Hot Rolling Property of Cu-Sn-Ni-Si-Zn System Copper Alloy

by

Rensei Futatsuka†, Shunichi Chiba** and Takeshi Suzuki***

Abstract

It was mainly studied using laboratory hot rolling mill that edge cracks of hot rolling plates of CDA Copper Alloy C64740 (Cu-Sn-Ni-Si-Zn system copper alloy) occur during hot rolling at high temperatures from 1073 to 1173K.

One cause of the cracks results from sulfur contamination, which is solvable to reduce sulfur or generate the sulfides of MnS and MgS by adding manganese and magnesium in melting and casting, in short, by the scavenging effect.

Another comes from silicon increase in the alloy, which is basically important, strengthens the matrix as compared with the grain boundary at the high temperatures, and brings about intergranular fracture due to the concentration of hot rolling stress to the grain boundary.

An experimental method of 1 pass • 85% rolling reduction is very effective to evaluate the shortness of the alloy at the high temperatures whose results are consistent to the commercial production’s.

Key Words : Copper Alloy, Hot Rolling Crack, Shortness, Intergranular Fracture, Grain Boundary, Sulfide, Silicon

1. 結言

Cu-Sn-Ni-Si-Zn 系銅合金は固溶硬化型 Cu-Sn 合金と析出硬化型 Cu-Ni-Si 合金（1927年に M.G. Corsonの研究・発明による、いわゆるコルソン合金）との折衷合金である。

本合金は CDA ‘Copper Alloy C64740 として合金成分が規定され、その主要合金組成は 1.5-2.5mass% Sn, 1.0-2.0mass% Ni, 0.05-0.5mass% Si, 0.20-1.0 mass%Zn, Cu+微量不純物元素：部分からなる高強度鋼合金である。現在、42合金（Fe-42mass%Ni）と同程度の強度を有する半導体リードフレーム材として主に使用されている。周知のように多岐にわたるリードフレームの要求品質を材料に満足させるには、先ず第一にその製造に不具合がないことが挙げられる。

* Copper Development Association Inc.
しかし、本合金には冷間加工性は極めて優れるが、
高温での加工性、例えば、熱間圧延後数バースにおける1073-1173Kの高温域で耳割れ（鈍塊幅方向端部
割れ）が発生することがあり、後続圧延加工が困難で
ある。また歩留が低下するという短所があった。銅合
金の高温延性についてはこれまで低金屈度の引
張試験による報告がなされているが、高加工速度の熱
間圧延に基づく検討はあまりなされていないようであ
る。

本報では、商業的量産規模で作られている本合金の
鈍塊からサンプリングしたスライスおよび量産では実
施し難い成分組成については実験溶解炉を用いて作成
した鈍塊を供試材とし、熱間圧延割れの原因と対策に
ついて検討したので報告する。

2. 実験方法

2.1 供試材

(1) 量産鈍塊

試料には三菱伸銅が製造しているリードフレーム用
銅合金C64740（商品名TAMAC15）を用い、半連続
鈍造により得られた量産鈍塊（厚160mm×幅520mm
×長さ4000mm）をFig.1のように、その鈍造安定部
から鈍造方向に直角な断面で厚さ約20mmのスライ
スを切りだし、さらにこれから各種試験用の試験片を
採取した。鈍塊スライスからの試験片切断および面削
を考慮し、先ず30個の試験片（約厚20mm×幅30mm
×長さ80mm）を採取し、次にFig.1の下図に示す試
験片の寸法に調整した。熱間圧延試験ではFig.1の

Ingot Slice

Fig. 1 Procedure to prepare specimens from as cast ingot slice

Fig. 2 Macrostructure of commercial production ingot in cross-section
試験片の斜線部 (Fig. 1 の鋳塊スライスの斜線部に対応) を圧延ロールに接する圧延面とした。Fig. 2 に鋳塊スライスの代表的マクロ組織を示す。

