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ABSTRACT- Multifractal analysis for objectively examining the morphology of the

cluster of galaxies is described. This analysis is applied to cosmological N-body

simulations with power-law spectra. From this analysis, we find that the generalized

dimension is useful statistics for quantifying the morphological difference of the clusters,

which evolve from different initial conditions.

1 Introduction

It is known that the analysis of the large scale structure of the universe is a powerful

method to decide the cosmological parameter of our universe. For this reason, many efforts

have been done to quantify the galaxy distribution in an objective manner. Correlation

function (Totsuji and Kihara 1969) is the most famous statistical measure used for the galaxy

clustering. From the analysis of the two-point correlation function, the clustering properties

of galaxies and clusters are resemble, although the scales are very different. More precisely the

two-point correlation functions of galaxies and clusters follow same scaling property,

(1)

where r = -1.8 (Peebles 1980 ; Davis and Peebles 1983 ; Bahcall and Soneira 1983 ; Klypin and

Kopylov 1983 ; Postman, Geller and Huchra 1988 ; Olivier et al. 1990).

This property was considered the evidence of the fractal nature of the galaxy distribution

(Pietronero 1987 ; Coleman, Pietronero and Sanders 1988). However, purely fractal pattern of

the galaxy distribution conflicts with the Cosmological Principal. Jones et al. (1988) and

Martinez et al. (1990) showed that the galaxy distribution cannot be described by a pure

fractal. In nonlinear regime, galaxy distribution is self-similarity, while a transition toward

homogeneity is observed in linear regime. Furthermore, even in nonlinear regime, galaxy

distribution cannot be described by a simple-fractal, but by a multifractal. By using

cosmological N-body simulations, Valdarnini et al. (1992) showed that the multifractal

structure of galaxies can naturally arise in the framework of the gravitational instability

picture. In addition to the galaxy distribution, multifractal analysis of cluster distribution

was done by Borgani et al. (1993).

We here apply multifractal analysis to the morphology of the cluster of galaxies in N-body
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simulations. It is apparent to the eye that the morphologies of the clusters of galaxies, which

evolve from different initial conditions, are not same. Therefore, in addition to the analysis

of the large scale structure, morphological analysis is also important for the cosmological

probes. However the question is whether multifractal analysis is suitable to quantify the

morphology of the cluster of galaxies. In this paper, we examine the usefulness of this analysis

by using the cosmological N-body simulations.

The rest of the paper is organized as follows: The general survey of fractal and multi­

fractal are in section 2. The simulation data and cluster finding algorithm are described in

section 3, and in section 4 the results of our analysis are explained. Finally we discuss

conclusions in section 5.

2 Summary of Multifractal Analysis

2. 1 Fractal and Multifractal

We consider for any E> 0 the set of all the possible covering of a given set E, having

diameters E i:S: E. We introduce M D (E) as

M D (E) = Zim in! L E P.
e-O e,<e i

(2)

This expression defines the Hausdorff dimension DH as the unique value of D that renders finite

M D (E), with it vanishing for D> DH and diverging for D <DH • A definition of a fractal set

is a mathematical object whose Hausdorff dimension D H is strictly larger than its topological

dimension Dr (Mandelbrot 1982). Because we regard galaxy as point-like object, topological

dimension is Dr = O. Therefore if the Hausdorff dimension of a cluster is nonzero, cluster is a

fractal set.

Unfortunately Hausdorff dimension only expresses a simple-fractal morphology. In order

to describe more complicated morphology, we have to introduce a generalized dimension D q •

We divide a simulation cube into cells with side r. The total number of cells which cover this

cube completely is represented by Nail (r). Then, the generalized dimension Dq (Renyi

dimension) is defined as

D = r(q)
q - q - 1 '

where q is an arbitrary real number. 7: (q) is

( )
_ Z. ZagL. f'~aIf [Pier)] q

7: q - Lm 1 '
r-O og r

(3)

(4)

with a cell occupancy probability of Pi = Ni(r)/N, where Ni(r) is the number of particles in the

i-th cell and N == L. N i is the total number of particles (Renyi 1970).

If we set q = 0, we obtain a capacity dimension Do. Strictly speaking, capacity dimension

is not equivalent to Hausdorff dimension. In the practical case, however, it is often considered

that these are completely equivalent. In this paper, we also follow this.

2. 2 Correlation Integral Method

Renyi's method is the most famous definition of a generalized dimension. However, it is
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known that the difficulty of taking the r ---c> 0 limit properly in T (q) exists. In fact, this

definition dose not work well when we apply it to the galaxy distribution map (Ueda et al.

