N(7,11) is 11, by the table above on the right. (As

for the value of j corresponding to each an, we use values of j-invariants of elliptic curves of

eM-type defined over Q given for example in [6] pA83. Also we use the value j(yCIO) =

26335y!5(2 + y!5)2(4 + 3y!5)3 given in [2] pA08. From this we have j(y'-10) == 7,9 mod 11.

About the case ap=O with the conductor 2, we cannot as yet determine whether j=1 really

occurs. )
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Remark. We give a correction to our previous paper [4] "Computation of the Modular

Equation II ". When p=2, the left hand side of Theorem 1 (3) should have the minus sign.

This mistake comes from the imprecise formula (*). The right hand side of this formula should
have (_l)mm' before rI. Here m' is the degree of F. When nor n' is odd then the sign is plus.

So nothing affects in theorem 1 of [4] II. But in the case n=n'=2 the sign is minus, because

m=m'=3.

Appendix. <Pn(i, k) mod 7 (0 < i, k < p - 1)

The i-th row of each table is the list of <T>n(i - 1, k) mod 7 (0 :S k :S 6).

6 6 0 1 1 6 1
6 5 4 2 5 5 1
0 4 3 3 3 2 6
1 2 3 3 1 3 1
1 5 3 1 5 0 6
6 5 2 3 0 6 6
1 1 6 1 6 6 0

6 1 6 6 1 6 1
1 0 6 1 5 6 1
6 6 1 6 4 3 1
6 1 6 3 5 5 1
1 5 4 5 4 0 1
6 6 3 5 0 6 1
1 1 1 1 1 1 0

6 1 6 6 6 1 1
1 6 5 5 4 4 1
6 5 5 4 1 2 1
6 5 4 5 3 3 1
6 4 1 3 5 4 1
1 4 2 3 4 5 1
1 1 1 1 1 1 0

6 6 1 1 1 1 1
6 0 6 2 4 5 1
1 6 3 3 3 5 1
1 2 3 6 3 6 1
1 4 3 3 6 0 1
1 5 5 6 0 6 1
1 1 1 1 1 1 0

0 6 5 0 4 5 1
6 2 5 5 2 6 2
5 5 0 3 2 2 4
0 5 3 2 6 1 4
4 2 2 6 5 0 2
5 6 2 1 0 6 1
1 2 4 4 2 1 0

6 6 0 6 1 1 1
6 5 4 3 6 4 1
0 4 6 0 2 3 1
6 3 0 2 4 1 1
1 6 2 4 0 6 1
1 4 3 1 6 0 1
1 1 1 1 1 1 0

1 1 1 0 6 6 1
1 1 1 6 4 2 1
1 1 1 6 4 4 1
0 6 6 0 1 2 1
6 4 4 1 1 2 1
6 2 4 2 2 4 1
1 1 1 1 1 1 0

0 1 4 5 5 4 1
1 5 6 6 2 2 4
4 6 0 2 4 4 2
5 6 2 0 2 2 2
5 2 4 2 2 3 4
4 2 4 2 3 6 1
1 4 2 2 4 1 0

6 1 6 1 6 6 1
1 3 1 6 3 5 1
6 1 0 5 3 4 1
1 6 5 6 3 5 1
6 3 3 3 2 2 1
6 5 4 5 2 4 1
1 1 1 1 1 1 0

0 1 4 2 2 4 1
1 0 1 4 2 2 4
4 1 0 1 4 2 2
2 4 1 0 1 4 2
2 2 4 1 0 1 4
4 2 2 4 1 0 1
1 4 2 2 4 1 0

6 6 1 6 1 6 1
6 6 1 4 4 3 1
1 1 1 1 2 1 1
6 4 1 6 4 6 1
1 4 2 4 0 2 1
6 3 1 6 2 0 1
1 1 1 1 1 1 0

1 6 6 1 1 1 1
6 0 1 3 4 6 1
6 1 5 3 1 5 1
1 3 3 5 4 2 1
1 4 1 4 2 5 1
1 6 5 2 5 1 1
1 1 1 1 1 1 0
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<1>29

0 6 3 2 5 3 1
6 0 6 5 4 5 4
3 6 0 6 5 2 2
2 5 6 0 3 5 2
5 4 5 3 6 5 4
3 5 2 5 5 1 1
1 4 2 2 4 1 0

6 1 1 6 1 6 1
1 0 1 6 4 1 1
1 1 5 2 6 3 1
6 6 2 5 2 6 1
1 4 6 2 5 6 1
6 1 3 6 6 6 1
1 1 1 1 1 1 0

6 1 1 6 1 1 1
1 5 3 2 1 1 1
1 3 5 4 6 6 1
6 2 4 6 6 1 1
1 1 6 6 3 0 1
1 1 6 1 0 5 1
1 1 1 1 1 1 0
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