(2) 実験鋳塊

量産材では成分組成の大幅な変更は難しいため、実験溶浴炉で合金成分を変化させた実験鋳塊を準備した。原料については、Cu は無酸素銅、添加元素の Sn は 99.99mass% Sn 地金、Ni は Cu-20mass% Ni 母合金、Si は Cu-1mass% Si 母合金、Zn は Cu-70mass% Zn 鋼、Mn は脱水素で脱硫酸化銅、Fe は Cu-2mass% Fe 母合金を用いた。溶解は、抵抗加熱式電気炉を用い、黒鉄坩埚中に木炭被覆下で原料を溶解し、溶け落ち後、約 1473K で脱酸元素を添加後約 600s 保持し、鉱込み温度は 1473K でブックモールドに鉱造した。主要添加元素の他に微量混入元素 Pb, P, Mg および S については必要に応じ解析した。約厚 19mm×幅 25 mm×長さ 60mm の寸法の実験鋳塊は清浄かつ平滑な表面を得るため、鉱塊トップ部をカットした後、鉱塊全面を約 2mm、フライス面削した試験片 (厚 15mm×幅 20mm×長さ 40mm) を用意した。

2.2 試験方法

(1) 鋳延圧延試験

本実験では鋳延圧延を評価するために引張り、鍛造など他の塑性加工による試験を用いず、主に熱間圧延法を採用した。熱間および冷間共用の 2 段ロール (ロール径 250mm、ロール幅 240mm) でモータ電動 22KW の圧延機を用いた。試験片を加熱炉で室温から所定の温度まで約 5400s で上昇させ、3600s 均熱後加熱炉から取り出し、10s 以内に 1 次圧延率 85%、圧延時間約 2s の条件で圧延し、空冷した。ここで、圧延率 α% = (t1-t) /t1) ×100、ただし t1, t は圧延前の試験片厚である。冷間圧延の圧延率も同様でした。

(2) 冷間圧延試験

熱間圧延と同じ圧延機で試験片を所定の圧延率まで数パスで圧延した。

(3) 引張試験

厚 2mm、幅 10mm、標点距離 40mm、平行部の長さ 50mm の他に JIS Z 2201 の引張試験片 18B に準じた試験片を用い、引張変形速度 5mm×60s で引張試験方法を JIS Z 2241 に準拠した。

(4) ピッカース硬さ (HV10) 試験

JIS Z 2244 に準拠し、試験荷重 98.07N を用いた。

(5) 表面観察および分析

光学顕微鏡、EPMA（Electron Probe Micro Analyzer）および EDS（Energy Dispersive X-ray Spectroscopy）を用いた。金属組織用エッチング液はマクロ組織にはキリンスや硝酸水溶液、ミクロ組織にはアンモニア・過酸化水素混合水溶液や希硝酸水溶液を使用した。

3. 実験結果

初めに、Table 1 に本実験で使用した供試材に試験片の化学分析結果を示す。

3.1 量産鋳塊調査

量産鋳塊を量産規模にて熱間圧延した結果、熱間圧延時に割れが発生しなかった正常鋳塊 (S.C.I.) と割れが発生した不良鋳塊 (U.C.I.) についてあらかじめサンプリングしてあった Table 1 の鋳塊スライス No 1-6 を用いて、ピッカース硬さを測定した。Table 2 では、不良鋳塊 No 6 のピッカース硬さはやや大きいが、これ以外の試験片については鋳塊の正常な型不良とピッカース硬さには大きな相違は認められない。すなわちこの程度の硬度差は明らかに鋳塊の熱間圧延性に影響していると思われる。

次に、供試材 No 1-6 の内、鋳塊の硬さが最小の No 5（正常鋳塊）と最大の No 6（不良鋳塊）についての特性の差異をみるため、873-1173K・3600s 加熱後水焼