1993). In order to avoid this difficulty, we must estimate T (q) at finite r, instead of taking

the r ---c> 0 limit. Here we adopt correlation integral method which satisfies the above

requirement (Valdarnini et al. 1992; Borgani et al. 1993; Ueda 1995).

The correlation integral method was proposed by Grassberger and Procaccia (1983). In

this approach the partition function is defined
1 N

Z(q, r) = N L Ci(r)q-l, (5)
~ = 1

where C,(r) is an occupancy probability defined as Ci(r) = N i(-:;;;. r)/N, with N i(-:;;;. r) being the

number of particles in a sphere with radius r centered on the i-th object. If partition function

satisfies the power-law relation, we can determine T (q) from Z(q, r) ex: rrCq
). Then the

generalized dimension can be obtained from equation (3).

It, is known that correlation integral method with positive q works well when we apply this

to the cosmological N-body simulation. In negative q, this analysis have a discreteness effect.

Fortunately, we are interested in the morphology of cluster which corresponds to a positive q.

(In q> 0 case, Pi with overdense region is weighted, while underdense region is weighted in q<
ocase.) Therefore, we do not suffer above problem. We also point out that D q in correlation

integral method is known as a close approximation of Renyi dimension. We therefore regard

Dq which derives from this method as the equivalent form of Renyi dimension.

3 Models and Cluster-finding Algorithm

3. 1 Models

In order to examine the usefulness of multifractal analysis, we use the cosmological N-body

simulations (Suginohara et al. 1991). We adopt, four simulations with different power-law

initial conditions

P(k) ex: k n (n = 1,0, -1, -2), (6)

where P (k) is the power spectrum of the initial density fluctuations. All of the simulations

employ N = 262,144 particles, and are carried out in a cubic volume of L~ with a periodic

boundary condition (L b is a cubic length). Hereafter we call these four models n = 1, n = 0, n

= -1, n = - 2 respectively. The above four models are evolved in an Einstein-de Sitter

universe with density parameter Q = 1.0. The gravitational softening length is L b/1280.
Particle distributions of these models are at a/ai = 18.2 (n = 1), 37.6 (n = 0), 6.9 (n = -1)

. and 6.7 (n = -2), where a is a cosmic scale factor and ai denotes its initial value. After this,

we normalize L b = ai = 1.

3. 2 Cluster-finding Algorithm

The idntification of clusters of galaxies from the simulation data is somewhat ambiguous,

but essential in the present study. Here we adopted an adaptive linking method (ALM)

developed by Suto et al. (1992). ALM refines the more conventional Friends-of-Friends

algorithm which assumes the constant linking length. It uses the variable linking length by
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between i-th and j-th galaxies depending on the local density. More precisely,

_ . [_1_ f3 (p,(r ,) -l/3 + p /r ,) -l/3) ]

by - Mm Nl/ 3, 2

where

by is defined as

(
_ IT, - Tj I)

2 r; (8)

is a local density of i-th galaxy and T, is a position vector of the i-th galaxy. Thus ALM

requires two parameters, the proportional constant f3 and the smoothing length r,. After the

particles are properly grouped, we removed particles which are not gravitationally bound.

We adopt (r" (3) = 0/64,0.4), and find clumps of particles in N-body simulation (see

Veda et al. 1993). The results are in figure 1. In this figure, we show the x-y projection of

three clumps in each simlation. From these panels, it is clear that the morphologies of the

clumps, which evolve from different initial conditions, are not same. Here, we define a cluster

of galaxies as a clump which contains more than 200 particles.

4 Analysis

In this section, we explain the results of the multifractal analysis. Especially we pay

attention to the generalized dimension, and examine whether this is useful to detect the

difference of morphologies between clusters, which evolve from different initial conditions.

In order to estimate the generalized dimension, we have to calculate the partition function.

For this purpose, we apply correlation integral method (equation (5)) to each cluster in figure

1 and obtain Z (q, r) with order q = 0, 3. The results are in upper panels of figure 2a, 2b, 2c,

2d. In these figures, open triangles, squares and circles correspond to the Z (q, r) of a cluster

in left, middle and right panels in figure 1. In lower panels, we also plot the generalized

dimension Do, D3 as a function of r. Notice that the generalized dimension is obtained by

realizing a five-point local linear regression on the partition function (Borgani et al. 1993).

From lower panels in figure 2, the generalized dimension depends on the scale r. In order

to see this feature minutely, we first pay attention to Do. As stated in previous section, Do

corresponds to Hausdorff dimension. In large r region, a cluster is recognized a small clump.