Table 2 Vickers hardness (HV10) of sound and unsound ingots

<table>
<thead>
<tr>
<th>No</th>
<th>Vickers Hardness (HV10)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave.</td>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>1</td>
<td>72.8(8)</td>
<td>76.7</td>
</tr>
<tr>
<td>2</td>
<td>75.7(2)</td>
<td>74.9</td>
</tr>
<tr>
<td>3</td>
<td>77.1(8)</td>
<td>81.2</td>
</tr>
<tr>
<td>4</td>
<td>72.8(2)</td>
<td>75.5</td>
</tr>
<tr>
<td>5</td>
<td>69.6(19)</td>
<td>73.9</td>
</tr>
<tr>
<td>6</td>
<td>101 (23)</td>
<td>108</td>
</tr>
</tbody>
</table>
Table 1 Analysis results of specimens sampled from ingots

<table>
<thead>
<tr>
<th>No</th>
<th>Ingot</th>
<th>Sn</th>
<th>Ni</th>
<th>Si</th>
<th>Zn</th>
<th>Fe</th>
<th>P</th>
<th>Pb</th>
<th>Mn</th>
<th>Mg</th>
<th>S</th>
<th>Mass% except ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S.C.I.</td>
<td>2.03</td>
<td>1.47</td>
<td>0.15</td>
<td>0.28</td>
<td>0.044</td>
<td>0.004</td>
<td>0.002</td>
<td>0.024</td>
<td><0.001</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>S.C.I.</td>
<td>2.15</td>
<td>1.48</td>
<td>0.13</td>
<td>0.26</td>
<td>0.064</td>
<td>0.003</td>
<td>0.002</td>
<td>0.006</td>
<td><0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>U.C.I.</td>
<td>1.81</td>
<td>1.41</td>
<td>0.20</td>
<td>0.21</td>
<td>0.076</td>
<td>0.013</td>
<td>0.003</td>
<td>0.003</td>
<td>0.016</td>
<td><0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>4</td>
<td>U.C.I.</td>
<td>1.88</td>
<td>1.39</td>
<td>0.24</td>
<td>0.28</td>
<td>0.093</td>
<td>0.003</td>
<td>0.002</td>
<td>0.006</td>
<td><0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>S.C.I.</td>
<td>1.79</td>
<td>1.69</td>
<td>0.13</td>
<td>0.23</td>
<td>0.045</td>
<td>0.005</td>
<td><0.002</td>
<td>0.009</td>
<td>0.001</td>
<td>16ppm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U.C.I.</td>
<td>2.04</td>
<td>1.60</td>
<td>0.19</td>
<td>0.23</td>
<td>0.045</td>
<td><0.002</td>
<td>0.003</td>
<td>0.001</td>
<td><0.001</td>
<td>7ppm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>S.C.I.</td>
<td>1.76</td>
<td>1.50</td>
<td>0.17</td>
<td>0.35</td>
<td>0.040</td>
<td><0.002</td>
<td>0.003</td>
<td>0.014</td>
<td><0.001</td>
<td>8ppm</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S.C.I.</td>
<td>2.04</td>
<td>1.79</td>
<td>0.13</td>
<td>0.26</td>
<td>0.070</td>
<td><0.002</td>
<td>0.002</td>
<td>0.006</td>
<td><0.001</td>
<td>15ppm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>U.C.I.</td>
<td>2.08</td>
<td>1.39</td>
<td>0.16</td>
<td>0.21</td>
<td>0.031</td>
<td><0.002</td>
<td>0.002</td>
<td>0.023</td>
<td><0.001</td>
<td>21ppm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>L.I.</td>
<td>1.67</td>
<td>1.47</td>
<td>0.26</td>
<td>0.21</td>
<td>0.054</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>L.I.</td>
<td>1.59</td>
<td>1.35</td>
<td>1.73</td>
<td>0.20</td>
<td>0.053</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L.I.</td>
<td>1.49</td>
<td>1.25</td>
<td>2.79</td>
<td>0.19</td>
<td>0.049</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>L.I.</td>
<td>1.93</td>
<td>1.67</td>
<td>1.15</td>
<td>0.30</td>
<td>0.036</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L.I.</td>
<td>2.02</td>
<td>1.60</td>
<td>0.53</td>
<td>0.30</td>
<td>0.036</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>L.I.</td>
<td>1.95</td>
<td>1.61</td>
<td>0.33</td>
<td>0.29</td>
<td>0.033</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L.I.</td>
<td>2.09</td>
<td>3.75</td>
<td>0.35</td>
<td>0.31</td>
<td>0.078</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>L.I.</td>
<td>1.98</td>
<td>5.98</td>
<td>0.54</td>
<td>0.31</td>
<td>0.128</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>S.C.I.</td>
<td>1.79</td>
<td>1.69</td>
<td>0.13</td>
<td>0.23</td>
<td>0.094</td>
<td>0.009</td>
<td><0.002</td>
<td>0.006</td>
<td>0.001</td>
<td>16ppm</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>S.C.I.</td>
<td>2.04</td>
<td>1.79</td>
<td>0.13</td>
<td>0.26</td>
<td>0.070</td>
<td><0.002</td>
<td>0.002</td>
<td>0.006</td>
<td><0.001</td>
<td>12ppm</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S.C.I.</td>
<td>1.94</td>
<td>1.83</td>
<td>0.12</td>
<td>0.29</td>
<td>0.026</td>
<td><0.002</td>
<td>0.002</td>
<td>0.024</td>
<td><0.001</td>
<td>25ppm</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>U.C.I.</td>
<td>1.75</td>
<td>1.73</td>
<td>0.24</td>
<td>0.29</td>
<td>0.055</td>
<td><0.002</td>
<td>0.003</td>
<td>0.016</td>
<td><0.001</td>
<td>23ppm</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>U.C.I.</td>
<td>2.04</td>
<td>1.60</td>
<td>0.19</td>
<td>0.23</td>
<td>0.045</td>
<td><0.002</td>
<td>0.003</td>
<td>0.001</td>
<td><0.001</td>
<td>7ppm</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>U.C.I.</td>
<td>1.74</td>
<td>1.72</td>
<td>0.20</td>
<td>0.23</td>
<td>0.091</td>
<td><0.002</td>
<td>0.002</td>
<td>0.003</td>
<td><0.001</td>
<td>16ppm</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>S.C.I.</td>
<td>2.00</td>
<td>1.53</td>
<td>0.16</td>
<td>0.38</td>
<td>0.036</td>
<td><0.002</td>
<td><0.002</td>
<td>0.027</td>
<td><0.001</td>
<td>6ppm</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>S.C.I.</td>
<td>2.09</td>
<td>1.50</td>
<td>0.15</td>
<td>0.38</td>
<td>0.094</td>
<td><0.002</td>
<td><0.002</td>
<td>0.054</td>
<td><0.001</td>
<td>41ppm</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>S.C.I.</td>
<td>1.98</td>
<td>1.55</td>
<td>0.14</td>
<td>0.30</td>
<td>0.031</td>
<td><0.002</td>
<td><0.002</td>
<td>0.041</td>
<td><0.001</td>
<td>6ppm</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>S.C.I.</td>
<td>2.17</td>
<td>1.49</td>
<td>0.12</td>
<td>0.20</td>
<td>0.023</td>
<td><0.002</td>
<td><0.002</td>
<td>0.011</td>
<td><0.001</td>
<td>21ppm</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>S.C.I.</td>
<td>1.98</td>
<td>1.58</td>
<td>0.16</td>
<td>0.28</td>
<td>0.032</td>
<td><0.002</td>
<td><0.002</td>
<td>0.015</td>
<td><0.001</td>
<td>7ppm</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>U.C.I.</td>
<td>1.99</td>
<td>1.63</td>
<td>0.21</td>
<td>0.29</td>
<td>0.037</td>
<td><0.002</td>
<td><0.002</td>
<td>0.043</td>
<td><0.001</td>
<td>11ppm</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>U.C.I.</td>
<td>1.91</td>
<td>1.59</td>
<td>0.19</td>
<td>0.33</td>
<td>0.037</td>
<td><0.002</td>
<td><0.002</td>
<td>0.053</td>
<td><0.001</td>
<td>9ppm</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>U.C.I.</td>
<td>1.98</td>
<td>1.59</td>
<td>0.17</td>
<td>0.23</td>
<td>0.023</td>
<td><0.002</td>
<td><0.002</td>
<td>0.028</td>
<td><0.001</td>
<td>5ppm</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>U.C.I.</td>
<td>2.10</td>
<td>1.41</td>
<td>0.17</td>
<td>0.29</td>
<td>0.012</td>
<td>0.001</td>
<td><0.002</td>
<td>0.002</td>
<td><0.001</td>
<td>31ppm</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>U.C.I.</td>
<td>1.91</td>
<td>1.52</td>
<td>0.27</td>
<td>0.57</td>
<td>0.053</td>
<td>0.002</td>
<td>0.002</td>
<td>0.029</td>
<td><0.001</td>
<td>10ppm</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>S.C.I.</td>
<td>1.93</td>
<td>1.56</td>
<td>0.093</td>
<td>0.25</td>
<td>0.039</td>
<td>0.004</td>
<td>0.003</td>
<td>0.013</td>
<td><0.001</td>
<td>14ppm</td>
<td></td>
</tr>
</tbody>
</table>