In small r, we estimate a dimension of each particle in a cluster. Then in large and small

scales, the dimension approaches the value of Do - O. Only in medium scale, we recognize the

characteristic dimension of a cluster. This simple supposition explains this behavior in figure

2. D3, on the other hand, dose not correspond to Hausdorff dimension. Therefore, we cannot

explain the behavior of D3 in a simple manner.

Figure 2 suggests that the morphology of the cluster is very complicated. This is because

that Dq has no flat shape, and we cannot determine Dq as a constant value. From these panels,

it is soon noticed that the morphological structures of the clusters in each simulation are

similar. In q = 0 case, the generalized dimension in r 2: 4 X 10 -3 region dose not depend on each

cluster. On the other hand, Do depends on each cluster in r :s:: 4 X 10 -3 region. Therefore, we

consider that the clusters which evolve from same initial condition, have same morphology as

far as r 2: 4 X 10-3 region. In q = 3 case, the generalized dimension does not depend on each
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Figure 1. x-y projection of the clumps of particles in N-body simulations.
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Figure 2a. Distribution function and the generalized dimension of n = 1 model.
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Figure 2b. Distribution function and the generalized dimension of n = 0 model.
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Figure 2c. Distribution function and the generalized dimension of n = -1 model.
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Figure 2d. Distribution function and the generalized dimension of n = - 2 model.
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10°

cluster in r ;:,. 1 X 10 -3 region. Then we conclude that the generalized dimension Do, D 3 have an

information about initial condition of a simulation in large r region. In addition to Do and

D 3 , we also analyze D4, D 5 • The results, however, are same in D3 case.

In order to see the model dependence of the morphology of clusters, we compare the

distribution function and the generalized dimension of clusters in n =1 0, -1, - 2 models.

2

OLLl...LL_--'_...L.-.L....JL.LL..LJ-l.---J

Figure 3. Averaged distribution function and the generalized dimension of n = 1
(otriangle), n = 0 (open aquare), n = ~ 1 (open circle), n = - 2
(triangle) models.

-122-

Akita University



These results are in figure 3. To improve statistical reliability, we average Z (q, r) of clusters

in each simulation. From this average distribution function, we also estimate the generalized

dimension Do, D3 • To represent this average effect, we estimate the error in lower panels in

this figure. From upper panels, one soon notice that the Z (q, r) of four models are different

with each other. So one may consider that the partition function is useful statistics to detect

the difference of the morphology of clusters between models. From equation (5), however, the

partition function depends on the number of galaxies in each cluster. Therefore, the difference

of partition function is appearance. The generalizecl dimension D q, on the other hand, dose not

depend on the galaxy number in a cluster. Therefore this statistical measure is favorable.

It is very important to notice the fact that we can discriminate the morphology of clusters

in four models by means of the generalized dimension. We first consider Do case. In r ~ 4

X 10 -3, Do of n = -2 model is smaller than other models. On the other hand, Do of n = -1

model is the largest in r ~ 1 X 10 -2. In 4 X 10 -3 :S: r :S: 8 X 10 -" Do of n = 1 model is the

largest.

We also consicler D3 case. Notice that the error bar in D 3 is smaller than that in Do.

Therefore, we can discriminate four models more clearly by using D 3 • In r ~ 1 X 10-3
, D 3 of

these four models are clearly different. (Although D3 of n = 0 and n = -2 models are almost

same in 1 X 10 -3 :S: r :S: 5 X 10 -3, the difference will appear in r ~ 5 X 10 -3. And D 3 of n = 1

and n = 0 models are almost same in r ~ 5 X 10-3
, but the difference will appear in 1 X 10-3

:S: r :S: 5 X 10 -3.) Then we conclude that the generalized dimension at large scale region has

informations about initial condition of a simulation.

5 Conclusions

In this paper, we apply multifractal analysis to the morphology of the cluster of galaxies

in N-body simulations. The morphologies of the clusters, which evolve from different initial

conditions, are not same. Therefore objective description of cluster morphology is an

important for the cosmological probes. We examine the generalized dimension D q with order

q = 0, 3. From our analysis, the generalized dimension of clusters depend strongly on the scale,

so we cannot determine this as a constant value. In large scale, however, we found that the

generalized dimensions of the clusters in a simulation have same value. So, it is considered

that the generalized dimension has informations about initial condition of a simulation. We

compared the generalized dimension of the clusters between four models, and found that the

behaviors of D 3 are very different with each other. Therefore, we conclude that the generalized

dimension is useful statistics for quantifying the morphological difference of the clusters of

galaxies, which evolve from different initial conditions.

Finally we mention the remaining problems of multifractal analysis. We apply multi­

fractal analysis to power-law cosmological N-body simulations, so it is interesting to apply

this analysis to cold dark matter models or observational results. And further analysis about

cold dark matter models will be examined.
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