Large edge cracks: crack length 5-20mm, Small edge cracks: penetrated edge crack only

Note: Large edge cracks: S.C.I. n=1, L.I. n=1
 Small edge cracks: S.C.I. n=46, U.C.I. n=1, L.I. n=3
 Ditto: S.C.I. n=10, U.C.I. n=19, L.I. n=12
 Ditto, ditto, ditto: S.C.I. n=3, U.C.I. n=8

Mass% except ppm
入れ（以後焼入れという）した試験片の硬さを測定し、金屬組織観察、主な合金構成元素 Sn, Ni, Si の他に P の面分析および冷間圧延による割れ観察を行った。

Fig. 3 に加熱後焼入れした試験片のビッカース硬度の変化を示す。それから As Cast での硬度の差異が大きく、加熱温度が 973K 以上になると正常材と不良材の硬度差は大幅に減少することがわかる。As Cast 鉄塊では、鉄造・冷却条件によっては内部応力により硬度差を生ずる可能性はあるが、本実験における加熱後の小さな硬度差から鉄塊の正常ないし不良を硬度に直接結び付けることはむずかしい。

Fig. 4 に正常材と不良材の光学顕微鏡組織を示す。973K 以上・3600s 加熱では鉄塊のデンドライト組織はいずれも消失する。代表例として 1073K・3600s 加熱材の組織を載せた。

Fig. 3 Vickers hardness after heating and water quenching

Fig. 4 Optical micrographs of sound and unsound ingots
 a As cast sound ingot
 b Sound ingot after heating at 1073K for 3600s and quenching
 c As cast unsound ingot
 d Unsound ingot after heating at 1073K for 3600s and quenching
Fig. 5-1 SEM micrographs and characteristic X-ray images of as cast sound ingot (No 5) by EPMA

- a SEM image, b Sn image, c Ni image, d Si image, e P image

Fig. 5-2 SEM micrographs and characteristic X-ray images of as cast unsound ingot (No 6) by EPMA

- a SEM image, b Sn image, c Ni image, d Si image, e P image
Fig. 5-3 SEM micrographs and characteristic X-ray images of sound ingot (No 5) after heating at 1073K for 3600s by EPMA
a SEM image, b Sn image, c Ni image, d Si image, e P image

Fig. 5-4 SEM micrographs and characteristic X-ray images of unsound ingot (No 6) after heating at 1073K for 3600s by EPMA
a SEM image, b Sn image, c Ni image, d Si image, e P image
Fig. 5-1からFig. 5-4まで正常材と不良材のAs Castならびに1073K・3600s加熱の面分析結果を示す。硬度が急激に低下する加熱温度973K以上では、As Castでやや大きな偏析がみられたSn, Pはマトリックスに完全に固溶する。Si, Zn, Fe, Pb, Mn, Mg, SについてはAs Castならびに加熱鍛塊の面分析で偏析はほとんど認められなかった。Table 3にAs Castおよび加熱後焼入れした試験片の冷間圧延後の割れ観察結果を示す。873K・3600s加熱で40%および50%の冷間圧延を行った不良鍛塊試験片以外割れは観察されなかった。従って本合金の熱間圧延割れは高温域に発生する本合金特有の割れ現象と考えられる。

Table 1の供試材から正常鍛塊No 7と8および不良鍛塊No 9についてSEM観察し、確認された分散粒子のEDS分析を行った。正常および不良鍛塊ともに種々の視野で100個以上を観察および分析したところ

Table 3 Cold rolling results of sound and unsound ingots after heating and quenching

<table>
<thead>
<tr>
<th>Heating temperature/K for 3600s</th>
<th>Hot rolling results of ingots</th>
<th>Cold rolling reduction/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As cast</td>
<td>Cold</td>
</tr>
<tr>
<td></td>
<td>Sound</td>
<td>Unsound</td>
</tr>
<tr>
<td>873</td>
<td>Sound</td>
<td>Unsound</td>
</tr>
<tr>
<td>973</td>
<td>Sound</td>
<td>Unsound</td>
</tr>
<tr>
<td>1073</td>
<td>Sound</td>
<td>Unsound</td>
</tr>
<tr>
<td>1123</td>
<td>Sound</td>
<td>Unsound</td>
</tr>
<tr>
<td>1173</td>
<td>Sound</td>
<td>Unsound</td>
</tr>
</tbody>
</table>

Note ○: no crack ▲: small edge cracks

Fig. 6 SEM micrographs of MnS and MgS particles and the results of EDS analysis of the particles
a MnS particle, b EDS analysis of MnS, c MgS, d EDS analysis of MgS particle
Fig. 6 に示すように正常鉄塊 No 7 からは多数の MnS また正常鉄塊 No 8 からは多数の MgS およびその MgS の個数 1/10 以下の MnS が観察された。Mg や Mn の分析精度にもよるが、微量の S, Mn, Mg や硫化物の生成状態が熱間圧延に関与していることは推察でもある。しかし、この理由により合金の熱間圧延割れを完全に説明しうるものでない。Table 1 の正常鉄塊 No 24-28 と不良鉄塊 No 29-33 はいずれもある操業期間に連続的に採取された鉄塊の分析結果である。つまり、比較的同一の鉄造条件下で得られた一連の供試材の中で No 27 はやや多い S とやや少ない Mn 含有量で正常な熱間圧延、また No 30 はやや少ない S とやや多い Mn 含有量であるにもかかわらず不良な熱間圧延という結果を示している。

3.2 熱間圧延割れ調査

(1) 実験鉄塊

温度約 1473K で溶解される本合金の溶湯は、各種被覆にかかわらず大気との接触を完全に避けることができないため、酸化される。Si は Sn, Ni, Zn に比べて酸化物の自由生成エネルギーが小さいため、溶解鉄造では酸化しやすく、残留 Si 量はばらつきや

Fig. 7 Macrostructures of laboratory ingots and hot rolling plates

a) Ingot (No 10) with 0.26 mass% Si d) Hot rolling plate of a
b) Ingot (No 11) with 1.73 mass% Si e) Hot rolling plate of b
 c) Ingot (No 12) with 2.79 mass% Si f) Hot rolling plate of c
Fig. 8 Microstructures of laboratory as cast ingots and the ingots after heating at 1123K for 3600s and quenching
a As cast ingot (No 10) with 0.2mass% Si
c As cast ingot (No 12) with 2.79mass% Si
e Ingot (No 11) after heating and quenching
b As cast ingot (No 11) with 1.73mass% Si
d Ingot (No 10) after heating and quenching
f Ingot (No 12) after heating and quenching

すい。Si は溶解錳造では溶解の脱酸作用の他に残留 Si は圧延・熟処理工工程を通じて Ni ケイ化物として析出し、合金の強化に寄与する。Si が熱間圧延性に及ぼす影響をみるため Table 1 の実験鈷塊 No 10-12 を用意した。Fig. 7 に As Cast鈷塊マクロ組織と1123K・3600s 加熱後熱間圧延した板の外観を示す。鈷塊は表面近傍のチル層を除き、柱状晶と等軸晶がみられる。Table 1 の Note から明らかのように Si 含有量の増加につれて熱間圧延割れも増える。

Fig. 8 に As Cast および1123K・3600s 加熱後焼入れした鈷塊の組織。Fig. 9 に As Cast と 1073-1173K・3600s 加熱後焼入れした鈷塊の室温における引張試験ならびに硬さ試験の結果。また Fig. 10 および Fig. 11 に No 10-12 の供試材の中で偏析が最大の 2.79mass% Si 含有 No 12 について As Cast および1123K・3600s 加熱後焼入れと鈷塊の EPMA による SEM 像および Sn, Ni, Si, P の面分析を示す。これらによると 3 供試材のうち、強度は1.73mass%Si 含有材が最大で、0.26mass% Si 含有材が最小の傾向、また伸びはいずれもほぼ同じ挙動を示す。さらに As Cast 鈷塊で偏析が著しい元素は、一部 Ni, Si が完全にマトリック

Fig. 9 Mechanical properties of ingots (No 10, 11 and 12) after heating and quenching
No 10 ingot with 0.26mass% Si
No 11 ingot with 1.73mass% Si
No 12 ingot with 2.79mass% Si
Note) MPa = N/mm²
Fig. 10 SEM micrographs and characteristic X-ray images of laboratory as cast ingot (No 12) with 2.79mass% Si
 a SEM micrograph, b Sn image, c Ni image, d Si image, e P image

Fig. 11 SEM micrographs and characteristic X-ray images of ingot (No 12) after heating at 1073 for 3600s
 a SEM micrograph, b Sn image, c Ni image, d Si image, e P image
Fig. 12 Optical micrographs of intergranular fracture of hot rolling plates
a Plate of No 10 with 0.26mass%Si
b Plate of No 11 with 1.73mass%Si
c Plate of No 12 with 2.79mass%Si

次に、Ni の影響をみるため Table 1 の実験鉄塊 No 15-17 を用い、1123K・3600s 加熱後熱間圧延を行った。Table 1 の Note に示すように大きな割れはみられず、幅方向端部に小さな割れが観察された。Ni の増加（Si も量産鉄塊に比べてやや高い）につれて割れ数も増えているようである。

(2) 量産鉄塊

Table 1 の正常鉄塊 No 18-20，と不良鉄塊 No 21-23 を用いて 1123K・3600s 加熱後熱間圧延を行った。Table 1 の Note に示される数の小さな端部貫通割れが観察された。不良鉄塊は正常鉄塊に比べて割れ数が多い傾向が認められる。Fig. 13 に代表的試験片のマクロ組織およびその熱間圧延板，割れ部分のミクロ組織を示す。割れには粒界破壊を主に矢印で示される粒内延性破壊もみられる。

次に，Table 1 の正常鉄塊 No 34 を用い，1023-1248 K の温度で 3600s 加熱後熱間圧延を行い，割れ発生状況を調べたところ，Fig. 14 の結果が得られた。1103-1173K に本合金の適正な熱間圧延温度があり，操業条件とよく一致することがわかった。

4. 考察

すでに述べたように本合金は Cu-Sn 合金と Cu-Ni-Si 合金の融合合金である。前者には鍛造割れ，また後者には高温延性が問題とされる。本合金でも量産製造において 1073-1173K の高温域での熱間圧延開始後数バスで耳割れが発生する不具合がみられた。このため約1年間にわたる101の鍛造数についてSn およびNi/Si 比（Corson 合金の硬化は Ni/Si の析出状態による）に着目し，割れとの関係を調べたところ，後者に強い相関があるらしきことがわかった。そこで本実験を開始した次第である。
Fig. 13 Macrostructures of ingots, appearance of hot rolling plates and microstructures of hot rolling plates
a Macrostructure of No 22 ingot b Hot rolling plate of No 22
c Microstructure of hot rolling plate of No 22 d Macrostructure of No 19 ingot
e Hot rolling plate of No 19 f Microstructure of hot rolling plate of No 19
Note) Arrow shows ductile fracture.

Fig. 14 Relation between edge crack number of hot rolling plates and hot rolling temperature

The text explains the results of the experiments on the relationship between edge crack number in hot rolling plates and the hot rolling temperature. The relationship is illustrated in the figure. The data shows that as the hot rolling temperature increases, the edge crack number decreases. This indicates that higher temperatures result in fewer cracks, which is desirable for manufacturing processes.

The text further elaborates on the implications of these findings, discussing the implications for the production of hot rolling plates and the optimization of the hot rolling process to minimize defects.

In conclusion, the study highlights the importance of understanding the temperature-crack number relationship in the production of hot rolling plates. The results suggest that careful control of hot rolling temperature can significantly reduce the incidence of edge cracks, improving the quality and reliability of the final product.
Fig. 15 Relation between edge crack number and concentration of mass%Si of hot rolling plates from laboratory ingots

Fig. 16 Relation between edge crack number and concentration of mass%Si of hot rolling plates from commercial production ingots

Cu-Sn-Ni-Si-Zn系鋼合金の量産で生ずる熱間圧延割れについて調べたところ、その原因および熱間圧延割れの評価法に関して次のが明らかになった。

(1) 本合金の熱間圧延割れの原因について、栄業上不純物として混入する数少ない数ｐｐｍのＳ，またＭｇ，Ｍｎなどの硫化物生成によるスキャベンジング効果（scavenging effect）によって十分に説明できないことがわかった。むしろ合金の添加元素のひとつであるＳｉが重要な役割を演じていることが明らかになった。

(2) Ｓｉ含有量が0.15mass%を超えると熱間圧延割れが増加する原因は、本合金の主な添加元素であるＳｎ，Ｎｉおよびその他の元素に加えて特にＳｉのマトリックスへの固溶によってマトリックス強度が大きくなるため熱間変形抵抗が増大し、粒界に応力が集中し割れを生することによる。

(3) 1パス×85％圧延率で試験片を熱間圧延実験することによって、実験誤差の熱間圧延結果がうまく一致することがわかった。

(4) 熱間圧延割れに及ぼす本合金のＳｉの挙動に関しては、引張り、鍛造など他の塑性加工試験も併用して熱間における粒界破壊の機構をさらに詳しく究明する必要がある。

本研究を進めるにあたり、有益な議論および表面解析の助力に対して東京大学工学部材料学科菅野幹宏教授に深謝の謝意を表します。

文献
1) 金属便覧（第2版）日本金属学会編、丸善、（1994年3月第4刷）、885。
2) 二塚錦成、千葉俊一、熊谷淳一、井戸下拓弥：伸銅技術研究会誌、30（1991）、138。
3) 二塚錦成：素材物性学雑誌、No 1、3（1990），
4) 小出正登、島貫 康：日本金属学会講演概要集（1984年10月），399.
5) 菅野幹宏、下平憲昭：日本金属学会誌，51，60（1987），530.
7) 金属データブック（改訂3版），日本金属学会編，丸善，（1997年4月第4刷），96.
8) 改訂版銅および銅合金の基礎と工業技術，日本伸銅協会編，（1994年10月），42.
9) 講座 現代の金屬学 材料編 第10巻 金属凝固，日本金属学会編，丸善，（1992年1月），251.
10) 宮藤元久、松井 隆、原田英和：伸銅技術研究会誌，23（1984），198.
11) 黒木剛司郎、大森宮次郎、友田 陽：金属の強度と破壊（第2版），森北出版，（1996年3月第8刷），44.
12) 講座 現代の金屬学 材料編 第3巻 材料強度の原子論，日本金属学会編，丸善，（1993年3月第8刷），226.
13) B. Jaoul（諸住正太郎、舟久保保熙訳）：金属の塑性，丸善，（1969），525.
14) 関口春次郎：金属の塑性加工と変質，誠文堂新光社，（1983），30.